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ABSTRACT

It has recently been shown that greater accuracy in fMRI
processing can be achieved if registration and activation de-
tection are solved simultaneously rather than in sequence.
However, this simultaneous solution has been demonstrated
only for fMRI experiments in which a single stimulus con-
dition was used. This paper presents results obtained by
applying the simultaneous solution technique to simulated
datasets with two stimulus conditions, and demonstrates that
the technique is equally effective on such datasets.

1. INTRODUCTION

In fMRI, the processing steps of registration and activation
detection are coupled. It is well established that patient mo-
tion must be removed from the dataset before activation de-
tection can be accurately achieved [1,2]. On the other hand,
it has recently come to light that activation should be re-
moved from the dataset in order to achieve accurate regis-
tration. Freire et al. [3] hypothesized that the active vox-
els were behaving like outliers in the least-squares registra-
tion process, resulting in a systematic activation bias in the
motion estimates. These motion errors ultimately lead to
false-positive and false-negative activations in the resulting
activation maps.

The fact that the two problems are coupled means they
cannot accurately be solved independently. A method to
solve the two problems simultaneously has been proposed [4],
and uses a single data model designed to account for the ef-
fects of both motion and activation. The model combines a
linearization of the rigid-body motion transformation, and
the general linear model for activation. By representing an
entire dataset in one matrix, the model can be expressed as
F ≈ G+AX+YB, where F is a matrix that holds the en-
tire observed dataset with volumes stored in columns, and
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voxel time series stored in rows. The matrix G is a mo-
tionless and activationless baseline dataset. The term AX
is the linear motion term in which the matrix X holds the
time series of the 6 motion parameters, one in each row, and
A holds the appropriate derivatives of the baseline volume
with respect to the motion parameters in its columns. The
term YB is the activation term, and is also split into a spa-
tial component (Y which holds s activation maps, one in
each column), and a temporal component (B which holds
s stimulus regressors, one in each row). Stated as a least
squares problem, we have

min
(X,Y)

‖AX + YB − C‖ (1)

where C is simply (F−G), and ‖ ·‖ is the Frobenius norm.
Methods to solve (1) for the motion (X) and activation

(Y) simultaneously were proposed in [4] and [5]. How-
ever, neither of these publications present results pertaining
to fMRI experiments with more than one stimulus condi-
tion. Here, we show that the simultaneous model, and the
solution outlined in [4], is capable of overcoming the acti-
vation bias and achieve accurate activation maps with two
stimulus conditions.

2. THEORY

The least-squares problem in (1) can be solved by taking the
QR decomposition of the matrix B′ (the transpose of B) [4].
Let Q1, Q2 and R be defined according to the equation

B′ = [Q1 Q2]
[

R
0

]
, (2)

where R is s × s and upper-triangular. The simultaneous
solution to (1) can be stated analytically as

X=A†CQ2Q′
2 (3)

Y=CQ1(R′)−1 , (4)

where A† is (A′A)−1A′, the matrix pseudo-inverse of A.



It should be noted that nowhere in the derivation of the
solution (equations (3) and (4)) is there any constraint on
B other than that B have full rank. If B does not have
full rank, this means that the fMRI experiment is poorly de-
signed, and the breakdown in the solution is due to a math-
ematical flaw in design, not the algorithm for finding the
solution. If B has full rank, the resulting R is s × s (when
there are s stimulus regressors), and equation (4) produces
estimates for s activation maps, as required. Thus, the same
solution applies to datasets with multiple stimulus condi-
tions, even though it has not previously been demonstrated.

The problem stated in (1) does not have a unique solu-
tion. Consider the following derivation:

min
(X,Y)

‖AX + YB − C‖ (5)

= min
(X,Y)

‖AX + YB − C + AαB − AαB‖ (6)

= min
(X,Y)

‖A(X + αB) + (Y − Aα)B − C‖ . (7)

Thus, if (X,Y) is a solution, then so is (X+αB,Y−Aα)
for any 6× s matrix α. However, as long as we can find any
solution at all, we can simply adjust α to our liking. In [4],
an additional constraint,

min
α

∑
r

arctan
(
k
∣∣∣[Y − Aα]r

∣∣∣) , (8)

was used to remove unwanted motion artifacts from the ac-
tivation maps and arrive at a satisfactory solution to the si-
multaneous problem. The subscript r in (8) denotes the rth
voxel.

3. METHODS

Both the standard least-squares method and the simultane-
ous method were implemented in C++ using Fourier resam-
pling [6,7]. An altered form of the constraint in (8) was used
to address the fact that there are now two activation maps,
one for each stimulus.

min
α

∑
r

arctan
(
k
∣∣∣[Y − Aα]r,c

∣∣∣) , c = 1, 2 (9)

The subscripts r and c denote row and column, respectively.
A value of 0.05 was used for k. This parameter determines
the sensitivity (or lack thereof) to outliers. It is important to
note that while (9) is a minimization over all the columns
of α, each column can actually be solved for independently.
Thus, the processing time increases linearly with respect to
the number of stimulus conditions.

