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Abstract

Cutaneous melanocytic lesons, commonly known as moles, are mostly benign; however, some
of them are malignant melanomas, the most fatd form of skin cancer. Because the surviva rate
of meanomaisinversely proportiona to the thickness of the tumor, early detection is vitd to the
treatment process. Many dermatologists have advocated the development of computer-aided

diagnogs sysemsfor early detection of melanoma

One of the important dinicd features differentiating benign nevi from maignant
melanomeas is the leson border irregularity. There are two types of border irregularity: texture
and dructure irregularities. Texture irregularities are the smal variations aong the border, while
dructure irregularities are the globd indentations and protrusons that may suggest ether the
ungtable growth in alesion or regresson of amelanoma. An accurate measurement of structure

irregularitiesis essentia to detect the mdignancy of melanoma,

This thesis extends the classc curvature scale-space filtering technique to locate dl
dructure irregular segments dong a melanocytic leson border. An areabased index, cdled
irregularity index, is then computed for each segment. From the individud irregularity index, two
important new measures, the mogt sgnificant irregularity index and the overal irregularity index,
are derived. These two indices describe the degree of irregularity aong the lesion border .

A double-blind user study is performed to compare the new measures with twenty
experienced dermatologists evaluations. Forty meanocytic leson images were sdected and
their borders were extracted automaticaly after dark thick hairs were removed by a
preprocessor cdled DullRazor. The overdl irregularity index and the most significant irregularity
index were cdculated together with three other common shape descriptors. All computed
measures and the dermatologists evauations were andysed datigticadly. The results showed
that the overdl irregularity index was the best predictor for the dlinica evduation, and both the
overdl irregularity index and the most sgnificant irregularity index outperformed the other shape
descriptors. The new method has great potential for computer-aided diagnosis systems.
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Chapter 1
| ntroduction

1.1. Motivation

The mogt fatdl form of skin cancer, cutaneous maignant melanoma, has been increasing rapidly
in the western world for the last few decades [7, 45, 64, 98]. Canada has an incidence rate
that reflects the world trend [107] (see Fig. 1.1) and melanoma has become the third most
common cancer for people between 30 and 40 years of age[112]. As the diagnos's frequently
occurs a young adulthood when the family and financid commitment is the greates, the
potentia person-years of life loss has a tremendous impact on the individua and higher family.
In order to reduce the mortality rate, which is proportiona to the thickness of the tumor, many
dermatol ogists have advocated the development of computer-aided diagnosis systems for early
detection of meanoma.  The devdopment of such diagnostic devices begins with the
undergtanding of the benign form (nevus) and the maignant form (meanoma) of a meanocytic

leson.

1.2. Melanocytic lesions

Meanocytic lesons are the brown pigmented skin lesons commonly known asmoles. They are
formed by nests of specidized cdls cdled mdanocytes. Norma medanocytes live in isolation as
solitary units in the bottom layer, stratum basdle, of the outmost part of the skin, the epidermist
[49, 144, 155]. (See Fig. 1.2) Intermixing with basa cdlls (keratinocytes), melanocytes make

1 Human skin consists of three principal parts: epidermis, dermis and subcutis. The epidermis has
four to five layers of cells. Acting as the protective barrier of the body, the basal cells, keratinocytes,
continuously migrate upward from stratum basle, the bottom layer of the epidermis. During the
migration, these cells are flattened and mutate at the upper layers. Finaly, the dehydrated dead cells
are shed off the body. The entire migration and maturation processes take about a month. The
dermisis the main part of the skin structure, which is separated from the epidermis by a basement
membrane, the dermoepidermal junction. There are dense connective tissues, blood vessels, sweat
glands, hair follicles and nerve endings in the dermis. Inferior to the dermis is subcutis, which
consists of loose connective tissues and fat.
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Figure 1.1. Canadian age-standardized incidence rates (ASIR) for melanomas. The rates
for 1996 to 2000 are edtimates. Source Nationa Cancer Ingitute of Canada:
Canadian Cancer Statistics 2000, Toronto, Canada, 2000.

up about 5% to 10% of the cdl population in the basd layer and they synthesize a brown
pigment caled melanin, which istransferred to nearby keratinocytes via dendritic processes. As
keratinocytes move upwards during their migration journey, melanin is trangported to the upper
layers of the epidermis[55, 128]. Meanin absorbs a broad range of the optical spectrum from
250 nm to 1200 nm [1, 3, 70]. The absorption is not uniform for the entire spectrum. The
drongest attenuation occurs a the shortest wavelengths, especidly a the ultraviolet (UV)
wavdength, and there is minimum absorption below 1200 nm. When meanocytes are
irradiated by sunlight, melanin absorbs the radiation energy and becomes darker in colour [49,
144]. Prolonged radiation increases the number of melanocytes and the production of melanin.
Hence, melanocytes shield the body from harmful UV radiation. When a group of melanocytes
congregates together and forms a leson, a brown pigmented patch gppears on the skin due to
the high concentration of melanin.  These mdanocytic lesons may be composed of benign or
mdignant cells[99].
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1.2.1. Benign nevi

Benign meanocytic lesons (dso caled pigmented skin lesions or pigmented nevi) usudly have
around or ova shape with aregular contour and uniform colour. Sometimes the leson israised
[99]. Fig. 1.3ashows atypicd benign nevus. The course of evolution for these lesions, from
junctiona nevi to compound nevi to intradermd nevi, may be reveded by counting the number
of nevi in various age groups and studying lesion specimens under a microscope. About 1% of
infants are born with congenital nevi [14, 57, 99]. Acquired nevi soon appear in the early
dages of childhood. Mog of these nevi are junctiond nevi, which are smdl neds of
melanocytes residing in the dermoepidermd junction. The number of nevi then increases rapidly

to an average count of 15 to 40 in adolescence and early adulthood. The increase is positively

3



associated with the amount of solar radiation the individud is exposed to in an unprotected state
[47, 48]. The common nevus type in the young adult age group is the compound nevus, which
has part of the leson in the dermoepidermd junction and part of the leson migrating down to
the enlarged papillary dermis. After adulthood, the number of nevi declines and pigmented nevi
are rare after age 80. This phenomenon can be explained by the evolution of compound nevi to
intraderma nevi: the compound nevi leave the dermoepiderma junction and descend entirely to
the dermis. Intraderma nevi are usudly only dightly pigmented because melanocytes seldom
undergo cdl divison in the dermis. The number of melanocytes declines due to attrition [99].

@
Figure 1.3. Mdanocytic lesons (a) Benign nevus (b) Maignant meanoma

1.2.2. Malignant melanomas

Malignant melanomas are usudly described as enlarged lesions with multiple colour shades.
Furthermore, their borders tend to be irregular and asymmetric with protrusons and
indentations [99, 124]. (Fg. 1.3b shows a mdignant melanoma) The formation of maignant
lesons usudly begins with melanocytes damaged by UV radiatior? [7, 12, 46, 124]. The
damaged cdls may be solitary melanocytes in the normaly appearing skin (de novo) or a sub-

2 Similar to benign nevi, the major risk factors for malignant melanomas are solar UV radiation and
individual's genetic susceptibility.



population of the meanocytes in a pigmented leson. Fortunatdy, further development of
damaged melanocytes is usualy stopped by the body's safeguards. Only when al the body's
security checks are bypassed, can the run-away malignant cells form a cancer by becoming
immortal and proliferating indefinitdy [37, 147, 148].

Initidly, damaged melanocytes produce some dightly mutated but norma looking cdlls.
At this stage, the lesion is very difficult to detect. Examining under a microscope, one may
detect a group of norma looking cells with excessve mitosis (cell divison). Over a period of
time, if the genetic disorder increases, some new cdlls show abnorma shapes and orientations.
Clinicdly, the leson is cdled an atypical nevus. The increasing genetic disorder is reflected by
colour variaion and irregular shape. The leson may eventudly be larger than 6 mm in diameter.
Even though atypicd nevi are potentia precursors and markers for melanomas, many of them
reman clinicaly sable and never progress to meanomas [14]. However, with more gene
mutations, some atypicd nevi evolve continuoudy to melanomas with more abnormd cdls. At
this stage, the lesion is cdled in-Stu cancer, where the leson is entirdy in the epidermis. The
clinica digtinction between atypicd nevi and in-situ melanoma can be subtle. Mdanoma in-situ
isaflat and thinleson. Theleson may enter a period of horizontal growth phase[12, 99]. Due
to the varigble growth rate of the atypica melanocytes, the in-Stu leson may exhibit a markedly
asymmetrical shape with indentations and protrusions. A protrusion usudly indicates the rapid
growth of a sub-population of the melanocytes. Furthermore, the uneven distribution of melanin
may cause multiple shades of brown or red-brown colour [14]. Medanoma in-gtu is a non-

invasive early stage cancer, which may remain contained indefinitely.

Through blood or lymphatic vessds, mdignant cells are capable of establishing a colony
in other body parts. Once having broken away from the basement membrane of the epidermis,
the cancerous lesion enters an aggressive vertical growth phase and quickly invades the papillary
dermis, reticular dermis and subcutis [12, 99]. The mdignant cells can aso soread to
downstream lymph nodes or blood vessdls to disturb the vital function of distant internd organs,
such aslungs[127]. Sometimes when the body's immune system responds to a new cancer by



atacking and destroying the abnorma melanocytes in the dermis, the leson shows prominent
notches and indentations, caled regression [12, 99, 101, 124].

Many staging systems have been developed to classify the disease and to guide disease
management [12, 14, 124]. The best prognosis factor for a locdized primary meanomais the
thickness of the lesion3, which is inversdly proportiond to the survival rate. (See Table 1.1 for
the 10-year surviva rate published by B.C. Cancer Agency (BCCA).) A primary leson with
thickness less than 1.0 mm is usualy considered as a minima or alow risk leson due to alow
chance of metastass. However, the cure rate drops significantly when the leson thickness is
over 1.0 mm. The man treatment for al stages of meanoma is surgica excison with an
increesing margin for increasing lesion thickness. Other treatments for possble metastases

include regiona lymph node dissection or radiation, and chemotherapy [12, 14, 124].

Table 1.1. Mdanoma thickness and 10 year surviva rates (BC Cancer Agency 1999) [14]

Leson thickness Survivd rate (%)
<10mm 90
1.0- 1.49 mm 78
1.50- 4.00 mm 65
>4.0mm 40

1.3. Public health programs

The atempt to diagnose melanoma as early as possble has led to public education and
screening programs in many countries [80, 97, 115, 125]. Research programs promoting self-
screening for the high-risk groups are dso underway [15]. Two well-known self-screening
guiddlines are the ABCD rule [44, 57] and seven-point checklist [57, 62]. The ABCD rule,
promoted by the America Cancer Society, describes the clinical features of melanomas using

3 The thickness of alesion is measured from the top of the skin, the granular layer of the epidermis,
to the base of the lesion by an ocular micrometer.



mnemonics. A (asymmetry), B (border irregularity), C (colour variegation) and D (diameter >=
6mm). On the other hand, the seven-point checklist, advocated by a group of dermatologists
from Glasggow, emphasizes the progresson of the symptoms. This checklist considts of three
mgor features (change in Sze, shape and colour) and four minor features (inflammation, crusting
or bleeding, sensory change, and diameter >= 7mm). When any of the mgor fesatures is
detected in a melanocytic leson, immediate help from hedth professonds is recommended.
The presence of any minor featuresis advised to be monitored regularly.

The success of public campaigns for melanomas has aso resulted in aflood of patients
with thin lesonsto generd practitioners. Mogt of the generd practitioners are not well equipped
to ded with these very thin lesons, which are difficult to diagnose dlinicaly. Therefore, to
improve diagnogtic accuracy and to relieve the workload of physicians, research studies for
non-invasive diagnogtic devices have been carried out in many directions, such as leson
progression tracking [18, 60, 136, 145], high-frequency ultrasound detection methods [36, 50,
71], and computer-aided diagnosis [21, 27, 40, 58, 59, 73, 138-140]. In paticular,
computer-aided diagnoss shows potentia to differentiate melanomas from nevi based on their

characterigtics.

1.4. Non-invasive computer -aided diagnostic systems

A non-invasive computer-aided diagnogtic system typicaly consgsts of severa components:

image acquisition, image processing, and a classfier with a knowledge database. (See Fig.

14.) When a meanocytic lesion is cgptured in vivo as a digitd image by ether scanning a
colour dide or usng a digital camera, the characteristics of the lesion, represented by a set of
numbers caled feature scores, can be extracted from the digital image by the image processing

component. Feeding the features to a classfier which is connected to a medica knowledge
database can generate a computerized diagnosis, suggesting whether the lesion is benign or

mdignant.
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Figure 1.4. Schematic diagram for a non-invasive computer-aided diagnostic system

1.4.1. Image acquisition

Normadly, the subsurface sructures at the dermoepiderma junction and the superficia dermis
cannot be examined by the naked eye or by microscopes because of the surface reflection (also
cdled regular reflectance) at the air/skin interface [1, 3, 74]. Therefore, imaging meanocytic
lesons with a camera or a microscope results in surface view images. These images show dll
four of the clinicd features for the lesion, which can be described by the ABCD rule, namely
asymmetry, border irregularity, colour variegation and diameter.

To examine the subsurface features in vivo, a specia procedure or some specid
equipment is required. There are two common techniques to capture the subsurface view.4
The firg technique is known as epiluminescence microscopy (ELM), which gpplies a drop of ail
on the lesion before it is examined under a dermatoscope or a binocular stereomicroscope® [11,

16, 74, 116]. The oil makes the epidermis trangparent by reducing the refractive-index

4 Researchers have been experimenting with different in vivo techniques to extract subsurface
features. Encouraging results have been reported recently by using multi-band spectrophotometric
intracutaneous analysis [106].

