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Abstract. Most intensity-based fMRI registration methods do not ac-
count for the fact that the volumes being aligned may differ: one may
have blood oxygen level dependent (BOLD) contrast while the other does
not. Especially in least-squares registration, this can result in motion pa-
rameter errors that are correlated to the stimulus. An iterative technique
to overcome this activation bias is proposed and analyzed. The method,
using mostly off-the-shelf software, is able to find the least-squares solu-
tion to both the registration and activation detection problems simul-
taneously. The resulting motion parameters and activation maps are
considerably more accurate, yielding two-thirds fewer false-positive and
one-third fewer false-negative activations.

1 Introduction

In functional MRI (fMRI), patient motion can have a very damaging effect on the
accuracy of the resulting statistical parametric activation maps. Patient move-
ments of a fraction of a millimetre or degree have the potential to cause false-
negative activations [1] and false-positive activations [2].

A host of registration techniques have been proposed to combat patient mo-
tion [1,3,4]. These methods use a variety of cost functions and optimization
schemes. One commonly-used cost function is the least-squares cost function,
which can be shown to be the optimal choice when the images being compared
differ only by Gaussian noise. However, least-squares techniques are sensitive
to outliers. In fMRI, outliers come from a variety of sources, including the
blood oxygen level dependent (BOLD) signal itself. Freire et al. [5] showed that
the presence of BOLD contrast can bias the motion estimates calculated by
least-squares registration methods. This influence becomes noticeable in fMRI
datasets acquired on scanners with field strengths of 3 Tesla and higher. When
the dataset is motion-compensated with these inaccurate motion estimates,
stimulus-correlated motion is introduced into the dataset. Stimulus-correlated
motion is especially damaging [2] because it makes it impossible for the acti-
vation detection algorithm to distinguish between intensity changes caused by
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motion and those caused by activation. The activation detection process then
interprets signal changes due to motion as activation, and yields a high number
of false-positive activations. Furthermore, the added motion can decrease the
significance of the true activation, resulting in false-negatives.

A natural approach to overcome activation bias is to iterate registration
and activation detection with the hope that the final result will reflect both a
minimum in the registration problem and a minimum in the activation problem.
For example, one could perform motion correction first, and then run activation
detection on the “aligned” dataset. After removing the estimated activation,
the process could be repeated until subsequent iterations yield no change and
the iterative method converges. This is a form of fixed-point iteration, which
we will refer to as paired iteration. Unfortunately, this method rarely yields the
expected motion parameters and activation maps. Instead, the activation maps
often contain brain-edge artifacts, and the motion parameters often contain large
stimulus-correlated components.

A variation of this approach has been proposed [6]. Following an initial reg-
istration step, activation detection is performed. The resulting activation map
is thresholded and dilated to form a binary activation mask. Voxels under the
mask are considered to be potentially active and are excluded from a second
registration step, thereby shifting the weight of the registration process onto
the unmasked portion of the volume. While this method has shown good re-
sults on both simulated and in vivo datasets, fMRI experiments that contain
large regions of activation may cause the method to be less accurate, since the
registration must then rely on information from fewer voxels. Also, the binary
inclusion/exclusion of voxels may cause the method to be unstable.

The Simultaneous Registration and Activation (SRA) model [7] was designed
to address the interdependence between motion and activation. It combines the
two problems into a single least-squares problem, allowing the solution of both
motion and activation simultaneously. The solution offered in [7] uses matrix QR
decomposition and is implemented in C++. For the sake of consistency, however,
it is desirable to use one’s current software to solve the SRA model rather than
to use this new piece of software.

In this paper, we show that by introducing a simple adjustment step, the
paired iteration approach described above can solve the SRA model and yield
exactly the same solution as the QR decomposition approach. We explain the
links between the QR solution and the paired iteration solution, and describe an
algorithm that uses almost entirely off-the-shelf software to accurately resolve
the motion/activation interdependency.

2 Combined Registration and Activation Model

To solve for both motion and activation simultaneously, a single model has to
include the effect of both. In [7], this combined model is refered to as the Simul-
taneous Registration and Activation (SRA) model, and takes the form

{dataset} ≈ {baseline} + {motion} + {activation}
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F ≈ G + AX + YB, (1)

in which the matrix F stores one volume from the dataset in each column,
AX is the linearization of the 3D (six-degree-of-freedom) rigid-body motion
transformation, A holds the partial derivatives of the reference volume with
respect to the motion parameters (in columns), and X holds the time series
for the six motion parameters (one parameter per row). The term YB is the
activation term in which Y holds s activation maps (one in each column), and
each row of B holds one of the s time-series regressors for the activation detection
general linear model (GLM).

A method to solve the SRA model was proposed in [7]. The solution is an
iterative method that uses matrix QR decomposition to find a least-squares
solution for the motion and the activation map simultaneously.

