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Abstract 
 

Clinical prediction rules are created by medical 

researchers and practitioners based on their knowledge 

and clinical experience. Such expert-generated rules are 

then evaluated and refined in clinical tests. Once verified, 

these knowledge-driven rules are used to expedite 

diagnosis and treatment for the serious cases and to limit 

unnecessary tests for low-probability cases. Alternatively, 

machine learning techniques can be used for automated 

induction of comprehensible data-driven rules from vast 

amount of existing clinical data. This paper investigates 

how the rules generated by the clinical experts compare 

with the data-driven rules. The paper describes three 

outcomes: rule confirmation, contradiction, and 

expansion.  The study concentrates on prediction rules for 

the diagnosis of obstructive sleep apnea using three 

clinical data sets with 1,318 records. The prototype 

system, Hypnos, includes both a framework for rule 

definition, and also a mechanism for rule induction. 

  

 

1. Introduction 
 

The development process for clinical prediction rules 
involves derivation, validation, and evaluation in clinical 
settings. The derivation is a demanding task requiring 
several refinements and clinical tests using standard 
statistical methods. This study demonstrates that machine 
learning techniques can support the derivation of the rules. 
This paper describes a framework for a unified rule 
definition and a mechanism for two-way rule generation: 

(1) from hypotheses to data and (2) from data to 
hypotheses. The former, leading from human generated 
hypotheses to tests on data, is based on the clinical 
experience of medical experts. The second approach is 
based on machine learning techniques, generating 
hypotheses from the data sets. The machine-generated 
rules are interpreted and compared with the human 
generated hypotheses. This interactive process has an 
exploratory and confirmatory purpose: it allows for the 
discovery of new patterns from data and provides 
confirmation or contradiction of hypothetical rules. 

This paper focuses on the application of clinical 
prediction rules in the diagnosis of obstructive sleep apnea 
(OSA). Section 2 provides a brief introduction to OSA 
and its diagnostic criteria. Section 3 discusses the semiotic 
framework for rule representation. Section 4 describes the 
data sets. Section 5 presents the methods and experimental 
results. The last section provides the conclusion and the 
directions for future work.  
 

2. Diagnosis of Obstructive Sleep Apnea 
 

Obstructive sleep apnea is a common, serious 
respiratory disorder afflicting approximately 2-4% of the 
population. OSA is caused by collapse of the soft tissues 
in the throat as the result of the natural relaxation of 
muscles during sleep. The soft tissue blocks the air 
passage and the sleeping person literally stops breathing 
(apnea event) or experiences a partial obstruction 
(hypopnea event). Apnea occurs only during sleep and is, 
therefore, a condition that might go unnoticed for years. 
The gold standard for the diagnosis of OSA is an 
overnight in-laboratory polysomnography (PSG) study 
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involving continuous recordings of EEG, ECG, EOG, 
EMG, airflow, breathing effort, and oxygen saturation. 
OSA is associated with hypertension, congestive heart 
failure, stroke, and coronary artery disease. Although the 
diagnosis of OSA using PSG is relatively straightforward, 
and treatment is readily available, a large segment of the 
population is not diagnosed because of time factors, costs, 
and limited access to the overnight in-clinic PSG. 
Therefore, patients suffering from OSA might spend 
several months waiting for diagnosis. However, we 
believe that by using a combination of predictive rules and 
home studies, early treatment can be initiated in 
appropriate patients before formal diagnosis by PSG. 

The diagnosis of OSA uses two approaches: (1) a score 
of apnea/hypopnea events and (2) a combination of 
scoring and symptoms. Both approaches use an apnea-
hypopnea index (AHI), calculated as a number  of apnea 
and hypopnea events per hour of sleep [1]. An apnea is 
defined as a complete cessation of airflow for at least 10 
seconds. A hypopnea is defined using various criteria 
consisting of one or more of the following three factors: 
partial reduction of airflow, oxyhemoglobin desaturation, 
and brief arousals from sleep. In the diagnosis based 
solely on the AHI index, apnea is classified as mild for 
AHI between 5 and 14.9, moderate for AHI between 15 
and 29.9, and severe for AHI ≥ 30. However, the use of 
diverse scoring criteria for AHI calculations can result in 
significant differences in apnea diagnoses, especially for 
patients with low AHI scores [2,3]. Furthermore, the 
difficulty with the scoring of AHI is compounded by (1) 
natural night-to-night variations and (2) differences in 
diagnostic equipment. 

 

3. Framework for rule representation  
 

A knowledge representation framework defines two 
essential diagnostic concepts: prediction rules and 
predictors. The concepts are defined at three levels: 
syntactic, semantic, and pragmatic.  