S The technique is also called dermoscopy, dermatoscopy, or surface microscopy.



mismatch between the corneum layer of the epidermisand air [74]. Then aglass dideis placed
on top of the oil and the subsurface feetures of the leson are examined under a magnifying
device with magnification ranging from 10X to 40X. However, ar bubbles are often trapped
undernegth the glass dide which may interfere with automeatic analys's procedures. A new
technique to capture subsurface features employs two polarized filtersS [67, 130, 131]: one of
them is attached to the light source and the other is attached to the viewing device. (See Fig.
15.) Thefilter a the light source ensures the incident light has the same phase angle. When the
polarized incident light reaches the skin, part of the light is reflected by the air/skin interface and
the remaining part enters the skin. The reflected portion is caled regular reflectance which has
the same phase angle as the incident light. The penetrated portion is further absorbed and
scattered by the epidermis and dermis, and becomes diffuse with a complete random phase
angle. Findly, the diffused light is reflected out of the skin by white collagen fibres at the dermis
[1, 34]. Before the re-emitted light of the regular reflection and the diffused penetrated portion
reaches the viewing device, the re-emitted light is filtered by the second polarized filter, which
ensures that only the re-emitted light with a certain phase angle is detected. When the viewing
device filter is set to the same phase angle as the source filter, a surface view is obtained by
capturing the regular reflection’. A subsurface view is obtained by setting the viewing device
filter perpendicular to the source filter to block out the regular reflection entirely.

Both ail/glass dide and polarized filters techniques produce a smilar and comparable
images[130, 131]. In the subsurface view, not only the ABCD features can be clearly seerf,
but the subsurface structures at the dermoepidermal junction and the superficia dermis are dso
visble. The most important subsurface structures are the pigment network, brown globules,

6 The technique is sometimes called digital videomicroscopy.

7 Part of the reflected light from the diffused, penetrated portion is also captured. However, surface
view features are clearly visible when the two polarized filters are set to have the same phase angle.

8 The geometry properties (asymmetry, border shape and size) and colour property of the lesions are
presented in the subsurface view, even though lesions manifest different colours in the surface view
and the subsurface view.



black dots, radia streaming and pseudopods [6, 11, 74, 116]. (See Fig. 1.6.) The pigment
network is a brown colour line network over a diffused brown colour background of the lesion.
These brown colour lines are caused by the melanin deposited dong the vertica edges of the
convoluted papillary dermis, called rete ridges [120]. Brown globules are the melanocytic nests
around the papillary dermis, and black dots are chunks of melanin in the epidermis. Radid
streaming and pseudopods are the brown or black line patterns and dots, respectively, at the
margin of the leson. These subsurface features can be used to augment the ABCD fegtures in
diagnosing melanomas [17, 40, 41]. An irregular pigment network or brown globules, and the
exisence of radia streaming and pseudopods are associated with melanomas.  However,
interpreting subsurface structures is difficult and subjective.  Only dermatologists properly
trained with the subsurface view recognition technique can benefit from subsurface features to
improve the diagnostic accuracy. Untrained dermaologists tend to have difficulty in
distinguishing subsurface fegtures, resulting in alow diagnostic accurecy. [16, 122].

Incident light Regular
reflectance

Polarized filter Polarized filter

Air/Skin
interface

Epidermis

Dermis

Figure 1.5. Obtaining subsurface view using two polarized filters
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Figure 1.6. Subsurface view of amedanocytic leson. The pigment network is clearly seen.

1.4.2. Image processing

Most experimental computer-aided diagnostic systems process and extract surface view
(ABCD) festures from skin lesion images, which can be obtained from ether the surface view
examination [4, 129, 149] or the subsurface view examination [130, 131]. Fully autometic
image processing systems on surface view festures have been reported [56, 81]. On the other
hand, there has been very little work done on automatic subsurface festure extraction at the
present time.® Subsurface features are often evauated subjectively and entered manudly in to a
classfier [17].

1.4.3. Lesion classification

Various classfication methods based on well-developed theories have been examined. The
popular neura networks [17] smulae the human neural sysem. These neura networks are
usudly treated as blackboxes and their classfication rules cannot be interpreted with the input
features. Other classfication techniques have aso been investigated, such as Al-based expert
systems [35, 77, 133], datidtica based methods [56, 129, 130] and principd component

9 Automatic detection of pigment networks, brown globules and radial streaming have been reported
recently [25, 40, 41, 132]. More algorithms are expected in the future.
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transformation methods [33]. Theoreticaly, dassfication results from these methods can be
interpreted in terms of the input features, but often the interpretation is extremdy difficult,

especidly when the input feature st islarge.

1.5. Border shape as a defining feature

The computer-aided classfication paradigm is promisng when a large amount of medica
knowledge is accumulated. However, one of the crucia factors for a system to succeed is to
select a st of features that provide good separation between nevi and melanomas.  According
to the two best-known dlinica guidelines (ABCD rule and the seven-point checklist), the lesion
border shape is one of the important features. In particular, irregularities (indentations and
protrusons) dong aleson border often reflect the genetic ingtability of the lesion.

When a leson border is studied carefully, we notice that there are two types of
irregularities texture and structure irregularities [31]. Texture irregularities are the fine variaions
aong the leson border, while structure irregularities are generd undulations of the perimeter.
Fig. 1.7 shows examples of both types of irregularities. Leson A has no gructure protrusion
and indentation, but a lot of texture irregularities. Leson B shows a structure protrusion &t the
top of the border but has less texture irregularities than the other two borders, while leson C
has a prominent structure protrusion and indentation at the bottom of the border. Detecting and
measuring texture irregularities may be subject to noise of the hardware imaging devices and/or
software programs.  On the other hand, Structure irregularities may infer unstable melanocyte
growth pattern or regresson of a melanoma, and have been reported to have a higher
correlation with melanomas than texture irregularities [31]. Therefore, the success of the
computer-aided diagnogtic system depends upon the ability to thoroughly assess the border
shape of melanomas, especidly, the structure irregularity.

12



(€)
Figure 1.7. Three lesons and their borders. (a) and (b) Leson A and with its border
outlined. (c) and (d) Lesion B and with its border outlined. (€) and (f) Lesion C and

with its border outlined. The procedure for extracting lesion border is discussed in
Chanter
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1.6. Outline of thethesis

Chapter one dtates the motivation of the thess: measuring the lesion border shape accurately
may improve the effectiveness of a computer-aided diagnogtic system for maignant melanoma.

Chapter two reviews the previous work on measuring border irregularity of melanocytic
lesons. Because shape andys's has been an active research topic in computer vison, methods

related to the devel opment of the new shape measure are dso examined.

Chapter three presents the data collection and the pre-processing steps for the new
shape measurement dgorithm. A full spectrum of mdanocytic leson images, ranging from
clinica benign lesons to mdignant melanomas, has been collected. Before these leson images
can be used for border shape anaysis, they have to be processed by two programs. First, the
dark thick hairs of the skin images, which may interfere the subsequent automatic segmentation
program, are removed by the software program caled DullRazor. Then the lesion border is
extracted automatically from the skin image.

Chapter four describes the methodology of the new border irregularity algorithm, which
measures al indentations and protrusions aong the lesion border in a multi-scale environment.
Two area-based indices generated from individua indentations and protrusions are important
messures for border irregularity that can be used as input festures for a computer-aided
diagnogtic system.

Chapter five reports a user study for vaidating the two new measures discussed in
chapter 4. The user study result showed that the new measures vastly outperform other border
shape descriptors and may be useful for diagnosing the malignancy of alesion.

Chapter six concludes the thesis with discussons on the contribution of the research

work and the future research directions.
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Chapter 2
Related Work

2.1. Published border shape descriptorsfor melanocytic lesions

Because the irregularity of aleson border has a srong correation with the genetic sability of
the melanocytes, al computer-aided diagnostic systems attempt to measure the border shape.
However, there is no standard adgorithm for such a measurement, dthough severa methods

have been investigated.

2.1.1. Global measures based on a single-scale

One of the most popular measurements is caled compactness index (Cl), which estimates the
roundness of a 2D object [33, 38, 51, 140, 149]. Since circles are the most compact 2D
objects, they have the smalest index of 1. Theindex for other 2D shapesis greater than 1 and is
computed by the following equation:

P2 /4p A (2.1)

where P isthe perimeter of the object and A is the object area. The popularity of Cl is due to
its computational smplicity; however, there are two drawbacks for this measure. It is very
senstive to noise adong the border. In paticular, the square term of the perimeter used in
Equation 2.1 amplifies the noise. More importantly, Cl cannot detect structure irregularities.
Object with different shapes can associate with the same index.

Guthowicz-Krusin et al. [56] exploited another property of a 2D object to infer its
border shape. For alesion with irregular shape, there is a large variance in the radid distance,
the distance between its centroid and border. Hence, Guthowicz-Krusin et al. estimated
border irregularity by anadysing the variance of the radid distance digtribution. However, the

measure is undable because the centroid location is very sendtive to noise dong the leson
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border. A smdl change to the border may move the centroid location and may completely dter
the radid distance distribution.

Bono et al. concentrated on the length of indentations aong the border by computing
the ratio of the convex hull length and the perimeter of the leson [20], but this measure does not

account for protrusions of the lesion border, which is dso an important clinica festure.

Andreass et al. [4] attempted to use two indices, form factor and circularity factor, to
capture the border shape. Form factor is a variation of Cl and is defined as the ratio of leson
area over the normdized perimeter. This measure adso shares the same drawback as Cl; in
particular, both measures cannot detect structure irregularities. Circularity factor is defined as
the absolute area difference between the lesion and a circle centered at the centroid of theleson
and having the same area Sze asthe lesion. However, circularity factor has the same drawback
as Guthowicz-Krusin et d.'s method [56] that the computed result may be unstable due to its
dependence on the centroid location.

2.1.2. Global measur es based on multi-scale

Extending from single-scale methods, Seidenari et al. [130, 131] introduces a dua-scale index
cdled fractaity factor, which is defined as the normalized ratio of two border lengths measured
by two different meters. However, implementation detals such as the meter sze is not

reported; therefore, the agorithm cannot be reproduced and commented further.

Fractd dimension (FD) is an elegant multi-scale method that has been shown to possess
agrong corrdaion with human's intuitive notion of roughnessfor curvelines [118]. The ideais
basad on Mandelbrot's observation that contradictory results are obtained when manmade
objects and natura objects are measured using rulers of various Szes [100] . For a manmade

object, the measured length L convergesto itstrue vaue asthe ruler Szer decreases:

L = N(r)r, (2.2
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where N(r) isthe number of rulers of Szer required to cover the border. However, for natural
objects such as coadtlines, which process sdlf-similarityl® and randomness properties, the
measured length L increases as the measuring unit Sze r decreases. The surprising inverse
relationship between L and r is due to the fact that many bays and promontories smdler than the
ruler szer are unnoticed and omitted; they only become noticegble if the unit Sze r decreases.

Mandelbrot formulated the inverse relaionship between N(r) and r as.

N(r)y =112, (2:3)
where | is a scaling congant and D is the characterigtic of the coastline known as fracta
dimengon. Thevdueof D is a fractiona number that is larger than or equa to the Euclidean
dimengion of the object. For example, agtraight line and an open circle have afracta dimension
of 1. The fractal dimension increases monotonicaly and gpproaches 2 when the roughness of
the curve increases. FD has been used to estimate the irregularity of aleson border [31, 32,
57, 58, 108]. It has aso been gpplied in andysing natural object textures [28], mammographic
dengity patterns [26, 119] and cervicd cdls[96].

Even though FD is designed to measure the overal roughness (jaggedness) of a border,
FD is insengtive to dructure festures and, hence, it is not suitable to measure Structure
irregularities of aleson border. For example, the FD of an open circleis same as a draight line
(which equds to 1). In other words, FD is insendtive to a smooth curve with a congtant
curvature. The problem is also demongtrated by computing the FD of two phantoms and two
lesion borders, shown in Fig. 2.1. The phantom C1 has a larger indentation than C2, but they
have the same FD vaues. More surprisngly, the leson border L1 has a dightly larger FD
(1.16) than L2 (1.12) even though L2 has a prominent protrusion and indentation at the bottom
of the leson. The problem arises because L1 is more jagged (has more texture irregul arities)
than L2. From these two phantoms and two lesion borders, it is clear that the FD measure is

incapable of detecting structurd features.

10 sdf-similarity is an extension of the mathematical notion of similarity: two objects are similar if
they have the same shape, regardless of their size [117].
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e

Phantom

Fractd dimension 1.02 1.02
Structure fractal dimension 1.19 1.18
Lesion border L1 L2
Fractal dimension 1.16 1.12
Structure fractal dimension 1.28 1.21

Figure2.1. Fracta dimension and structure fractal dimension of two phantoms, C1 and C2,
and two lesion borders, L1 and L2.

In an attempt to capture mgor sructura features, Claridge et al. [31] designed a
measure caled Structure Fracta Dimension (SFD). The SFD is computed based on Equation
2.3 too, but only rulers longer than a predefined threshold length are included in the
computation.1l The mgor difficulty for SFD isto properly determine the threshold ruler length
for dl lesons. As a result, SFD does not fully capture the structure irregularity of the lesion
border as shown in Fig. 2.1.12

11 In their implementation, Claridge et al. simulated the measuring process of a lesion border with
dilation operations. The lesion border is covered by a series of overlapping discs with radius denoted
by s. The border length is estimated by dividing the dilated border area by s. By varying the disc
radius s and ensuring sis greater than a predefined threshold, the border lengths with their
corresponding s values are used to determined the SFD of the lesion border.