However, the least-squares solution to (1) is not unique. It can be shown that
if (X,Y) is a solution, then the solution space is

{
(X + αB,Y − Aα) | ∀α ∈ R

6×s
}

, (2)

where α is a small, arbitrary matrix used to span the 6s-dimensional space. That
is, (X + αB,Y − Aα) yields an equivalent solution for any α.

This non-uniqueness is the reason that the paired iteration approach de-
scribed above does not yield a satisfactory answer. While the paired iteration
method does, indeed, yield a least-squares solution, the solution can be any one
of the solutions in (2), most of which are not relevant to fMRI analysis. To get
around this issue, the QR decomposition method uses an additional constraint in
which a specifically-chosen cost function is minimized during each iteration. The
constraint favours an activation map that has very low intensities everywhere
except for where activation occurs. This characteristic is called “sparsity”. We
can find the solution with the greatest sparsity by finding the α that solves

min
α

(
∑

i

∣
∣Yi − [Aα]i

∣
∣
)

, (3)

where Yi and [Aα]i refer to the ith voxels in Y and Aα, respectively. Simply
put, we wish to find the α that minimizes the �1 norm of the adjusted activation
map. In doing so, we remove edge artifacts from the initial activation map. In the
following section, we adopt the same strategy for the paired iteration approach.

3 Constrained Paired Iteration

The paired iteration algorithm can be implemented both with and without the
additional constraint in (3). We will refer to these algorithms as constrained
paired iteration (CPI) and unconstrained paired iteration (UPI), respectively.

For the CPI method, we apply the constraint after each iteration. In this
way, not only does the process converge to a least-squares solution of (1), but
the solution also satisfies the additional constraint in (3). Figure 1 depicts the
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Fig. 1. Constrained paired iteration flowcharts. In (a), activation detection is per-
formed first, while in (b), registration is performed first. Both methods converge to the
same solution.

CPI method graphically. In Fig. 1(a), the activation detection is performed first
yielding an estimate for the activation map Y, followed by a single iteration
of the registration method, yielding an estimate for the motion X. The result-
ing motion and activation estimates are then fed into the constraint. After the
constraint is applied, the adjusted motion estimates, X̃, are combined with the
current best-guess set of motion parameters (initially set to zero), and the origi-
nal dataset is resampled. Another approach to the paired iteration method is to
start the process with registration, followed by activation detection, as depicted
in Fig. 1(b).

The CPI method in Fig. 1(a) is mathematically equivalent to the QR de-
composition method. For each iteration, both methods produce an initial, un-
constrained (X,Y) solution such that the rows of X (the time series for the six
motion parameters) are orthogonal to the rows of B (the time-series regressors).
Since the unconstrained X-solutions match, the Y-solutions must also match.
Naturally, after applying the constraint, the two methods yield the same con-
strained solution as well.

To see that the unconstrained motion estimates of the CPI method in
Fig. 1(a) are orthogonal to the rows of B, consider the following. After per-
forming activation detection without any motion correction, and removing this
estimated activation from the dataset, the resulting voxel time series must all be
orthogonal to the activation regressors stored in the rows of B. This limits the
possible solutions for the registration method to only those that are also orthog-
onal to the stimulus regressors. Hence, the time series of each motion parameter
must be orthogonal to all the regressors in the activation detection GLM.



890 J. Orchard and M.S. Atkins

4 Methods

Both the constrained and unconstrained paired iteration methods were imple-
mented and tested. The implementation consists of a Perl (Practical Extraction
and Report Language) script that makes the appropriate calls to command-line
programs of the AFNI (Analysis of Functional NeuroImages) package [8]. AFNI
is a suite of highly efficient programs for processing fMRI datasets, and includes
almost all the necessary functions required for the paired iteration methods pro-
posed here.

Only two steps were implemented using our own C++ code. We used a C++
program to combine the motion increment with the current best-guess. However,
the motion increment can easily be added to the best-guess using simple Perl
functions. Also, we used a C++ program to implement the additional constraint.
The constraint program reads in the initial (X,Y) solution (as well as A and B)
and outputs the constrained solution (X̃, Ỹ). The code uses the Nelder-Mead
downhill simplex method [9] from Numerical Recipes in C [10] to perform the
minimization search.

For both the CPI and UPI methods, we have the choice of starting the
iteration with registration or activation detection. For notational purposes, we
will distinguish between the two by adding a suffix to the acronym: an “R” for
registration first, or an “A” for activation detection first. Thus, the CPI method
that begins with activation detection is denoted “CPI-A”. In addition to these
four methods, we also tested the QR decomposition method (denoted “QR”),
as well as the standard sequential method (denoted “Std”) in which a full least-
squares registration method is run once, followed by activation detection.

To test the performance of these six algorithms, simulated fMRI datasets
containing 40 frames with known activation and motion were created. An original
EPI dataset with dimensions 64×64×30 (field of view of 240×240×120 mm) was
filtered with a 3×3×3 median filter, and then duplicated 40 times. A 5% BOLD
contrast was then (optionally) added to frames 5 through 15, and 25 through
35. The region of activation was specified by an activation template that was
manually drawn over portions of the occipital and parietal regions of the brain,
covering a total of about 13% of the brain. Motion was then added to the dataset.
Resampling was done using Fourier interpolation [11,12]. Finally, Gaussian noise
with a standard deviation of 2.5% was added to the dataset, followed by spatial
smoothing using a Gaussian kernel with a full-width at half-maximum of 5 mm.