 

3.1. Prediction rules 
 

The clinical prediction rule (CPR) is specified by an 
IF-THEN statement, a certainty factor, and usability.  We 
define CPR as a triplet: < RS, CF, U >. The rule 
statement, RS, represents the rule’s syntax, the rule 
certainty factor, CF, is a part of the rule’s semantics, and 
the usability, U, determines the rule’s pragmatic value. 
The rule pragmatic value is an important criterion 
introduced by us to describe how the rule can be used in a 
clinical setting.  

 

3.1.1. Rule syntax. The rule is comprised of two parts: a 
premise and a consequent. The premise of the rule uses 
predefined predictors, for example, age, gender, neck 
circumference, or hypertension. A proposition is a logical 
expression composed of a predictor variable, the 
relational operator (<, ≤, >, ≥, =), and a value; for 
example, age > 65, hypertension = yes. The rules are in 
the conjunctive propositional form, for example, age > 65 
AND gender = female. The conclusion of the rule includes 
the class label. The rule statement is defined in extended 
BNF grammar, as follows: 

 
<Rule statement> ::=  IF <Rule premise> THEN <Rule  

consequent>  
<Rule premise> ::=  <Relational expression> {AND 

<Relational expression>} 
<Relational expression> ::= <Predictor variable> 

<Relational operator> <Value> 
<Relational operator> ::= < | ≥ | > | ≤ | = 
<Value> ::=  numerical value | categorical value  
<Rule consequent> ::= class label 

 

3.1.2. Rule semantics. The clinical prediction rule is a 
hypothetical statement with two functions: descriptive and 
predictive. In the descriptive sense, rules characterize the 
subpopulations of patients with higher or lower risks for 
the disease. In the predictive sense, rules assess the 
probability of a new patient belonging to one of the 
classes. The hypothetical quality of the rule is defined by 
the certainty factor (CF), a degree of belief ranging from -
1.0 (absolute disbelief) to +1.0 (absolute belief), assigned 
to the rule by medical experts based on their clinical 
experience.  
 

3.1.3. Rule pragmatics. The rule’s pragmatic value is 
determined by three criteria: internal validity, external 
validity, and clinical usability. Internal validity is based on 
specificity and sensitivity. The external validity is based 
on rule generality: transferability to a different data set. 
The clinical usability comprises interpretability, 
simplicity, and practicality. The rule interpretability and 
practicality are qualitatively determined by the medical 
experts. The rule simplicity is measured, for example, by 
the length of the rule. 
 

3.2. Predictors  
 

A predictor is an established or suspected symptom, 
sign, correlate, or co-morbid condition. In general, OSA 
predictors are divided into six categories: (1) anatomical 
signs: obesity, large neck circumference, and high 
Mallampati score, (2) nocturnal symptoms: snoring, 
breathing pauses, and choking, (3) diurnal symptoms: 
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excessive daytime sleepiness, (4) demographic factors: 
gender, age, and familial aggregation, (5) coexisting 
medical conditions: hypertension and coronary artery 
disease; and (6) lifestyle factors: smoking and alcohol use 
[4,5].     

Predictors are described at three levels: semantic 
(conceptualization), syntactic (operationalization), and 
pragmatic (utilization of measurements). For example, in 
our study, hypertension is defined as blood pressure BP ≥ 
140/90 mmHg, or current treatment with antihypertensive 
medications. Thus, the concept of hypertension can be 
represented syntactically by (1) categorical binary values: 
yes/no, (2) continuous values for systolic and diastolic 
blood pressure combined with the indicator of the current 
treatment, or (3) ordinal values: low, normal, high 

normal, high, and severe high.  
This study investigates six predictors: age, gender, 

hypertension (HTN), body mass index (BMI) in kg/m2, 
neck circumference (NC) in cm, and Mallampati score 
(MP). The Mallampati score is determined based on 
visual inspection of the wide open patient’s mouth. The 
scale ranges from I to IV: I – entire uvula visible, II – 
majority of uvula visible, III – only soft palate visible, IV 
– only hard palate visible. Clinical studies [6] show 
correlation between the score and obstructive sleep apnea 
(OSA). 

 

4. Clinical data  
 

Three data sets A (N=795), B (N=233), and C (N=290) 
were obtained from the Sleep Disorders Program, 
Vancouver Acute Hospitals. All patients were diagnosed 
based on standard in-clinic overnight PSG.  

Set A (795) has four attributes: gender, age, BMI, and 
hypertension; 539 males and 256 females; mean age of 
50.4 years (STD=12.4), mean BMI of 31.9 (STD=7.6), 
and 241 instances of hypertension (HTN=yes).   