12 Our implementation of FD and SFD are discussed in Section 5.1.4.
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None of the above methods, described in both Section 2.1.1 and 2.1.2, capture the
proper notion of border irregularity for melanocytic lesions. In particular, they dl have problem
in detecting Structure irregularities. Many methods are also sendtive to noise and may not be
dable. A review of other shgpe dgorithms in the fid of computer vison and multimedia may
help design a proper measure for border irregularity.

2.2. Other shape algorithmsin computer vison

Anaysing shape has dways been an active research area for computer vison. Studying these
agorithms provides some indghts to the task of desgning a new method for measuring the
border shape of a melanocytic leson. This section provides an extensve overview of shape
dgorithmsin the fidd of computer vison which may be ussful for such atask.

Shape analys's programs can be classfied in many different ways according to shape
atributes and andysng techniques. The most common classfication scheme divides the
programs according to their input types [95, 113, 137]. A program is called contour-based or
externa-based, when only the boundary of the object is utilized. If the interior of the object is
aso andyzed, the agorithm is caled structura-based or internal-based. Classification schemes
can aso be made based on the interna shape representation of an object [113]. The scdar
transform technique represents the intended object shape quantitatively by numeric scdars or
vectors, caled shape descriptors, which are often andyzed subsequently by statistical or neurd
network methods. A space-domain technique produces non-numeric and graphic
representations.  Shape analysis programs can aso be dissected in other ways. globa features
vs. locd features and sngle-scde vs. multi-scale [8, 75, 137]. Algorithms based on globa
features tend to be smple, but they may be ungtable as a smal change in the input shape may
dradticdly dter the anadlysis output [22, 95]. The ingability may be dleviated by introducing
locad information, a the expense of increesng programming complexity. Moreover, locd
information may be dructured to facilitate the andyss. Similar comparisons can be made for
sngle-scae and multi-scale dgorithms. Multi-scale programs are harder to implement but they

return more information than single-scale programs.
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2.2.1. Parameterization of object borders

When an object border is anadysed, a well-known technique cdled parameterization can be
gpplied to reduce the dimensiondity of an object from 2D to 1D. There are many ways to
implement the parameterization technique. The radia function used in the sudy of Guthowicz-
Krusn et al. [56] is one example. A st of radid vectors with equal angular spacing is
extended from the object centroid to its boundary. The length of the radid vectors forms the
radid function r(q), where gisthe regular sampling angle. Although the radid function is easy to
compute, the function may be ungtable.

Ancther way to implement the parameterization technique is to define the border

function f(t) astwo linear functionsx and y:

f(t) = (x(®), y(t)), (24)

where 0 £t £ 1 is the path length variable dong the border, and x(t) and y(t) are the one
dimensond function of f(t) along the x and y coordinates [103]. When the boundary forms a
closed contour, f(t) is periodic. There are many vaiaions for the formulation of Equation 2.4.
Ingteed of using two linear functions x(t) and y(t), Freeman's chain code defines f(t) as the
direction of the pixd t with respect to its predecessor at t-1 [42, 43]. Zahn and Roskies define
f(t) as the net amount of angular bend between the initid point of the parameterization process
andthepoint t [154]. All three variations of f(t) are equivaent and they have often been used
as the shape representation of an object border. In this thesis, we used the formulation of
Equation 2.4 to parameterize a leson border, since the curvature of the border can be derived

directly from the equation.

2.2.2. Shape descriptors

Describing the object shape as numeric shape descriptors is more gppropriate than the non-
numeric, graphic representation of the space-domain technique, because the numeric
descriptors can be analysed easly by most skin leson classfiers. There have been many
published methods for computing shape descriptors.  The well-known descriptors are fracta
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dimension (which is described in Section 2.1.2) Zahn and Roskies Fourier Descriptors [154]

and moments.

2.2.2.1. Fourier Descriptors

To compute the Fourier Descriptors, a 2D object boundary is parameterized by a cumulative
function f(t), which is defined as the net amount of angular bend between the point t, 0 £ t £
27, and the initid point of the parameterization process, t = 0. Assuming the boundary forms a
clockwise-oriented smple closed curve with length L, it isseen that f(0) = O and f(L) = -27. A
normaized cumulative angular function f* (t) can be defined as

. Lt
f(t)=f(=—)+t. :
(t) (2p)+ (2.5)

Expanding the normdized cumulative angular function in Fourier Series using polar coordinates,
Equation 2.5 becomes

f'(t)=m+Q A coskt- q,), (2.6)

k=1

where the coefficients A, and 6, are known as the k™ harmonic amplitude and the phase angle of
the function f*(t), respectively. Together they form the Fourier Descriptors of the object
boundary.13 Because the harmonic amplitudes A/'s are invariant under trandaion, scaing, and
rotation, they have been used to describe the object shapel4 The lower orders of the
amplitudes express the overal sructurad shape of the closed curve, while the higher orders
convey information about the fine details of the curve. However, thereisno naturd cutoff point
for the high and low order harmonic amplitudes, and smdl changes dong the curve may
produce a completely different set of Fourier Descriptors. Another disadvantage is that spatid

information cannot be retrieved in the Fourier domain.

13 Fourier Descriptors can aso be computed from other functions such as angular function,
curvature function, or radial function.

14 The phase angle 6, also conveys the shape information about the closed curve, but it is not
invariant under rotation transformations.
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2.2.2.2. Moments analysis

Moments and their derivatives have been widdy used for object-based recognition and
recongruction. The andysis is often carried out by the object's internd pixels [143], but the
boundary pixels can aso be used [146]. Mathematicaly, the raw (p,g)™ order moment of a 2D
imagef(x,y) is defined as

My, = Qyixdy (%, y)xP ye. (2.7)

where f(x,y) are the internd or boundary pixels. In the traditiona definition with internd pixels,
the low-order moments have well-understood physica meanings. For example, the zero-order

moment My is the total image power.

For a binary image with the object denoted by 1 and the background by 0, my is the
area of the object. The first-order moments, myo and mg;, can be used to compute the centroid
location of a binary image. The x coordinate of the centroid, X, equas to my/mgy and the y
coordinate, y., equals to mg/mgo. The second order moments, My, Myy, and My, depict the
gze and orientation of the object. They can be used to congtruct the principa axes of the

object. However, no smple physica meanings can be attached to higher-order moments.

Although infinite numbers of moments are required to portray an image precisdy, only
few moment terms are required for most recognition tasks. For example, recognizing
aphabetical characters requires up to third-order moments, while identifying airplanes requires
fourth-order to Sxth-order terms. However, a reasonable reconstruction of a binary aphabetic

character of 21 x 21 pixels requires al the moments up to 15th order terms[143].

Unfortunately, the raw moments defined by Equation 2.7 do not retain the same values
when the imaged object is trandated or scaed. With appropriate normdization, centra
moments and normalized centrd moments are often used to overcome these problems. Hu
proposed seven moment invariants, which are the linear combination of the centra moments up
to the third-order to describe the object shape [29, 65]. These 7 shape descriptors are proven

to be invariant to scding, trandation and rotation. The complex Zernike moments provide a
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generd solution for rotation invariant property [143]. In the language of linear dgebra, Equation
2.7 is the projection of the image function f(x,y) onto the basis set {x°, ¥y}, which are not
orthogond. Applying an orthogona basis set such as complex Zernike polynomids, a set of
rotation invariant moments can be obtained. The Zernike moments respond to a rotation with a

phase shift and a constant magnitude, which can be used as an invariant shape descriptor.

Many other shape descriptors can be derived from moments. Two of the well-known
ones are eccentricity and inertia shape [96, 137]. Eccentricity estimates the retio of the mgor
axis and the minor axis of the best-fit élipse over the object. The axes are determined by the
second-order centra moments of the binary image function f(x,y). Circes give the minimd
vadue of 1. On the other hand, inertia shape edimates the roundness of an object by a
normalized second-order moment. For a binary image function f(X,y), inertia shape is defined

as
20 qpyixdy f(x,y) d.*(x,y)/my,’, (2.8)

where d. denotes the distance of an image pixel to the object centroid and the first-order raw

moment Mo isanormdization factor. A circle again has the minima inertia shepe vaue of 1.

Smilar to many border irregularity descriptors and Fourier Descriptors, the
disadvantage for moments and their derivatives is that they are constructed from globa shape
features under a angle-scae environment. A smdl change in shape may lead to a completely
different set of moments. This disadvantage can be minimized if the object is divided into parts.
Effects of asmall shape changeis limited to a part of the object and stahility of the measure can
be achieved. Furthermore, object partitioning may form some structured organization which can
fecilitate the anayss.
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2.2.3. Object partitioning

2.2.3.1. Skeleton based techniques

Partitioning an object into parts and deriving shape information from the partitioned parts can
provide much needed locad information for shgpe anadlyss programs. Blum and Nagel [19]
proposed a grassfire modd, called symmetric axis transform (SAT), to divide and to represent
an 2D object. The SAT can be explained by a grassfire anadogue. Imagine the boundary of a
piece of dry grasdand surrounded by non-flammable wet grasdand to be ignited smultaneoudly.
The fire propagates towards the centre of the grass block at a constant speed. The meeting
point of two or more fire fronts from different directions is caled a quench point and it has an
equa distance to each originated boundary of the fire fronts. The quench point can dso be
interpreted as the centre of a maximal inscribed disc that touches two or more boundaries. The
union of dl such maxima inscribed discs represents the object.  Furthermore, the loci of dl
guench points form the symmetric axes®> Symmetric axes and their corresponding radia
functions are cdled SATs. When points on the maxima inscribed discs other than the centres
are traced, the loci form variations of symmetric axes such as smoothed local symmetries [23]
and process inferring symmetry anadyss[91, 92].

Symmetric axes can be used to segment the object at the branch points so that each
region is equdly divided. The segmented regions can be analyzed by the geometric properties
of the axes and the boundary. Blum and Nagel categorized a region into four shape classes:
worm, wedge, cup and flare. They dso divided a boundary into seven curvature prototypes.
left and right spird in, left and right circular, left and right spird out and sraight.

After SAT was proposed, many researchers developed a gorithms to compute the axes.
For 2D discrete images, mathematical morphology is a popular technique which treats an input
image object as a set of points [61]. With an appropriate disc structure eement, an erosion

15 These graph-liked lines are also known as medial axes or skeletons.
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operation removes the boundary pixels. Applying eroson operations successively strips off the
image object in layers and findly erases the entire object. Therefore, the radid distance to the
object boundary for an image pixel can be computed as the number of erosion operations
required to remove the pixd. The symmetric axes are formed by pixels whose radia distances
are greater than their neighbours. (See Fig. 2.2.) However, because of the intringc nature of
discrete space, radia distances cannot be determined precisaly and rotation invariance cannot
be achieved. Moreover, the resultant symmetric axes are sengtive to noise adong the boundary

and may not be thin connected lines [82].
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Figure 2.2. Computing the SAT by mahematicad morphology method (a) The Structure
dement K centered at the middle pixel. (b) The binary image A represents a smple
object. () Theradid distance of each pixd in the image A. The radid digance is
computed as the number of erosion operations required to remove the pixel using the
gructure dement K. (d) The find symmetric axes of image A. The symmetric axes
conss of the points whose radid distances are greeter than their neighbouring points
(defined by K). Note that the resultant axes are not connected.

Many methods, including active snake contours rolling down a potentid fied [72, 90]
and Voronoi skeletons [110], have been investigated to dleviate the problems of generating
incorrect radia distances and non-thin and disconnected axis lines. However, these methods

dill suffer from the problem that atiny protruson dways generates an axis, while indentations

25



could generate no axes. Therefore, the SAT is not suitable for analysing skin leson borders,

where an indentation may be a mgjor feature and the lesion border is often jagged and rough.

2.2.3.2. Boundary based techniques

Another common partition scheme divides the object dong the boundary. The divided
segments can be andysed further or gpproximated by various type of polynomias such as
draight lines, splines and B-splines [95, 113, 114, 137]. One of the boundary partition
methods is caled split-and-merge, which recursvely splits a curve segment into two equd
halves whenever the height of the curve segment exceeds a predefined threshold. Any two
neighbouring segments are merged when their heights are within some maximum distance
criterion. A variation of the split-and-merge method is to split the curve at the point that has the
maximum height. However, the initid point sdection is important for dl split-and-merge
methods as different initid points generate different partitions.