The 40 simulated datasets were generated with varying mixtures of activation
and motion. Ten datasets were generated for each of the following four scenarios:

1. The dataset has activation and random motion.
2. The dataset has activation and stimulus-correlated random motion.
3. The dataset has stimulus-correlation random motion, but no activation.
4. The dataset has activation, but no motion.

For each simulated dataset, the six analysis methods were used to produce
activation maps. These activation maps contain both a linear fit coefficient and
a correlation coefficient. A binary activation mask was then created by including
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voxels for which the linear fit coefficient was greater (in magnitude) than 20, and
the correlation coefficient was greater (in magnitude) than 0.505 (corresponding
to significance p = 0.001). A true activation mask was also created, but from
a dataset that was perfectly aligned. Comparing each activation mask to the
true activation mask allowed the tabulation of false-positive and false-negative
activation counts.

5 Results

In Fig. 2, the errors in the motion parameters calculated by the paired iteration
methods are plotted with those of the standard least-squares method. The results
from the two CPI methods (which converged in less than 2 minutes on a 1.2 GHz
AMD Athlon computer) are almost indistinguishable from each other. Although
the QR decomposition solution is not shown, its motion estimates are very close
to those of the two CPI methods. Note that the stimulus-correlated motion errors
that appear in the standard and UPI estimates are not present in the motion
estimates of the two CPI methods.
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Fig. 2. Motion error plots for a typical dataset with activation and random motion.
The shaded ranges show when the activation is present in the dataset.

The false-positive and false-negative counts for the six analysis methods are
shown in tables 1 and 2, respectively. Notice that the QR decomposition and
CPI methods consistently exhibit very similar counts, all resulting in approxi-
mately two-thirds fewer false-positive activations and one-third fewer false neg-
ative activations than the standard least-squares algorithm on the datasets with
activation.



892 J. Orchard and M.S. Atkins

Table 1. False-positive activation counts for the six algorithms, averaged over 10 trials
for each dataset type.

Dataset Characteristics Std QR CPI-A CPI-R UPI-A UPI-R

activation, random motion 571.5 186.3 188.4 187.0 3,877.4 747.5
activation, stim-corr motion 617.9 205.6 203.0 203.9 14,932.1 796.9
no activation, stim-corr motion 42.7 38.4 36.9 36.5 15,732.8 36.8
activation, no motion 586.0 187.8 190.1 188.5 190.2 744.7

Table 2. False-negative counts for the six algorithms, averaged over 10 trials for each
dataset type. Results for the datasets without activation are not shown because those
datasets cannot, by definition, have any false negatives.

Dataset Characteristics Std QR CPI-A CPI-R UPI-A UPI-R

activation, random motion 643.3 427.9 429.8 435.5 452.0 605.8
activation, stim-corr motion 642.3 429.0 427.0 425.3 379.9 603.6
activation, no motion 651.1 432.3 422.1 431.8 421.0 611.1

The UPI-R method performed well on the datasets with no activation, while
the UPI-A method performed well on motion-free datasets. This behaviour
demonstrates that if the first process applied in the UPI method removes most
of the time-series variation, then the method will work well. However, the UPI
methods performed poorly on datasets that contained a mix of both motion and
activation.

6 Discussion and Conclusions

Simply iterating the registration and activation detection processing steps yields
a simultaneous solution to both problems. However, since the combined least-
squares problem does not have a unique solution, these unconstrained paired
iteration methods usually converge to undesirable solutions.

In order to steer toward the desired solution, an additional constraint can
be enforced during each iteration. The constrained paired iteration technique
in which the activation detection is performed first (CPI-A) was shown to be
mathematically equivalent to the QR decomposition method. In practice, while
the motion estimates for the CPI-A method are very close to those of the QR
decomposition method, they are not exactly the same because their implemen-
tations on a finite-precision computer can cause small numerical differences to
arise.

Testing on simulated datasets showed that the two CPI methods perform
as well as the QR decomposition method. On datasets containing activation,
the CPI and QR decomposition methods all yield about two-thirds fewer false-



Iterating Registration and Activation Detection to Overcome Activation Bias 893

positive activations and one-third fewer false-negative activations than the stan-
dard approach.

The paired iteration methods can be implemented efficiently using almost
entirely off-the-shelf programs. Although we designed a C++ program to enforce
the additional constraint, it is also possible to carry out this procedure using a
gradient descent type method with basic Perl programming and AFNI command-
line programs.

The superior accuracy and ease of implementation of the constrained paired
iteration methods offers a viable and robust solution for fMRI registration. Eval-
uation of the paired iteration methods on in vivo datasets is currently underway.
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