Set B (233) has five attributes: gender, age, BMI, neck 
circumference, and Mallampati score; 193 males and 40 
females; mean age of 49.2 (STD=12.1) and mean BMI of 
29.2 (STD=5.75).   

Set C (290) has four attributes: gender, age, BMI, and 
hypertension; 210 males and 80 females; mean age of 49.2 
(STD=12.1), mean BMI of 31.2 (STD=6.6), and 55 
instances of hypertension (HTN=yes). 

Since the data sets include solely clinical records, they 
are biased towards the positive instances of OSA. 
However, the prevalence of OSA in sets A and B depends 
strongly on the AHI cut-off values. The changes in 
prevalence are illustrated by table 1. In our study, we use 
AHI ≥ 15 to define OSA, since this value typically 
indicates clinically important OSA requiring treatment. 
The records with AHI < 15 are classified as non-OSA.  

Table 1.  OSA prevalence 
 

Prevalence of OSA based on AHI cut-off values   
  AHI  ≥  5 AHI  ≥  10  AHI  ≥  15 

Set A  (795) 
 OSA = yes 
 OSA = no 
Set B  (233) 
 OSA = yes 
 OSA = no 
Set  C  (290) 
 OSA = yes 
 OSA = no 

 
91.9% (731) 
  8.1% (64) 
 
83.7% (195) 
16.3% (38) 
 
83.1% (241) 
16.9% (49) 

 
78.6% (625) 
21.4% (170) 
 
69.5% (162) 
30.5% (171) 
 
62.4% (181) 
37.69 (109) 

 
65.8% (523) 
34.2% (272) 
 
58.8% (137) 
41.2% (96) 
 
47.9% (139) 
52.1% (151) 

 
 

5. Methods and results 
 

The two-way rule generation involves (1) the 
knowledge-driven method, based on the hypothetical rules 
created by medical experts, (2) the data-driven method, 
based on machine-generated rules, and (3) integration of 
both methods. The preliminary results show that the rules 
extracted through machine learning algorithms can 
confirm, contradict, or expand the rules created by 
medical experts.  

This study applies two hypothetical rules from the 
knowledge-driven method, ER1 and ER2, which 
exemplify (1) a high-risk group: older male patients with 
morbid obesity (BMI > 40), and (2) a low-risk group: 
young female patients with normal weight (BMI < 25):  

 
ER1 = IF BMI>40 AND age>65 AND gender=male 

THEN OSA=yes,  
ER2 = IF BMI<25 AND age<25 AND gender=female 

THEN OSA=no.  
 
For the machine-generated rules, we use a decision tree 

classifier C4.5 [7] to induce small, interpretable, yet 
sufficiently specific decision trees and to generate 
comprehensible rules from trees. The experimental results 
were produced by the prototype system, Hypnos, based on 
the Weka decision tree learner J48 [8]. The classifiers 
were trained and tested on sets A, B, and C using the 
stratified 10-fold cross-validation.  

  

5.1. Experimental results  

  
Three classifiers were induced: (1) Model 1 (Tree 1d) 

based on age, gender, and BMI; (2) Model 2 based on 
age, gender, BMI, and HTN; and (3) Model 3 based on 
age, gender, BMI, and MP. In all figures, the nodes 
represent the predictors, the branches correspond to 
predictor values, and the leaves correspond to the 
outcome classes. The two numbers in the leaves represent 



Presented at the IEEE International Conference on Machine Learning Applications, ICMLA 05, Los Angeles, Dec. 2005. 

 4 

instances covered by the rule premise and exceptions from 
the rule. 
 

5.1.1 Model 1.  Model 1 (Tree 1d) was constructed in two 
steps: (1) induction of separate classifiers from data sets 
A, B, and C; and (2) induction of Tree 1d using 
redistribution of the instances among sets A, B, C to 
balance the female to male ratio.   Figures 1, 2, and 3 
represent decision trees 1a, 1b, and 1c induced separately 
from data sets A, B, and C. The difference between the 
predictors at the root level (BMI, Gender) is the result of a 
relatively small number of female records. This low ratio 
of female to male patients is typical in clinical practice 
[9]. In set B, females constitute 21.46% (40/233) of all 
records and only 9.5 % (13/137) of OSA patients (AHI 
≥15). Similarly, in set C, females constitute 27.59 % 
(80/290) of all patients and only 17.99 % (25/139) of 
OSA patients. Figure 4 shows the decision tree induced 
from combined sets A and B. Tree 1d is chosen as Model 
1, since it has a better accuracy than tree induced from 
combined sets A, B and C, and tree induced from 
combined sets A and C. The rules are generated directly 
from the decision Tree 1d. Each leaf results in one 
independent conjunctive rule. For example, the right sub-
tree is converted into three rules: (1) “IF BMI > 28.03 
AND GENDER= female AND AGE > 33 THEN 
OSA=yes” (coverage = 18.39%, accuracy = 60.85 %); (2) 
“IF BMI > 28.03 AND GENDER= female AND AGE ≤ 
33 THEN OSA=no” and (3) “IF BMI > 28.03 AND 
GENDER= male THEN OSA=yes”.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Tree 1a  induced from data set A 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 2. Tree 1b induced from data set B 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Tree 1c  induced from data set C 
 