Partitioning objects based on human perception theory has received a lot of interest in
computer vison. Researches from the fields of human perception, cognition and psychology
have shown that high curvature points possess high information content [9]. Hoffman and
Richards proposed to partition an object boundary at the concavities [63, 123]. When two 3D
objects interpenetrate at random, according to the principa of transversdity, the objects dways
meet in the contour of concave discontinuities. This heuristic works well with block object
decompodtion. However, for a smooth surface without discontinuity, Hoffman and Richards
suggested a generalized gpproach. For any point p in a 3D surface, the surface norma of p can
be defined as a vector pointing perpendicularly inwards to the surface. Furthermore, there is
adways a direction that the surface curves the most, and in the orthogona direction the surface
curvesthe least. These two directions are called the principa directions and their corresponding
curvatures are the principa curvatures. Then the surface can be divided dong the loci of the
negative minima, the concavities, of the principa curvatures. When a 3D object is projected
into a 2D gpace, negative minima of the principa curvatures are mapped to concave cuspsin a

2D slhouette. Hence the 3D partitioning rule can be modified for 2D planar curves by dividing
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an object boundary dong the minima of negative curvature, if the boundary is traced

counterclockwise 16

Sddigi and Kimia [134] argued that proper object partition must involve both object
boundary and interior. Therefore, they extended Hoffman and Richard's partition scheme and
introduced the concept of part-lines, which are curved lines located completely within the
interior of the object and terminated on the concavities of the boundary. Specificdly, there are
two types of part-lines limbs and necks. A limb is a part-line for a fixed atachment to an
object, such as bird's beak. (See Fig. 2.3a) The tangents along a limb vary smoothly. On the
other hand, a neck part-line separates an articulate part, such as a human's neck or a fish tall
from its object body. (See Fig. 23b.) The length of a neck is the minimd diameter of an
inscribed circle. To obtain dl the limb-based and neck-based parts, the concavities of the
boundary are first located. Then each pair of concavities must be consdered separately to
determine whether there is a legitimate limb or neck part-line. The notation of sdience, a
likdihood of a part-ling, is introduced to resolve the conflict with multiple part-lines from the
same concavity point. However, both Hoffman and Richards partition scheme and Siddigi and
Kimids part-line gpproach handle protrusions only. They do not address indentations along the
border, which are important festures to diagnosing melanocytic lesons.

Focusng on how to infer the deformation history of a 2D planar object, Leyton's
process-grammar anadlysed every protrusion and indentation aong the border [91, 92]. He
conjectured that al deformable objects begin from a circular shgpe. Applying continuation and
bifurcation forces on the border distorts the object shape into protrusions and indentations. The
direction of the deformation force lies dong the symmetric axis which bisects the protrusion or
indentation. Therefore, by locating dl protrusions and indentations and tracking their symmetric
axes, one may discover the history of the deformation process. As the result, athough Leyton

partition al protrusions and indentations along the border, his process-grammar does not return

16 Reversing the tracing direction flips the foreground and background and reverses the sign
curvature values.
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Figure 2.3. Limb-based and neck-based part-lines (a) A limb-based part. The limb part-
line is denoted by the dotted curve line. (b) A neck-based part. The neck part-line
Is denoted by the dotted line, which isthe minimal diameter of an inscribed circle.

rigid curve segments nor interior parts, but rather dynamic processes, which can be used to
document deformation hitory. Furthermore, both Leyton's process-grammar and Hoffman and
Richards partition rule consider the theoretical aspect of partitioning an object boundary. They

do not address how to handle aragged border under a multi-scale environment.

2.2.4. Multi-scale methods

Some single-scae shape andysis methods can be extended to multi-scae by including two or
more resolutions. Fischler and Wolf used two measuring sticks with different lengths, two
scaes, to determine critica break points for curve partitioning in discrete space [39]. These
break points, termed sdient points, correspond to the points with high curvature values. The bi-
scale dgorithm is repested for each measuring stick by diding it dong the curve pixe by pixd.
The maximum deviation d from the curve to the stick is recorded. The loca maxima of dl the
recorded d's are the sdient points for that measuring stick. The find sdient points of the curve
are comprised of the findings from both sticks.  Similarly, many skeleton techniques can aso be
extended into a multi-scae environment. For example, the eroson operation can teke disc

dructure dements of various Szes to Smulate different scales.

When more than one scale is gpplied, the natura questions to ask are What are the
optimal scales and how to incorporate results from various scales?  An object may manifest
different shapes at various resolutions, and shape features may disappear at a coarse scae, or
the sdient locations may shift from scde to scade. Hence, sdecting appropriate scales,
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organizing information computed from different scaes and relating information from one scde to
another become important issues for multiple-scae andysis. To address the above questions,
many multi-scale shape anadlys's methods take a systemic gpproach by working with al scaes.
Fractd dimenson is one of such methods where the datigical dimension, by definition, is
computed by measurements from dl scaes. Other well-known multi-scale methods include
wave et transform and scale-pace filtering.

2.2.4.1. Wavdet transform

Another popular multi-scale method in active research is the wavelet transform, which linearly
decomposesasignd f(x) into multi-scales based on mother wavelet basis functions

f(x)=a cy (), (2.9)

where ¢, are the coefficients for the transformation [2, 52, 69, 141, 142]. When snusoidd
functions are used as the bas's functions, wavelet transform becomes the well-known Fourier
Trandform, which do not retain spatid information. However, the baance of retaining
information on both spatia and frequency domains can be achieved for other basis functions
with loca supports, such as Daubechies, Coiflet, Harr, and Symmlet wavelets[52, 141]. These
wavelets have some straight mathematica properties such that their dilations (compressions) and
trandations are orthogond. A fast pyramida agorithm has been designed for the discrete
wavdet transform. The discrete signals f(x) of length 2 are convolved with a low-pass filter
and a high-pass filter which are derived from the mother waveet functionsl? The filter outputs
are down-sampled and concatenated together to form the base level of the resultant pyramid
gructure. The high-passed outputs are not involved in further computation; however, the low-
passed output is processed recursively for higher pyramid scale levels. For pyramid scae leve
i+1, the low-passed output at level i is filtered again by the low-pass and the high-pass filters,
down-sampled and then concatenated. The find pyramid has D scde levels. Because of the

17 The signals f can be 1D or 2D. For a 2D discrete function, both dimensions must have size equal
to power of 2.

29



down-sampling gep, the transformed dgnds maintain the same dze as the origind sgnds.
However, smilar to other pyramida schemes, rdating information from various wavelet scaes
can become a complicated task.

2.2.4.2. Scale-space filtering

Witkin's scale-space theory provides another way of handling multi-scale problems that
emphasizes organizing and relaing information among scaes and the causdity property of
filtering [151]. In paticular, he introduces a new image space with a continuous scae
parameter o, caled scae-space, to record the smoothing process of the signals by Gaussian
kernels because Gaussan kernds are the only kernel possessing the well-behaved causdity
property: features manifest in the coarse scde must persst through to the zero-order scale
[10].18 During a continuous Gaussian smoothing process, no new feature is created. For a 1D
object function f(t), the scale-space F(t,o) is defined by

L e
s )2

e =° du, (2.10)
where ® denotes the convolution with respect to t and ¢ is the Gaussan standard deviation that

F(t,s)=f(t)Ag(t,s) = ¥c‘)f (u)

controls the amount of smoothing. Unlike the wavelet transformation, there is no sub-sampling
compression between scaes. Instead, information among scales is tracked by a 2D binary
scale-gpace image, which is congructed by placing o in the y-axis and the locetion of the
inflection points, the zero crossing of the second derivatives of F(t,o), in the x-axis. (See Fig.
24.) These inflection points are used to represent the function shape. As ¢ increases, the
gmndler extrema of the function f(t) disappear first and F(t,o) evolves to a smoother function
where the number of inflection points decreases monotonicaly. The causdity property of

Gaussan smoothing guarantees that no new inflection points are created. Therefore, a more

18 Chen and Y en showed that morphological open operations do not introduce new zero-crossings as
the smoothing operation moves to coarse scales [30, 66]; however, the morphological smoothing
behaves differently from Gaussian smoothing [75, 76, 79].
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ggnificant sructure of the function can survive alarger . Moreover, the locdization problem of
the inflection points can be solved by a coarse-to-fine tracking of their locations in the scde-
gpace image back to the zero-order scale, the origind function.

= bl \;ﬁm uL
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Figure 2.4. Scde-space filtering for a1D function. (&) The 1D function f(t) drawn at the
bottom of the graph is smoothed by various Gaussan kernels with increasing a. (b)
The scale-space image of (). The zero crossing of the second derivatives of the 1D
functionsin (8) are usad to form this scale-gpace image.

Asada and Brady used a scale-gpace technique to pinpoint the dgnificant curvature
changes for a set of primitives (corner, smooth join, crank, end and bump) dong a 2D object
boundary [8]. This method, termed curvature primal sketch, computes the curvature function
from the object boundary and smoothes it with Gaussian kernels of increasing o.  Then the loca
extrema of the first derivatives and the second derivetives of the smoothed curvature function
are tracked in two scale-gpace images. These two images are used to search for the unique
sgnature of the primitives. Once the high curvature points of the primitives are located, they can
then be used as the knot points for spline agpproximation of the boundary. Xin et a. [152]
extended the curvature prima sketch method to handle smoothed arcs that do not have
sgnificant curvature change.

Mokhtarian built a 2D object recognition sysem [102, 103] and a corner detector
[105] using the scale space methodology. For the object recognition system, an object border
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is smoothed by Gaussian convolutions with variousa.  The locations of curvature zero-crossing
points are tracked in a curvature scae-gpace image, which is used as the sgnature for the
object. (See Fig. 25.) A specid matching dgorithm is designed to match againg the scae-
gpace image with alarge database. For the corner detection system, the maxima of the absolute
curvature are extracted at the coarse scale and the scale-space image is used for localization of
these corners. Mokhtarian reported that the corner detector can detect al corners without any
fase pogtive findings.
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Figure 2.5. Curvature scale-space filtering for a closed contour. (&) The Gaussan
smoothing can be extended to a 2D object with increasing Gaussan ¢ vaues, which
are reported at the bottom of each smoothed object. (b) The curvature scale-space
image of (a), with the x-axis specified by the location of the inflection points of the
curvature curve.

Since no decompression is carried out between scales and an explicit data Structure is
used to organize information for al scaes, the scae-pace approach is a powerful multi-scale
method to relate information between scales. Unfortunately, the existing methods are designed
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to work with points along object borders, and there is no notion of protrusion and indentation

segments.

2.3. Multimedia shape coding

Shape coding is an important festure in the new Moving Picture Experts Group (MPEG)
gandard. In MPEG-4, MPEG enhances the video compresson standard of MPEG-1 and
MPEG-2 by dlowing the transmisson of an arbitrarily shaped video object in one bit stream.
The new functiondity provides the infrastructure for interactive manipulation of video objects
instead of pixels and paves the way for many content-based gpplications, such as[93].

In MPEG-4, there are two types of video objects, opague and transparent objects.
The shape of these objects is represented by a 2D binary mask, where white pixels denote the
object and black pixels denote the background. Coding efficiency, scdability, error resilience
and hardware complexity become important issues for a shape coder because of the potentialy
huge amount of video data required to be transmitted over various types of networks. MPEG-
4 carefully evauated many proposed shape coding agorithms before selecting context-based
arithmetic encoder (CAE) [24] as the shape coding standard. In this section, we examine the
find 4 proposed shape coding algorithms (vertex-based shape coding, baseline based shape
coding, Modified Modified Reed shape coding and CAE) in the selection process.

2.3.1. Vertex-based shape coding

Vertex-based shape coding [111] codes the object contour by a set of vertices. The coding
scheme is equivaent to boundary-based partitioning method discussed in Section 2.2.3.2,
where the object is gpproximated by a polygon. The number of vertices used controls the level
of lossy shape coding. Unfortunatdly, the optimum number of vertices is difficult to determine
and their placements may dter the shape of the object, which is undesrable for andysing the
object shape. For losdess shape coding, the coding scheme becomes a chain code, which has
been discussed in Section 2.2.1.

33



2.3.2. Baseline based shape coding

Basdine based shape coding [111] is a variation of the parameterization method discussed in
Section 2.2.1. Firgt the object is rotated so that the longest axis is placed on the x-axis, which
is caled the basdline. The y coordinate denotes the distance between a point on the object
contour and the basdine. The object contour is then sampled and the y-coordinates are
differentialy encoded. The contour points where the direction changes are dso encoded. This
coding scheme optimizes the data volume required to be trangmitted over the network;
however, it isinefficient to access apoint on the contour. Random access for the contour points

isimpossble until the entire coding is decoded.

2.3.3. Modified M odified Reed shape coding

The Modified Modified Reed shgpe coding [153] is a block-based shape coder which
enhances the standard coding method for G4 facamile. The object shape is divided into 16 x
16 macro blocks and the changing pixels (the first white/lblack pixels after a run of black/white
pixel block) are searched line-by-line and are encoded with respect to the reference line (the
line has just been processed). Similar to the baseline based shape coding method, this method
is optimized for encoding efficiency a the expense of computing efficiency. Decoding the entire
macro block is required to extract the original shape expressed in the block.

2.3.4. Context-based arithmetic encoder

The CAE [24] codes dl pixels of an object shape after the shape is divided into 16 x 16 macro
blocks. In theintra-frame model®, the coding is based on the loca context of 10 neighbouring
pixels, which account for 1024 contexts. The probability distributions of the contexts and the
optima coding are pre-computed in training sessons. The CAE method was sdlected as the
gandard shape coding for MPEG-4 because the CAE outperforms other shape coding

19 We concentrate on intra-frame coding method since there is no temporal encoding in analysing
lesion border shape.



methods in coding efficiency, scdability, error reslience and hardware smplicity. However,
representing an object shape by its canonicad form, a binary mask, often requires further
transformations to other representations such as border contours, skeletons or moments shape

descriptors.

In this chapter, many object shape agorithms have been discussed; however, none of
these generd techniques can adequatdly andyse the complex features of a melanocytic lesion
border. A new method is required. The new method should generate numeric shape
descriptors so that they can be processed directly by a melanoma classifier. Partitioning the
leson into parts help derive important dlinical information. A multi-scale method is desired to
handle structura protrusions and indentations along a rugged border. Combining these generd
techniques, the resultant shape descriptors provide an effective measure for the border
irregularity of ameanocytic leson.
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Chapter 3
Data Collection and Preprocessing

Before the new shape measure is described, the data collection and data preprocessng steps
are discussed, asthey are important for the development of such ameasure.