The simultaneous method was compared to the standard
least-squares method (in which registration is done first, fol-
lowed by activation detection). To assess the robustness of
the two methods, they were each used to analyze a set of

40 different simulated fMRI datasets. These datasets were
generated using 80 copies of a single EPI volume with di-
mensions 64× 64× 30. The voxel dimensions were 3.75×
3.75 × 4 (mm). Two different stimulus functions, stimulus
1 and stimulus 2, were created from slightly smoothed box-
car functions. Stimulus 1 was non-zero for frames 6-16, 26-
36, 46-56, and 66-76. Stimulus 2 was non-zero for frames
11-32 and 51-72. For each stimulus, an activation map was
created manually. The region of activation for stimulus 1
occupies a large region in the occipital and temporal lobes,
while the region of activation for stimulus 2 occupies a large
region in the frontal lobes. After applying the activation and
motion, the datasets were corrupted with additive Gaussian
noise (standard deviation of 2.5% of the mean brain inten-
sity), and were blurred with a 5-mm (full-width at half-max)
Gaussian kernel.

The datasets were split up into four different types as
follows:

• 10 datasets included activation and random motion,

• 10 datasets included activation and stimulus-correlated
motion,

• 10 datasets included stimulus-correlated motion and
no activation, and

• 10 datasets included activation but no motion.

The stimulus-correlated motion profiles were generated us-
ing a random weighting of a random walk, and the two stim-
ulus functions.

Both the standard least-squares method and the simul-
taneous method were used to estimate the motion for all 40
datasets. These motion estimates were then used to resam-
ple the datasets (using Fourier interpolation [6, 7]) before
least-squares activation detection. In the activation detec-
tion, both a linear fit coefficient and a correlation coefficient
were calculated. These activation maps were thresholded
so that only voxels with a fit coefficient greater (in absolute
value) than 40, and a correlation coefficient greater (in ab-
solute value) than 0.363 were considered to be active and
included in the final activation mask. The resulting binary
activation masks were used to calculate false-positive and
false-negative activation rates. The gold standard activation
mask was established by performing the same activation de-
tection process (but not registration) on a simulated dataset
that contained no motion corruption.

4. RESULTS

Figure 1 shows how the errors in the motion estimates differ
between the standard least-squares registration method and
the simultaneous solution. The motion plots show the error
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Fig. 1. Errors in the motion parameter estimates for a
motion-corrupted dataset with activaiton. The standard
least-squares method (“Std.”) exhibits errors that are cor-
related to the stimulus function, while the simultaneous
method (“Sim.”) does not. The two stimulus functions are
shown in the posterior translation plot.

in the estimates for a simulated dataset that contains activa-
tion and random motion. The standard method error plots
show a high degree of similarity to the stimulus functions.
Moreover, many of the standard method plots appear to be
a linear combination of the stimulus functions (plus noise).
For comparison, the two stimulus functions are also plotted
in the posterior translation graph.

The activation maps corresponding the dataset used in
Fig. 1 are shown in Fig. 2 and Fig. 3. Note the regions
of false activation near the edges of the brain in Fig. 2 (b).
These are false-positive activations.

(a) True (b) Std. (c) Sim.

Fig. 2. Activation masks corresponding to stimulus 1 for a
simulated dataset that contains activation and random mo-
tion. The standard least-squares method results in regions
of false activation (b), whereas the mask produced by the
simultaneous method (c) looks much more like the true ac-
tivation mask (a).

Table 1 lists the false-positive and false-negative activa-
tion rates for the two analysis methods, averaged over the 10
simulated datasets for each of the 4 dataset types. For stim-

(a) True (b) Std. (c) Sim.

Fig. 3. Activation masks corresponding to stimulus 2 for a
simulated dataset that contains activation and random mo-
tion. Although the activation masks look similar, they are
not quite the same. Table 1 reports the differences in false
activation rates.

ulus 1, the simulated method shows far fewer false-positive
and false-negative activations than the standard method. For
datasets with activation, the standard method averaged about
50% more false-positives and about 45% more false-negatives
than the simultaneous method. The results for stimulus 2 are
not as extreme. In fact, the standard method shows about
10% fewer false-positives, but 30% more false-negatives,
than the simultaneous method.

5. DISCUSSION AND CONCLUSIONS

The simultaneous solution method is capable of distinguish-
ing motion artifact components from activation components
in simulated fMRI datasets. This was previously shown for
fMRI experiments with only one stimulus condition. Here,
we have demonstrated that it works equally well for 2 stim-
ulus conditions. We are confident that it will also work for
even more stimuli.

A comparison of activation masks produced by the two
methods shows that the standard least-squares method re-
sults in substantially more false activations for stimulus 1,
and moderately more for stimulus 2.

The simultaneous method requires no extra coding over
and above the method outlined in [4]. The only difference
is that the constraint needs to be applied for each stimulus
condition. These constraints can be applied independently
and result in only a linear increase in computational time.
The simultaneous method is modest in its use of memory
and CPU resources. The technique takes only about twice
as long as the standard method to solve for X and Y simul-
taneously.

The simultaneous model and solution method show great
promise, and we are currently investigating its application to
non-rigid registration, as well as its effectiveness on in vivo
datasets.



Table 1. False-positive and false-negative activation counts for the two analysis methods, averaged over 10 datasets for each
dataset type. The true activation masks contain 3252 active voxels for stimulus 1, and 2233 active voxels for stimulus 2.

Stimulus 1 Stimulus 2
False-Positives False-Negatives False-Positives False-Negatives

Dataset Type Std. Sim. Std. Sim. Std. Sim. Std. Sim.

activation, random motion 291.5 196.5 289.2 202.7 109.7 121.6 161.7 124.5
activation, stim-corr motion 296.3 201.4 286.4 200.8 113.3 121.5 161.0 124.8
no activation, stim-corr motion 16.8 17.1 0.0 0.0 12.0 12.2 0.0 0.0
activation, no motion 283.2 178.0 287.5 189.8 92.1 104.8 156.1 114.7
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