 
Figure 4.  Tree 1d induced from data set A+B 

 



Presented at the IEEE International Conference on Machine Learning Applications, ICMLA 05, Los Angeles, Dec. 2005. 

 5 

5.1.2  Model 2. Figure 5 shows the model based on 
gender, age, BMI, and hypertension (htn).  

 
 

Figure 5. Model 2 induced from data set A 
 

5.1.3  Model 3. Figures 6-7 show the model based on 
gender, age, BMI, and Mallampati score (MP). The root 
node splits the data by gender: the left subtree relates to 
males only; while the right subtree relates to females. 
Figure 6 illustrates the subtree for male records. The 
Mallampati score > 2 is indicated as a good predictor of 
OSA [6]. The leaf for MP=1 (OSA) results from one 
exceptional clinical record. Figure 7 shows the right 
subtree for female records. The structure of the tree 
indicates that MP predictor is weaker in case of females. 
However, this finding is based only on the particular 
distribution of 40 female records and should be further 
studied on larger sets.   

 
 
 

Figure 6. Left subtree induced from data set B 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Right subtree induced from data set B 
 

5.1.4 Comparison of data-driven models. The 
accuracies of the machine-generated classifiers are shown 
in Table 2. 

 

Table 2:  Comparison of classifiers 
 

 Model 1 Model 2 Model 3 

Sensitivity 92.28 % 80.69 % 82.50 % 

Specificity  10.59 % 26.47 % 50.00 % 

Accuracy 63.42 % 62.14 % 69.81 % 

 

 

5.2. Integration of knowledge-driven and data-

driven methods 
 

The integration of expert-generated models and 
machine-generated models is based on three criteria: (1) 
the equivalency of the predictors, (2) internal and external 
validity, and (3) clinical usability: interpretability, 
simplicity, and practicality. All models use the common 
three predictors: BMI, age, and gender. Model 2 uses 
additionally HTN and Model 3 uses additionally MP.  

The interpretation of computer-generated rules might 
(1) confirm the hypothetical rules, (2) provide 
contradictory examples, or (3) identify new insights. The 
following examples illustrate the three outcomes: 

  

5.2.1. Confirmation. Expert-generated rule ER1 
specifying high OSA risks for morbidly obese older male 
patients: “IF BMI > 40 and age > 65 AND gender =male 
THEN OSA=yes” is confirmed by the following rules: (1) 
The rule derived from Model 1: IF BMI > 28.03 AND 
GENDER=male THEN OSA=yes; and (2) Two rules 
obtained from Model 2: “IF BMI > 26.8 AND HTN = yes 
THEN OSA=yes”, “IF BMI > 26.8 AND HTN= no AND 
age > 29 THEN OSA = yes.” 
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5.2.2. Contradiction. Expert-generated rule ER1 
specifying high OSA risks for morbidly obese older male 
patients: “IF BMI > 40 and age > 65 AND gender =male 
THEN OSA=yes” is contradicted by rule extracted from 
Model 3: “IF GENDER=male AND MP=2 THEN 
OSA=no.”  

Expert-generated rule ER2 specifying low OSA risks 
for young female patients with normal weight: “IF BMI < 
25 AND age < 25 AND gender = female THEN OSA = 
no” is contradicted by the rule generated from Model 2, 
which additionally includes hypertension (HTN): “IF 
BMI<=26.8 AND HTN=yes THEN OSA=yes.”  
 

5.2.3. Knowledge expansion.  All models include 
specific sub-trees concerning female patients 
(GENDER=female), which classify the females into two 
groups based on the age predictor. Model 1 divides 
females into groups based on age ≤ 48 and age > 48 (for 
BMI ≤ 28.03) and age ≤ 33 and age > 33 (for BMI > 
28.03). Model 2 divides into groups based on age ≤ 56 
and age > 56 (for BMI ≤ 26.8 and HTN=no). Model 3 
divides into groups based on age ≤ 59 and age > 59. The 
rule extracted from Model 3 classifies all females above 
59 as having OSA: “IF GENDER=female AND AGE>59 
THEN OSA=yes.” This specific age-based division could 
be associated with an increased risk of OSA among 
postmenopausal women. However, menopause is also 
associated with increased central obesity [10].  This issue 
requires further studies on larger sets of female records. 