3.1. Data collection

Obtaining a set of meanocytic leson images which range from dinicaly benign nevi to maignant
melanomas is a crucid prerequiste for developing any computerized agorithms for anaysing

skinlesons. Pigmented skin leson images were collected from two sources,

3.1.1. Images from a video microscopy device

The first source was a data collection project operated by B.C. Cancer Agency and Pigmented
Leson Clinic. From 1994 to 1998, dermatologists of the clinic invited patients with clinicaly
abnormal lesions, which required surgica removd, to participate in the project. The pigmented
skin lesons specified by dermatologists were digitized by a hand-held camera (see Fig. 3.1).

The hand-held camera used in the data collection project (see Fig. 3.18) was a video
microscopy imaging device. This light-weight device was connected to a shoebox-gzed main
unit (see Fig. 3.1b), which was further connected to a frame grabber in a Persona Computer
(see Fg. 3.1¢). Indde the main unit there was a halogen bulb providing a white light source.
Guided by optic fibers to the hand-held camera, the light source formed a ring within a slver-
coloured, hollow cylinder atached to the front of the camera. During the imaging process, the
cylinder shielded off the room ambient light. Furthermore, the cylinder was in direct contact
with the patient skin to stabilize the camera againgt excessive laterd or vertical movement. The
camerahad afixed focd length, 20 times magnifying lens so that a sandard imaging environment
could be achieved. Polarized filters mounted in front of the camera lens and the light source
permitted subsurface view festures to be examined. Because the hand-held camera is both
andl and light in weight, it can be moved around the patient's skin surface eesily to capture
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Figure 3.1. The video microscopy imaging device. (8) The hand-held video microscopy
camera. (b) Themain unit. (c) The Persona Computer connected by the camera.

images of skin lesons on different body parts. The resultant images were in red/green/blue
(RGB) colour format, 512 x 486 pixdlsin Sze. The spatia resolution for each pixd was 0.033
mm X 0.025 mm. Every image had one lesion located near the centre and was surrounded by
norma skin of differing hue. Some images aso contained an additiona colour marker used by
the dermatologist to designate which lesion was to be imaged. The lesion could be vary in size,
shape, colour and saturation. In many cases, the margin between a leson and the surrounding
skinwas clinicaly ill-defined. Fig. 1.2a shows a skin image taken by the hand-held camera

Follow-ups were maintained on al participants of the data collection project and the
pathology findings for the surgicaly removed lesons were retrieved.  During the project, 252
suspicious lesons from 155 patients were imaged.  After the follow-up period, 178 pathology
reports were collected. The histologic breakdown for the lesions included 131 pathologicaly
benign lesions, 40 pathologicdly dysplagtic nevi and 7 superficid spreading melanomas. We
adso collected 78 dlinicdly benign lesons so that we have data for the entire spectrum of
melanocytic lesons. These clinicaly benign lesions had no pathology report because the lesons

were not removed from the patients.
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3.1.2. Images from 35-mm colour dlides

Another source was a set of forty-two 35-mm colour dides of maignant melanomas obtained
from Pigmented Lesion Clinic of Vancouver Hospital and Health Sciences Centre. These dides
were dl of superficid spreading melanomas, where the entire lesion was clearly shown. Slides
with non-flat body features such as digits or ears were excluded because these body parts may
digtort the leson shape. The colour dides were scanned into Kodak PhotoCD digita format.

Fig. 1.2b shows one of these melanomaimages.

3.2. Preprocessing

Before the skin images can be used for shape andysis, they have to be processed. We use two
automatic programs. Fird, a program called DullRazor performs dark thick hair remova [85,
86]. Then an automatic segmentation program extracts the leson borders from the skin images
[87].

3.2.1. DullRazor

Many skin images contain hairs. (Fig. 3.2 shows one of the leson images covered by hairs)
These hairs, especidly the dark thick ones with a smilar colour hue to the leson, occlude the
leson and may midead the segmentation program. In spite of the rgpid growth in the image
processing applications for dermatology [40, 58, 140, 149], the hair problem has not been fully
addressed. Of course, shaving the hairs before imaging sessonsis one of the solutions [4, 131].
However, shaving not only adds extra costs and time to the imaging sesson, but dso is
uncomfortable and impractica especidly for multiple lesons or tota-body nevus imaging [136,
145]. Hence, a software approach for dark thick hair removal from skin images is needed.
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Figure 3.2. A mdanocytic leson image covered by dark thick hairs

There are severa approaches to handle the hair problem. Since the skin image consists
of hairs, aleson, and the surrounding norma skin, one way isto design a ssgmentation program
to recognize al the objects. This method, however, requires a complicated segmentation
progran due to the fact that the hars divide a single leson into many sub-pats. The
segmentation program must be able to join dl the sub-parts together to form a single lesion.
This merging process is a nontrivid task. Instead of a designing a complicated segmentation
program, a preprocessor, caled DullRazor, removes the thick and dark hairs from the skin

images before they are segmented by a segmentation program.

DullRazor consigts of three basc seps (1) Identifying the dark hair locations, (2)
replacing the hair pixes with the nearby non-hair pixds, and (3) smoothing the find result. All
these steps are discussed in detail.

To locate the dark hairs, a generdized grayscde morphologica closing operation is
gpplied to the three colour bands separately [61]. The grayscde closing operation smoothes
out the low intengity vaues, i.e, the thick dark hair pixels, dong the structure eement direction.
The four structure elements, @, 45°, 90° and 135°, are shown in Fig. 3.3. The generdized
grayscae dlosng image is obtained by taking the maximum response from the individud closing
operations for each colour band. Findly, a binary hair mask image is created by thresholding
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the absolute difference between the origind colour band and the generdized grayscde closng

image. This hair mask divides the hair and non-hair regionsinto digoined aress.
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Figure 3.3. Structure dement for the generdized closing operation.
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Let G, be the generdized grayscde dosing image of the origind red band, O;, and S,
Sis, S and Syz5 are the sructure dements in the horizontd, diagona, and vertica directions.

G; can be expressed as.

Gr :|Or - rna({ C)r ' SO’C)r ’ S45'C)r ’ SE)O’C)r ! %35}|'

(3.1)

where - denotes the grayscae closing operation. The binary hair mask pixe at location ,y),

denoted as M(x,y), is computed as.

11

- if G (xy)>Ty
10, otherwise

M, (X, y) s (3.2)
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where T is a pre-defined threshol d20.
A smilar expresson can be written for the green and blue bands and the find hair mask
of the colour image, M, isthe union of al three hair masks:
M=MEM_EM,, (3.3

where M;, Mg, and M, are the hair masks for the red, green, and blue band, respectively. Fig.
3.4 shows the hair mask M for Fg. 3.2 after the generdized grayscde morphologicad closing
operaion is applied.21

In the second step, the binary hair mask M guides the interpolation operation to replace
hair pixds by the nearby non-har pixels. Before the replacement is performed, each pixe in the
har region of the mask M is checked to ensure that the pixd is located within a thin and long
dructure, i.e. the hair sructure; otherwise, the pixe is rgected as noise. For each pixel indde
the hair region M, line segments are drawn in 8 directions, up, down, left, right and the four
diagonds, radiating from the pixe until the line segment reaches the non-har region. These 8

20 The skin images are 8 bit and the maximum intensity for each colour band, therefore, is 255. The
threshold T is empirically set to 24 after testing a large set of skin images with dark thick hair covers.

21 Note the original mask is binary black/white, but reduction for printing makes it appears as
grayscale.
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line segments form 4 draight lines centered & the pixd. The length of each lineis calculated and
the longest oneis noted. The longest line must be longer than 50 pixels and other lines must be
shorter than 10 pixels. Otherwise, the pixe isrgected. The cleanup hair mask is shown in Fig.
3.5.

Figure 3.5. The cleanup hair mask of Fig. 34

After a pixe is verified to be indde a hair gructure, the corresponding pixd in the
origind image is replaced by two nearby non-hair pixel vaues dong the shortest line, the line
perpendicular to the longest one, using bilinear interpolation.22 Let I(x,y) be the intensity vaue
for the replacing pixel, and 11(X1,y1) and 1(Xz,y2) be the selected non-hair pixd intengties dong
the shortest direction. The new intengity vaue I,(x,y) can be expressed as:

D(I.1Y) | o1y 20 T2) D(l, |2) (3.4)

In(x,y)=lz(x2,yz)*D(, 1) D(l,,1,)°

where D(a,b) is the Euclidean distance between point a and b.

Fig. 3.6 shows the resultant skin image after the replacement step. In this image, many
thin lines around the edge of hair structures are dill visble. The last step of DullRazor smoothes

away these thin lines by an adaptive median operator. Fird, an extended hair mask is

22 Replacing hair pixels with spline interpolation may produce smoother results than bilinear
interpolation in the expense of computational complexity. However, for the purpose of using
DullRazor as a preprocessor for an automatic segmentation program, bilinear interpolation produces
an adequate result.
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congtructed by applying a binary dilation with a 5 x 5 square structure dement of dl 1's
centering at the middle of the square. (The enlarged hair mask for the adaptive median
smoothing is shown in Fg. 3.7.)) Then a5 x 5 median filter is gpplied to only the enlarged hair
regions, while the non-hair regions are left un-touched to preserve fine details. The fina output

of DullRazor isshown in Fig. 3.8.

Figure 3.6. The skin image of Fig. 3.2 after the replacement step

Figure 3.7. The enlarged hair mask for Fig. 3.5



Figure 3.8. Thefina output of DullRazor for Fig. 3.2

3.2.2. Segmentation

The second phase of the preprocessor task extracts the leson border from the skin image.
After occluding dark thick hairs are removed by DullRazor, skin images condst of a lesion
surrounded by norma skin.23 (See Fig. 38) The intensity of the norma skin is uniformly
digtributed, but the leson can vary in Sze, shape, colour and intendty. In many cases, the
separation between aleson and the surrounding skin is fuzzy. A three-step agorithm is used to
extract the border. These steps conssts of (1) a multi-stage median filter to suppress noise, (2)
a process to determine the threshold value, and (3) a rule-based system to identify the leson
and to extract the border.

The firg gep of the segmentation dgorithm removes noise caused by the imaging
process while presarving image details such as fuzzy edges24 A multi-stage centrd weighted
median filter (CWMF) [121] with a sat of linear and curved filter windows is gpplied to the red,
green and blue bands of a skin image separatdly. The CWMF is a specid case of the well
studied median filter (MF), which outputs the median pixd vauesin arunning window of Sze N

23 A few skin images aso contains a colour marker used by the dermatologist to designate the lesion
to be imaged.

24 DullRazor focuses on hair regions of a skin image; non-hair regions are neither processed nor
altered.



x N, where N is an odd integer [5, 68, 126]. It is known that the MF preserves edges while
removing impulsive noise, but it dso erases thin lines and dlips sharp corners. The problematic
behaviour of the MF can be dleviated by a set of linear and curved filter windows shown in Fig.
3.9. For example, the filter window W(1) preserves details in the verticd direction, while W(2)
preserves detalls in the horizonta direction.

T I P

WL W2 W3 W) WE) WE) W7 WP
Figure 3.9. Flter windows for median filter

The CWMF puts more weight on the centra pixel (the pixel being examined) by adding
multiple copies of the centrd pixd prior to the median operation [78]. Let X(i,j) be the input of
thefilter, Y(i,j) be the output, and W be the N x N filter window with window sze of Z2.+1.
The output of the CWMF is denoted as:

Y(i, j) = median{ X (i - s, j - t), 2K copies of X(i, )| (st)' W}, (3.5)

where K is a congant. When K = 0, the CWMF becomes a MF. As K increases, the
CWMF puts more emphasis on presarving details until it becomes an identity filter (i.e. no
filtering) when K > L.

For our automatic segmentation program, a three-stage CWMF is congtructed as
shown in Fig. 3.10 [121]. In the first stage, there are 8 CWMF operators. Each CWMF
operator works with one of the linear and curved filter windows as defined in Fig. 39. The
filter windows mask out the input pixels before they are sent to the operator. The output from
the firs sage is arranged into two groups. Combining with the origina centra pixel, each group
isdirected to a CWMF operator in the second stage. Findly, the result of the entire three-stage
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CWMF operator is obtained by submitting the output of stage two with the centra pixe to the
sngle CWMF in the third stage.

w1
W2

XG, 1)
W3
w4

XG, 1) | CMWF |——4i, )
W5
W6

XG, 1)
w7
w8

stage 1 stage 2 stage 3

Figure 3.10. Scheme for the three-stage CWMF

For each pixel in the image, there are 11 CWMF operations, and each operation
computes the median vaue from an extended set. An interesting property of the CWMF is that
it can smplify the computation [78, 121]. Agan, let Y(i,j) be the output and X(i,j) be the input
of a CWMF operator with 2K copiesof X(i,j) being added. Also let 2L+1 be the sze of the N
x N filter window, where N is an odd integer. Then the output Y(i,j) can be expressed as:

Y(i, j) =median{ X(i, j)[L +1- K;2L+1],
X(0, DIL+1+K;2L +1], (36)
X(i, D},

where X(i,j))[r; 2L+1] is the " smalest dement among the A_+1 samples within the running
window centred at X(i,j).
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Fig. 3.11 shows the result of applying a three-stage CWMF to the leson image in Fg.
3.8. Because the purpose of the filtering step is to remove noise caused by the imaging process
while preserving image detalls, minimum modification is done on the input image. The mean
absolute differences are 0.13, 0.09 and 0.12, and the maximum absol ute differences are 19, 20,
21 for the red, green and blue band, respectively.2>

(b)

© | @

Figure 3.11. Effects of the threeestage CWMF on Fig. 3.8. (a)-(c) specify the pixe
locations modified by the three-stage CWMF operator for the red, green, and blue
band, respectively. (d) The three-stage CWMF output for Fig. 3.8.

The second step determines the threshold values to segment a leson from the
surrounding norma skin.  Three threshold values, one for each colour band, are needed and

25 The maximum intensity for each colour band is 255.
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each threshold vaue is calculated from a histogram. Since the norma skin and the lesion are the
dominant objects in the image, they correspond to the two highest peaks in the histogram.
Moreover, because the norma skin has a lighter colour tone than the lesions, the pesk for the
skin can be identified with confidence as the pesk with the higher intensty vdue. The find
threshold vadue T, which fals between the two pesks, is fine tuned by andysing the pixd
digribution for each intengty vaue i between the two pesks. When intengity i is examined, dl
pixels corresponding to intengties [0 .. i-1] are dasdfied as base-mole, while the pixels
corresponding to [i+1 .. 255] are classfied as base-skin. A pixd p whose intengty is i is
classfied as noise if there exist no connected path between p and the base-mole. In other
words, there does not exist a sequence of pixels po, P1, P2 --., P, UCh that, forj =1, 2, ..., n,
the intengty value of dl p;'s are within [0..i], the pixels p; and pj., are adjacent neighbouring
pixels and p, is ingde base-mole. The term noise-ratio is defined as the ratio between the
number of pixels categorized as noise and the total number of pixes corresponding to intensity .
Thethreshold T is set to the largest intengity | with an acceptable noise-ratio.

The above noise-ratio may bregk down if intengty | approaches the histogram peak of
the normd skin, S. In this case, base-mole may occupy such alarge area that there is dways a
connected path between base-mole and most of the corresponding pixels of intengty i. To
avoid this stuation, the examination of intendity i too close to S is prohibited by another retio,
skin-ratio, which is defined as the ratio between the number of pixels corresponding to i and the
number of pixds classfied as base-skin.  With both ratios working together, the fine tuning
process of T sdects the highest possble i whose noise-ratio and skin-ratio are within a pre-
defined range.

The find step of the segmentation agorithm combines the threshold results from the
three colour bands, identifies the lesions and extracts the borders. A pigmented skin lesion is
darker or redder in colour than the surrounding skin not because there is more red in the lesion,
but the meanin nest absorbs mogt of the blue wavedength so0 that there is very little blue
component. Asillugtrated by Fig. 3.12, the low intensity valuesin the blue band enable a stable
threshold computation and so the blue band has more discernment power than the red and
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green bands. For some of the very faint, low contrast images, the red and green bands may not
produce a proper threshold vaue. This observation suggests more weight should be put on the
blue band. Hence, the last step uses the blue band as the dominant band. The red and green
bands attempt to capture the fine details that the blue band misses, i.e,, when the blue intengity is
dightly above the threshold value T and iswdl below S All these consderations guide the fina
rule-based system to form a binary mask that divides the image into the skin region and the
lesion region: the pixel a location (i,j) of the binary mask is classfied as part of the leson region
if

B(i,j) £ET(B) or

T(B) £ B(, ) £ C and G(i, j) £ T(G) and R(, j) £ T(R), (3.7

where X(i ) is the intensity vaue of the band X a the pixd postion (i, j), for X = R (red), G
(green) or B (blue). T(X) is the find threshold vaue of band X. C is a pre-defined parameter
wheeC<S

@ (b)
Figure 3.12. Thered (a), green (b) and blue (b) band of Fig. 3.8

Once abinary mask of the skin lesion image is generated, the mask is passed to a blob-
colouring process [13, 61] to enumerate the objects in the leson region. Cleanup is then

gpplied to diminate noise objects whose sizes are smdler than some pre-defined minimum size.
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The remaining objects are declared as lesons with edges outlined by a boundary tracking
procedure [137]. (Fig. 3.13 demongtrates the segmented border for Fig. 3.8.26)

Figure 3.13. Segmentation result. The originad image is shown in figure Fig.3.2 and the
image after DullRazor is shown in Figure. 3.8.

3.2.3. Issues arising in the data preprocessing phase

In the preprocessing phase, DullRazor attempts to smplify the segmentation task by removing
deleterious effects of hairs. However, the software approach to hair remova has an inherent
problem. It is obvious that pixel values undernegth the hairs cannot be reconstructed accurately
by asngle view. A careful examination of Fig. 3.8 reveds traces of faded hair lines, which is
why the program is called DullRazor. These traces can probably be removed, but at the cost of
an excessive loss of fine detallsin theimage. Therefore, these artifacts are not processed further
prior to the segmentation program. Furthermore, other image analys's tasks, such as texture
andysis or pigment network extraction that tend to be sengtive to pixel modifications, can use
the hair mask as shown in Fig. 3.7 to locate the modified pixels.

Fig. 3.14 shows an example where, dthough most of the leson was segmented
properly, asmal region at the right Side of the leson and another one at the bottom-left corner

26 DullRazor and the automatic segmentation program were implemented in C using a Sun Ultral|
workstation. The execution time for the preprocessing phase was about 30 seconds.
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were misclassfied due to heavy har clusters and fuzzy borders.  Indeed, automatic
segmentation is a nonHrivid task even for skin lesion images, which have a well-defined domain

of aleson surrounded by the normal skin. Hairs and fuzzy borders increase the difficulty of the
task.

@ (b)

Figure3.14. A skin leson heavily covered by dark thick hairs. (8) the origind hairy image,
(b) the seomentation result after DullRazor

In order to evauate the segmentation program, Dr. David McLean and | examined al
segmentation results on a colour computer monitor. Firgt, the origina skin image was shown on
the monitor, and then the skin image with the segmentation result, which was superimposed asa
white outline, was shown dong sde with the origind image. By comparing these two images,
the segmentation results were assessed subjectively and categorized into three groups: good, fair
and poor. When the computed border outline had a good agreement with the actua leson
border, the segmentation result was classfied as good. If there were some minor
misinterpretations, the segmentation result was classfied as fair. Finaly, a poor result indicated
the segmentation program missed a large portion of the actud border. After al 298 skin
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images?” were evauated visudly, we found that only 108 skin images, or 36%, were classified
asgood. Fig. 3.13 and Fig. 3.15 show two examples of good segmentation results. 144 skin
images, or 48%, (see Fig. 3.14 and Fig. 3.16) were categorized as fair, and 46 skin images, or
15%, (see Fig. 3.17) were categorized as poor.

Figure 3.15. Example of good segmentation results. (a) The origind image, which is dso
shown in Fig. 1.2a. (b) Segmentation result of (a).

Because of the complexity of a skin image, which may consigt of hairs, a multi-coloured
lesion, a fuzzy border and/or a low contrast image, a fully automated system that produces a
perfect segmentation for dl lesons is not achievable2® However, as the gtarting point of
developing such an automatic system, the preprocessing phase produces some good results. I
there is any concern with the segmentation accuracy, the extracted border can be inspected and
modify manually before any subsequent andysisis applied.

27 These 298 images include 78 clinically benign lesion images, 131 pathologically benign lesion
images, 40 pathologically dysplastic nevi images and 7 superficial spreading melanoma images
recorded by the hand-held video microscopy camera, and 42 superficial spreading melanoma images
in Kodak CD format.

28 A precise manual segmentation may not be achievable for a fuzzy lesion border. Increasing the
resolution of the imaging device may help; however, the partia volume effect of the melanin
distribution cannot be fully solved.
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@ (b)

Figure. 3.16. Example of fair segmentation results. (a) The origind image (b) Segmentation
result of (8). The leson border a the bottom and at the top-right hand side is
outlined incorrectly due to the subtle difference in hue between the lesion and the
normal skin.

(b)

©
Figure 3.17. Examples of poor segmentation results. (a) A very faint, low contrast skin
leson with a fuzzy border. (b) The segmentation result of (a). (c) A leson divided

by white skin marks. (d) The segmentation result of (c).
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Chapter 4
Irregularity Indices

As discussed in chapter 2.1, the previoudy used methods for measuring border irregularity are
more sengtive to texture irregularities than dructure irregularities (dructurd protrusons and
indentations), which are the important clinica features for diagnosng melanomas. The single-
scale methods compute some globa properties of a skin leson but these methods are noise-
sendtive.  The problem is magnified when a melanocytic leson border is extracted by an
automatic segmentation program, which tends to produce a more ragged (noisy) border than a
manua segmentation program.  Although fracta dimensons (FD) and dructure fractd
dimensions (SFD) are multi-scale methods, they cannot detect structurd irregularities. To solve
these problems, a stable measure sengitive to structure irregularities needs to incorporate both
globa and local features. Our new measure achieves this by partitioning a lesion border into
protruson and indentation segments under a multi-scale scheme.  This chapter describes our
dgorithmin detail [84, 88].

4.1. Abstracting the lesion border

The agorithm begins with an abgraction of the leson border, which can be extracted by a
segmentation program such as the one reported in the previous chapter, as a smple closed
planar curve Lo in C%.  Further smplification is made by parameterization of the x and y
coordinates into two linear functions x(t) and y(t), where 0 £ t £ 1 is the path length varigble

aong the planar curve:

Lo =(x(1), y(©)). (4.1)
Theinitid point of the parameterization, t = 0, can be sdlected arbitrarily; however, the border
is traced in the counterclockwise direction so that the interior of the leson isin the left-hand Sde
of the border during the tracking process. Furthermore, Lo(X(0), W0)) = Lo(X(1), Y1)),
because the border forms a closed contour. An example of alesion border is shown in Fig. 4.1

with theinitid point of the parameterization marked by "[".
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Figure 4.1. Example of an extracted leson border. Theinitid point of the parameterization,
t = 0, ismarked by "[" and the border is traced in the counterclockwise direction.
The corresponding melanocytic lesion is shown in Figure 1.7e and 1.7f.

4.2. Defining indentation and protrusion segments

A smple method to measure irregularities (indentations and protrusions) aong a curve is to
compute the corresponding curvature function. For a point & in a curve L(x(t), Wt)), the
curvature a ¢ is defined as the instantaneous rate of change of the angle between the tangent at
¢ and the x-axis with respect to the arc length of L. The curvature can be dso expressed as
1/p, where p isthe radius of the locally bes-fit circle at &. When the curvatureislarge at &, i.e.,
asmdl p, the curveturnsrapidly a . However, for asmal curvature, i.e., alarge p, the curve

isnearly flat & . 1t isknown that the curvature function K(t) can be computed as[53]:

Kty =Y YX (42)
(6 + ()

where X' and y' are the firs derivatives of the functions x(t) and y(t) with respect to t, and x"

and y" arethe second derivatives of x(t) and y(t). The curvature function portrays the curve L

intwo ways. The dgn of K(t) indicates concavity or convexity of the curve at point & and the

magnitude dencotes the amount of bending. With our convention, usng counterclockwise tracing
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aong the border and image coordinate systen?®, positive curvature vaues imply concavity,
while negative curvature vaues imply convexity. Loca curvature extrema, located by the zero-
crossngs of the firg derivative of K(t), mark the tip points of concave and convex segments.
These tip points are considered to have high information content [9], and have been frequently
used to partition border contours into parts. Hoffman and Richards [63, 123] partitioned
object borders a concave tips and their part primitives, codons, are condtituted of curve
segments with O, 1 or 2 curvature extrema. Leyton [91, 92] condructed symmetric axes by
bisecting concave and convex segments from their tips. He further suggested that deformation
forces could act on these tip points in the direction of the symmetric axes. Siddigi and Kimias
[134] neck-based and limb-based approach of object decomposition aso put the terminas of
part-lines at the concave tips.

curvature K
A C
B
C 0 A E
D \/ \
VoY
B
E

path length variable t
@ (b)

Figure 4.2. Definition for indentations and protrusons. (&) A curve segment with two
protrusons and one overlapping indentation. (b) The corresponding curvature
function. ThepointsA, B, C, D, and E arethe locd curvature extrema.

We exploit loca curvaiure extrema to divide the border into a st of
indentation/protrusion segments (see Figure 4.2). An indentation/protrusion segment is defined

as a curve segment composed of three consecutive locd curvature extrema [ty t, ts], where t;,

29 The origin isin the top-left corner.
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t, and t; are specified by the path length variables of the curve. The middle curvature extremum
t, denotes the segment tip point and the segment type.  For example, when t; is a concave
curvature extremum, K(t;) > 0, the corresponding segment is an indentation segment.
Otherwise, a convex curvature extremum t,, K(t,) < 0, specifies a protruson segment. The
locd curvature extrema t; and t; delinegte the extent of the segment and they have a different
sign from curvature extremum t»:

sgn(K(t)) = sgn(K(t,)), 4.3
sgn(K(t,)) * sign(K(t,)).

In other words, an indentation segment is defined as a curve segment that begins with a convex
curvature extremum, following by a concave curvaure extremum and a convex curvaiure
extremum. Smilarly, a protruson ssgment, defined as a dud of an indentation, is a curve
segment that begins with a concave curvature extremum, following by a convex curvature
extremum and a concave extremum. For example, in Fig. 4.2a, a curve segment with two
protrusions and one overlapping indentation is shown. The points B and D specify the tips of
the protruson segments and the point C specifies the tip of the indentation segment. The
corresponding curvature function is plotted in Fig. 4.2b. The locad curvature extrema, points A,
B, C, D and E, are computed as the zero-crossings of the first derivative of the curvature
function, K'. By applying the definition of the indentation/protruson segments, one indentation
segment [B, C, D] and the two protrusion segments [A, B, C] and [C, D, E] can be located.
Therefore, a leson border is decomposed into a set of indentation/protruson segments by
scanning the corresponding curvature function for three consecutive curvature extrema with

dternating Sgns.