 

6. Conclusion and future work 
 

Medical researchers and clinical practitioners study 
various methods to improve the validity and reliability of 
clinical prediction rules. In this paper we describe how the 
machine learning techniques can be used to facilitate and 
refine the rule derivation process. The integration of the 
results from the knowledge-driven and data-driven 
approaches provides confirmation, contradiction, or 
expansion for the expert-generated prediction rules. 
Although our study is limited to few predictors, the results 
demonstrate that our approach is valid, and warrants 
future work involving additional predictors and further 
machine learning techniques.    

In this study, we identified two problems: (1) diverse 
definitions of OSA diagnostic criteria based on AHI ≥ 5, ≥ 
10, ≥ 15; and (2) a high prevalence of patients with OSA 
in our datasets. The first problem was addressed by 
restricting the definition of OSA to specific AHI threshold 
values. The second problem is present in many medical 
studies of OSA. Since the diagnostic criteria involve the 
gold standard of overnight PSG at a cost of at least $1000 

dollars per study, the additional studies of healthy control 
groups are cost prohibitive.      

We are planning to expand our work in three 
directions: (1) development of models based on all known 
and suspected OSA predictors, (2) application of other 
machine learning techniques and approaches, for example, 
fuzzy decision trees, (3) training and testing on larger and 
more diversified data sets. Furthermore, we are 
developing a telemedicine application, which will test the 
utility of the rules in clinical settings.  

Acknowledgments: Dr. Ayas is supported by a New 
Investigator Award from CIHR/BC Lung Association, a 
Scholar Award from the Michael Smith Foundation, and a 
Departmental Scholar Award from the UBC. Funding for 
the database was supported in part by a Michael Smith 
Foundation Infrastructure Award and an operating grant 
from the BC Lung Association. 

 

7. References 
 
[1]  N. J. Douglas, Clinicians' Guide to Sleep Medicine, Arnold, 
London, 2002. 
[2]  S. Redline, V. K. Kapur, M. H Sanders, S. F. Quan, D. J. 
Gottlieb, D. D. Rapoport, et al., “Effects of Varying Approaches 
for Identifying Respiratory Disturbances on Sleep Apnea 
Assessment.” Am. J. Respir. Crit. Care Med., 161, 2000, pp. 
369-374. 
[3] W. H. Tsai, W. W. Flemons, W. A.. Whitelaw, and J. E. 
Remmers, “A Comparison of Apnea-Hypopnea Indices Derived 
from Different Definitions of Hypopnea.” Am. J. Respir. Crit. 

Care Med., 159(1),  1999, pp. 43-48. 
[4]  C. R. F. Nieto, T. Young, B. K. Lind, E. Shahar, J. Samet,  
S. Redline, et al., “Association of Sleep-Disordered Breathing, 
Sleep Apnea, and Hypertension in a Large Community-Based 
Study”, JAMA, 283(14), 2000, pp. 1829-1836. 
[5]  T.Young, , J. Skatrud,. and P. E., Peppard, “Risk Factors for 
Obstructive Sleep Apnea”, JAMA, 291(16), 2004, pp. 2013-
2016. 
[6] B. Lam, M.S.M. Ip and C.F. Ryan, “Craniofacial profile in 
Asian and white subjects with obstructive sleep apnoea”, 
Thorax, 60, 2005, pp.504-510. 
[7] J.R. Quinlan, C4.5.:Programs for machine learning, Morgan 
Kaufmann, San Francisco, 1993. 
[8] I. H. Witten and E. Frank,Data Mining: Practical Machine 
Learning Tools and Technologies with Java Implementations, 
Morgan Kaufmann, San Francisco, 2005. 
[9] A.S. Jordan and R.D. McEvoy, “Gender differences in sleep 
apnea: epidemiology, clinical presentation and pathogenic 
mechanisms”, Sleep Medicine Reviews, 7(5), 2003, pp. 377-389. 
[10] R. Grunstein, “Endocrine Disorders” in Principle and 

Practice of Sleep Medicine, Third Edition, M.H. Kryger, T. 
Roth, W.C. Dement, Eds. W.B. Saunders Company, 
Philadelphia, 2000, pp.1103-1112. 

 
 
 