4.3. Extracting structur e indentation and protrusion segments

4.3.1. Scale dependence of irregularity segments

Computing indentation/protruson segments in discrete space using the method described in
Section 4.2 is scale dependent because Equation 4.2 involves the first and second derivatives of
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the functions x(t) and y(t), which are estimated by difference functions. For example, when x(t)
istrandformed to adiscrete function y(i), i = 1, 2, 3, ..., X'(t) is gpproximated by:

x@ d)z'dc(i *d) 2123 (4.4)

where d is a congtant. Furthermore, the parameter d controls the scding of the difference
function. When d issmall, Equation 4.4 estimates x' using locad information. On the other hand,
globd information is used to estimate X' when d is large. Therefore, estimating derivatives and,
in turn, determining indentati on/protrusion segments are scale dependent.

The scale dependence of Equation 4.4 raises an important issue: what is the optimal
scae? One solution is to use severa pre-defined scales. However, this approach has problems
of sdecting appropriate scaes and reating information found among scdes.  For the new
measure, a well-known method caled scae-space filtering technique is used to provide a
solution for scale sdection and information passing in a multi-scae environment [8, 94, 105,
151].

4.3.2. Classic curvatur e scale-space

The idea of the classic curvature scae-space filtering [102, 103, 105] is based on continuoudy
smooathing the origind border function Lo(X(t), y(t)) by convalving x(t) and y(t) with a Gaussan
kernel g(t,o) of increesng width:
L(t,s) = L (x(1), y®) A g(t.s) (4.5)
= (X(t,s),Y(t,8)),
where L(t,0) isthe smoothed border, A denotes an convolution operator,

X(t,s)=x(t) A g(t,s), Y(t,s)=y(t)A g(t,s), (4.6)

1 20 2
- -t°/2s ) 47
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Before the smoothing process, the lesion border is parameterized (sampled) once to obtain x(t)
and y(t). Then as expressed in Equations 4.5 to 4.7, the smoothed border is computed by
convolving the origind  x(t) and y(t) with Gaussan functions of different Gaussian standard
deviation ¢'s, which control the amount of smoothing.30 During the smoothing process, fine
features are first detected when the scde parameter s issmdl. As s increases, fine features
along the border are smoothed-out and the smoothed border L(t,o) is transformed toward an
ovd shape. At this stage, large globd feeatures can be extracted. The smoothing process is
terminated a Sm When al concavities of the border are removed. The smoothing process is
demongrated in Fig. 4.3 usng the leson border shown in Fig. 41. For this border, the

smoothing process terminates at Siem = 129.

The dassic curvature sca e-gpace filtering technique employs a 2D scale-space image to
record certain features for the entire smoothing process in a precise format. Fig. 4.4 shows an
example of a classc curvaure scde-space image.  The y-axis of the image represents the
smoothing scale, denoted by Gaussan s, while the x-axis represents the path length variable t,
which specifies the spatia locations of curvature zero-crossngs aong the leson border. The
curvature function K(t,o) of the smoothed border L(t,o) is defined as:

X Y 1PX Y

K(t,s) =Tt S [ S | ’ 4.8)
(e Yyzpore

qt it

and the curvature zero-crossings are points that satisfy the following conditions along the border:

TK(tS) , g,
i

To congruct such a scae-space image, smoothed borders are andlysed in turn. For each

K(t,s)=0, (4.9)

smoothed border L(t,o), dl curvature zero-crossings are located and plotted in the 2D scde-

30 The smoothed border is not re-parameterized (sampled) again.
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goace image. The resultant data representation is a binary image3! as shown in Fig. 4.4. For
example, the labelled points A0 to A9 in Fig. 4.4 are the corresponding curvature zero-crossing
points shown in the smoothing process of Fig. 4.3 a s = 40. (The curvature function is shown
in Fig. 45.) The scde-space image captures the detected feature for the entire smoothing

process.

original border  sigma =8 sigma = 16 sigma = 24 sigma = 32

e

sigma = 40 sigma = 48 sigma = 56 sigma = 64 sigma =72

A A9
A 8
N
A7
Jao -
A2
A3 A4 C
B

sigma =80 sigma =88 sigma=96 sigma =102 sigma= 129

CQOOEC

Figure 4.3. Gaussian smoothing process for lesion border shown in Fig. 4.1. Only some of
the s smoothing levels, specified a the top of each subfigure, are plotted. The
parameterization of the closed curves begins at the point marked as ‘X' and the
parameterization is done in the counterclockwise direction. The segment [H, |, J a
s = 32 wrgps around theinitid point of the parameterization process. At's =40, all
curvature zero-crossing points are marked as *' and are dso shown in Fig. 4.4. The
protruson segment [H, I, J a s = 32, and the indentation segments [B, C, D] and
[B1, C1, F] at s =48 and 102, respectively, are shown in Fig. 4.8a

31 The classic curvature scale-space image is considered as a binary image because it requires 2
values to encode the image. Theloci of curvature zero-crossings can be coded as 1, while the
background can be coded as 0.
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Figure 4.4. Classc curvature scale-gpace image for the smoothing process shown in Fg.
4.3. At's =40, the spatia locations for curvature zero-crossings are labelled as AQ,
... A9. Their corresponding points are also marked in Fig. 4.3. The point Ac,
denoted the peak of a contour arc, is discussed in Section 4.3.5.

4.3.3. The sigma-ratio shape measure

The vadue Siem, the minimum amount of smoothing required to remove dl concavities on the
border L,, reveds the overal roughness of the entire lesion border. Such a property has been
recognized and evauated in our early work towards development of a new measure for a
melanocytic lesion border. We defined a smple index cadled Sgma-Ratio (SR) as the ratio of
Stem OVEr the border length [83].32 Since a circle has a congtant convex curvature with no
extrema, it has the minimum index vaue 0. All other leson borders have an index greater than O
based on the roughness of the border. For example, the sgmadratio indices for the lesons A,
B, and C shown in Fig. 1.7 are 0.29, 0.53 and 0.71, respectively. (The lesion borders are
shown in Fig. 4.6 again for convenience) These ratios corrdate well with the sructura

32 Normalization with the border length is required to yield a scale invariant measure.
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Figure 4.5. Curvature function of the smoothed border a ¢ = 40 of Fig 4.3. All curvature
zero-crossing points are labelled as AO to A9.

o

roughness of the lesion borders. Lesion border A has no sructure irregulaities other than
texture irregularities. Leson border B has an protruson a the top of border, while leson

border C has mgor structurd indentations and protrusions at the bottom of the border.

@ (b) (©

Figure 4.6. Three leson borders of Fig. 1.7. (a) Lesion border A. (b) Lesion border B.
(c) Lesion border C.

Even though this smple index works wel with many leson borders, there are some
shortcomings. Firg the SR is non-linear. Transforming ¢ to log(c) is required to maintain
linearity [151]. A sengtivity test dso shows that a very high SR value (0.96) is returned for a
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circle with along and narrow indentation such as the phantom shown in Figure 4.7a It implies
that if an occluding hair of a skin leson is misinterpreted as a long and narrow indentation by a
segmentation program, a high index value may be returned. Therefore, the SR shape index
requires dl hairsto be removed carefully ether by shaving, or by using a software program such
as DullRazor [85]. The other shortcoming is more problematic than the previous one. Sincethe
SR is condructed from the globa feature of the leson border length, it cannot properly
recognize certain dructure features. In particular, the phantom with a much larger indentation
shown in Fg. 4.7b has a only dightly higher SR vaue (0.97) than the phantom in Fig. 4.7a
These shortcomings suggest that the new measure should be area-based so that the measure is
proportiond to the area of the irregularity. Furthermore, the necessity of properly identifying
structure protrusions and indentations is reinforced. In the next sections, we describe how to

andyse the indentation/protrusion segments using the extended curvature scal e-space image.

@ (b)

Figure4.7. Two phantoms for Sgmatratio.

4.3.4. Extended curvatur e scale-space

Previoudy, the locations of curvature zero-crossngs have been used as the detecting feature in
the classc curvaure scde-space filtering technique [102, 103, 105]. To andyse
indentation/protruson segments instead of border points with zero curvature vaues, loca
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curvature extrema are chosen to be the investigated feature of our extended curvature scae-
gpace image. These curvature extrema are defined as the zero-crossings of the partia derivative
of K(t,o) with respect to't, i.e.

K(ts) _ 0 °K(t,s) , 0. (4.10)
Tt t?

Also, the classc curvature scale-gpace image is extended from a binary image to a three-valued
image to encode the concavity or convexity property of the curvature extrema. Locd curvature
extrema whose curvature vaue is gregter than zero (i.e, concave curvature extrema) are
marked as shaded points in the image, while local curvature extrema whose curvature vaue is
less than O (i.e, convex curvature extrema) are marked as solid points. Such an extended

three-val ued scale-space image33 for the smoothing process of Fig. 4.3 isdepicted in Fig. 4.8a

To congtruct the extended curvature scale-space image, the zero-crossings of the partia
derivative of the curvature function with respect to t for each smoothing scales  are determined
and thair pogtions are recorded on the image adong with their concavity or convexity property.
For example, the curvature extrema B, C and D a s = 48 of Fig. 4.3 are recorded as
corresponding points B, C, and D in Fig. 4.8a. The concavity property of C (as a shaded
point) and the convexity property of B and D (as solid points) are dso marked accordingly. The
curvature function for s = 48 and its partia derivetive with respect to t are shown in Fig. 4.9.

33 The extended curvature scale-space image is considered as a three-valued image because it
requires 3 values to encode the concave curvature extrema, the convex curvature extrema and the
background.



(a) Extended curvature scaled space image
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Figure 4.8. The extended and classic curvature scale-space images for Gaussan smoothing
process shown in Fig. 4.3. (&) The extended curvature scale-space image. (b) The
overlay of the classc and extended curvature scae-space image shown in Fig. 4.4
and Fia. 4.8a.
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Figure 4.9. Curvature function and its first derivative for ¢ = 48 of Fig. 4.3. (4) The
curvature function. The points B, D, N are convex curvature extrema, while C and
M are concave curvature extrema. (b) The first partid derivative of the curvature

function in (&) with respect to t. Curvature extrema in () become zero-crossing
points.
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4.3.5. Comparison of classic and extended curvatur e scale-space

Images

There are smilarities and differences between the classic and the extended curvature scale-
gpace processes. Both scale-space images contain many contour arcs which are formed by the
loci of the respective investigated festures. However, the important difference between the two
processss is the sdlection of points from the curvature function of the smoothed borders. The
classic scae-gpace process saects the curvature zero-crossing points while the extended scae-
gpace process saects the curvature extrema points.  Fig. 4.8b manifests the amilarities and
differences between the two scale-space images by overlaying Fig. 4.4 (the classic curvature
scale-space image) and 4.8a (the extended curvature scale-space image).  In this section, we
present the parallel properties and the differences for these two images.

Property 1a: In classic curvature scale-space images, the apex of a contour arc is

the point (z, &) such that K(z, £)=0and oK (z, &)/ot=0.34

For any o inthe internd of [0, &) in the classic curvature scale-space image, let the
pointst; and t, be the curvature zero-crossings at the two sides of the contour arc. Since K(t,
o) = K(ty, o) = 0 by definition (see Equation 4.9) and K is a continuous function, according to
Roalle's Theorem, there exists a point t; such that t; < t3 < t, and oK(ts, o)/ot = 0in K-t space.
At the smoothing leve &, the paints ty, t, and t; merge together to the point . Because K is
continuous, K(z, £)=0 and oK(z, &)/ot=0.

For example, the points A2 and A3 in Fig. 4.3 and 4.4 are the curvature zero-crossing
points for the smoothed border at ¢ = 40. The corresponding smoothed border is shown with
its curvature function K4 in Fig. 4.10a and 4.10b, respectively. The point Ac; is a concave
curvature extremum between A2 and A3. At the contour apex (see Fig. 4.10c and 4.10d), the

34 Note that the apex point (z, £) of a contour arc is not selected in the classic curvature scale-space
process due to the definition of the process as expressed in Equation 4.9. However, the property of
the point can be derived.
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loci of A2, A3 and Ac; merge together, and, therefore, the curvature of the merged point and its
partia derivative with respect to t are equal to zero.

curvature K at sigma = 40

Aci
az2\az

A
path length variable t

@ (b)

curvature K at sigma = 63

path length variable t

(© (d)

Figure 4.10. Smoothed borders of Fig. 43 a ¢ = 40 and ¢ = 63. (@ The smoothed
border a o = 40, the points A2 and A3 are curvature zero-crossing points. (b) The
curvature function of (&) in K-t space. The point Ac; is the concave curvature
extreme which is between A2 and A3. (c) For the smoothed border at o = 63, the
point X marks the location where the loci of A2, A3 and Ac; merge together. (d)
The curvature function of () in K-t soace.

o

A2
A3

Property 1b: In extended curvature scale-space images, the apex of a contour arc

is the point (z, &) such that oK (z, £)/ot=0 and 6°K(z, &)/ot*=0.35

35 Note that the apex point (z, &) of a contour arc is not selected in the extended curvature scale-
space process due to the definition of the process as expressed in Equation 4.10. However, the
property of the point can be derived.
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For any o in theinternd of [0, &) in the extended curvature scade-space image, let the
pointst; and t, be the curvature extrema at the two sides of the contour arc. Since oK (t;, )/ot
= 0K(tp, o)lot = 0 by definition (see Equation 4.10) and oK/ot is a continuous function,
according to Rolle's Theorem, there exists apoint t; such that t; < t3 < t, and 6°K(ts, o)/ot*> = 0
in oK/ot-t gpace. At the smoothing leve &, the pointst,, t, and t; merge together to the point z.
Because 0K /ot is continuous, oK (t, &)/ot=0 and 6°K(z, &)/ot*=0.

For example, the points D and M are curvature extrema in Fig. 4.3 and 4.8a The
corresponding smoothed border curve is shown dong with its partid derivative of the curvature
function with respect to t in Fig. 4.11a and 4.11b, respectively. There exists aloca extremum
Ag; suchthat D < Ag; < M. At the contour apex (see Fig. 4.11c and 4.11d), the loci of D, M
and Ag; merge together, and, therefore, the first and second partia derivatives of K with respect
tot are equd to zero at the merged point.

Property 2a: In classic curvature scale-space images, excluding the apex point,
one side of a contour arc has the property 0K/ot > 0 and the other side of the contour arc

has the property oK/ot < 0.

Assume the contour apex is the point (z, &) in the classic curvature scale-gpace image.
For any ¢ intheinternd of [0, &) of the smoothing axis, let the points t; and t, be the curvature
zero-crossings at the two sdes of the contour arc. By definition, K(ty, o) =0, oK (ty, o)/t + 0
and K(tp, ) =0, oK(ty, g)lot + 0. (See Equation 4.9.) Let's first consder the point t;.
Without loss of generdity, we assume K(ty, o) = 0 and oK(ty, o)/ot > 0. In other words, for
the smoathing level o, K crosses the zero from below at t; in the K-t space. Because K is
continuous, for K to cross the next zero at t,, K must cross the zero from above, i.e, oK(t,,
o)lot < 0. Otherwise, there exids a curvature zero-crossing in between t; and t,, which
contradicts the classic curvature scale-space process. Therefore, 0K (1, a)/ot and oK (t,, a)/ot
must have different Sgn.
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Figure 4.11. Smoothed borders of Fig. 43 a ¢ = 48 and ¢ = 101. (a) The smoothed
border at ¢ = 48. The points D and M are curvature extrema. (b) The partial
derivative of the curvature function K of (a) with respect to t in 0K/ot-t space. The
point Ag; isaloca maximum which is between D and M. (c) The smoothed border
a o = 101, the point X marks the location where the loci of D, M and Ag; merge

together. (d) The partid derivative of the curvature function K of (c) with respect to
t in AK/ot-t shace.

To complete our argument for the property, we have to show that if oK (ty, o)/ot > 0, dl
curvature zero-crossings in the same side of the contour arc must have the property oK/ot > 0.
Since oK (ty, g)/ot > 0 and oK/ot = 0 only at the contour apex (z, &), moving aong the contour
ac from (t1, o) to @, &) inthe OK/ot surface cannot go to negative because OK/ot is
continuous. Therefore, the curvature zero-crossng aong the same side as t; have the property
oK/ot > 0.
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Property 2b: In extended curvature scale-space images, excluding the apex point,
one side of a contour arc has the property 9°K/ot> > 0 and the other side of the contour

arc has the property 5°K/ot? < 0.

The argument is paralld to property 2aif we can show §°K/ét? is a continuous function.
Since the border L, is C?, the smoothed border L(t,o) and curvature K are C* and 6°K/6t? is
C'. Therefore, 6°K/ot? is a continuous function.

Assume the contour gpex is the point ¢, &) in the extended curvature scae-space
image. For any o intheinternd of [0, &) of the smoothing axis, let the points t; and t, be the
curvature extrema at the two sides of the contour arc. By definition, oK (ts, o)//ét = 0, 6%K(ta,
o)lot? + 0and oK (t,, o)l/ot = 0, 9K (tz, o)/ot? = 0. (See Equation 4.10) Let's first consider
the point t;. Without loss of generality, we assume oK (ts, o)//ot = 0 and 6°K (ty, ¢)/ot? > 0. In
other words, for the smoothing level o, 0K crosses the zero from below at t; in the oK/ot-t
space. Because oK//ot is continuous, for 0K//ot to cross the next zero at t,, 0K/ot must cross
the zero from above, i.e,, 3°K(t,, ¢)/ot? < 0. Otherwise, there exists a curvature extrema in
between t; and t,, which contradicts the extended curvature scae-space process. Therefore,
&K (t1, 0)/6*t and 6°K (t,, o)/ot? must have different Sign.

To complete our argument for the property, we have to show that if 0°K(ts, o)/ot? > 0,
dl curvature extrema in the same side of the contour arc must have the property 6°K/ot? > 0.
Since &K (ty, o)/ot? > 0 and 6°K/6t* = 0 only at the contour apex (z, &), moving dong the
contour arc from (ty, o) to (z, &) in the 9*K/6t? surface cannot go to negative because 6°K /6t is
continuous. Therefore, the curvature extrema aong the same sde as t; have the property

0*K/ot? > 0.

Property 3 In the contours of an extended curvature scale-space image, the
points where the concave extrema and convex extrema meet are the zero curvature

points.
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The curvature of a convex curvature extremum is less than 0 and the curvature of a
concave curvature extremum is greater than 0; hence, the meeting point has the property of zero
curvature. The Points Ac and G in Fig. 4.8a and 4.8b are the examples of such points.

Even though the extended curvature scale-space process captures the locations of
curvature extrema, some zero curvature points (the contour arc apices of the classc curvature
scae-gpace image) can be identified eadly with our 3-valued scade-space image. However,
there is no corresponding property for the classic curvature scale-space image.

Property 4a: In classic curvature scale-space images, all curvature zero-crossings

disappear at oerm.

When a Gaussan smoothing process terminates a oerm, the object is transformed into
an oval shaped border with convex curvature for the entire border (i.e. K(t,0term) < 0 for dl t);

therefore, dl curvature zero-crossngs disappesr.

Property 4b: In extended curvature scale-space images, all curvature extrema

may disappear (a special case of acircle) or at least 4 curvature extrema remain at oierm.

When a Gaussian smoothing process terminates a o, the object is transformed into
an ova shaped border with convex curvature for the entire border (i.e. K(t,0term) < O for dl t).
In a specid case, K(t,oerm) 1S @ negative congtant (i.e. a circle) and there will be no curvature
extrema. Otherwise, curvature extrema must exist. Since an dlipse has 4 curvature extrema,

there must be at least 4 curvature extremaremain at o, for the oval shaped border.36

The most important difference between the two scae-gpace images is the functiondity
of theimage. Classic curvature scale-gpace images are designed to anadyse point festures, while
extended curvature scade-space images andyse indentation and protrusion curve segments,

36 |f the smoothi ng is carried out after oerm, these convex curvature extrema may remain until the
object border is turned into a point.
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which can be organized into hierarchicd dructures. Detalls of the ssgment andyss are
discussed in the following sections.

4.3.6. Identifying the span of indentation/protrusion segments

Our extended curvature scae-gpace image captures al indentation/protruson segments as
defined in Section 4.2 for the entire smoothing process. To reved these segments at each
smoothing level, we scan for three consecutive curvature extrema with dternating Signs (shaded

or solid points) sequentidly from s = 0, the origind non-smoothed curve, to Serm.

As an indentation/protruson segment evolves through the smoothing process, the
segment may span severd scaes. Unfortunately, Gaussian smoothing distorts the contour length
and, hence, the location of indentation/protrusion segments shifts from scaeto scde.  Matching
up the segments between scales becomes a difficult task. The extended scale-space image
facilitates the matching by andysing the loci formed by the curvature extrema points.  For
example, tracking the convex extremalines B and D of the indentation segment [B, C, D] at s =
48 of Fig. 4.8a down toward the zero-scale reved s the cover, the true postion of the segment
gpecified by the non-smoothed curve a s = 0. More precisdy, for any segment U = [ty, t,, t3]
a smoothing levd s, the cover Gy specifies the segment's corresponding postion & the zero-
scale and is defined as:

G =[uw,u,], (4.11)

where u; and u, are the path length variables for the beginning and ending postions of the
segment. The positions u; and U, are obtained by coarse-to-fine tracing the loci of the termind
curvature extrema t; and t;. Gy is consdered the true postion of the ssgment U, and hence,
matching segments found in different scales can be done by comparing their corresponding
covers. For any two segmentsU and V a the levels s, and sy, respectively, where s, > sy,

segments U and V are considered the same segment if G, = G,.

|dentifying the span of a segment in the smoothing scale axis reveds the evolution of the
segment.  There are two important properties for a segment evolution: the formation level and
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the smooth-out level. The formation level indicates the first gppearance of an irregularity
segment, while the smooth-out level indicates the disgppearance of the segment. More
precisdly, let the maximum sgmaleve spanning for asegment U with the cover Gy = [uy, U] be
i,i+1, ..., j. In other words, for the consecutive sgma levels ranging from i, i+1, ..., j, there
exigs an irregularity segment whose cover is [ug, U] in each level and there is no irregularity
segment with cover [ug, Uy] inthe sgmalevd i-1 and j+1. Then the formation leve of the
irregularity segment U isdefined asi and the smooth-out leve is defined as j+1. For example,
the indentation segment [B, C, D] emergesa s = 44 in Fg. 4.8a when dl nested smdler
irregularities have been smoothed out, and it endsat s = 102 when the convex curvature line D

closes off a the top with theline E.

4.3.7. Hierarchical structuresfor indentation/protrusion segments

The extended scae-gpace image not only illugtrates the evolution of the indentation/protrusion
segments, it aso helps organize segments into a hierarchical structure. Because of the causdlity
property of Gaussan smoothing [94, 104], segments are smoothed out in a'proper’ order: smal
ones disappear before larger ones. Now when some smaller segments are smoothed out, larger
segments may emerge a the same locations. The larger segments are considered as the 'globad’
segments to the smdler ‘locd’ ones. Hence, a hierarchica structure of indentation/protrusion
segments is formed.

Asillugrated by Fig. 4.2, adjacent indentation segments and protruson segments may
overlgp a a smoothing level. To avoid the complexity of overlgoping segments within a
hierarchica structure, we divide indentation segments and protrusion segments into two separate
hierarchies, which are congtructed by examining the inclusion property of the segment covers.
For a segment U with the cover G, = [uy, W] and the smooth-out leve sy and a ssgment V
with the cover G, = [v3, ;] and the smooth-out level s, segment U is alocd segment for the
globd segment V if sy < sy and Gyisinduded ingde G,. (SeeFig. 4.12.) Theincluson of G,
indde Gy, denoted by Gy I G, is expressed as:

u, 3 vyandu, £v, (4.12)
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The segments U and V form a hierarchica tree structure because a globa segment can nest one
or more local segments. For ingance, the indentation segments [B, C, D] and [D, M, N] are
local indentation segments for the globa segment [B1, C1, F|] shown in Fig. 48a (These
segments are aso shown in Fig. 43 a s = 48 and 102, respectively.3’) By andysing the
incluson property of dl indentation and protruson segments, two hierarchica structures are
obtained. One is for indentation segments and the other is for protruson segments. Each
hierarchical structure consists of aforest of tree structures, where the root of atree structureisa
globa segment and its corresponding local segments are in the leaves of the tree.

smoothing out level

segment W segment W
segment V
segment U
segment R
segment: S
0 w, Vq roW u, sg Vo Wy 1

path length variable t

Figure4.12. Hierarchica relationship between segments. Segments are abstracted by their
covers and are plotted at the smooth-out level, which is represented by the y-axis of
the plot. Segments U with covers [uy, U] is included indde the ssgment V whose
cover is vy, Vo]. Furthermore, ssgment R and S with covers [vy, r;] and [s, V4],
respectively, are dso included insde segment V. Note: A segment can wrap around

the beginning point of the parameterization process such as segment W, whose cover
isTw. ws1. wherews > ws.

37 Actually, the indentation segment [D, M, N] is best illustrated at s = 32 as it is almost smoothed
out at s = 48.
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Note that all smoothed borders are periodic. Specia care has to be taken when a
segment wraps around the beginning point of the parameterization process such as the
protruson segment [H, 1, J shownin Fig. 4.8aand in Fig. 4.3, s = 32. (See also segment W
inFig. 4.12)) Thehierarchica relation between segments need to be checked carefully.

To properly andyse the incluson property of asegment U with the cover G, = [uy, W)
and the smooth-out leve s, and a segment V with the cover G, = [v,, V] and the smooth-out
levd sy, where sy < sy, we have to consder 4 sub-cases depending on whether segment U

and/or segment V wrap around the beginning point of the parameterization process.

Sub-case 1: Both the ssgment U and V do not wrap around. Equation 4.12 can be
goplied directly for verifying the inclusion property of G, indde G,.

Sub-case 2: Both the segment U and V wrgp around the beginning point of the
parameterization process, i.e., U > U, and v1 > v,. The segment U can be divided in the sub-
segments [0, u. ] and [u,, 1] and the segment V can be divided into [0, v,] and [vy, 1]. The
incluson property of G, indde G, can be expressed as:

(u, £v,) and (u, 3 v,). (4.13)

Sub-case 3: Segment U does not wrap around, but segment V does, i.e., vi > v, The
segment V can be divided into [0, v,] and [v1, 1]. Theinclusion property of G, ingde G, can
be expressed as.

(u30andu, £v,) or (u,3v andu,£17). (4.14)

Sub-case 4: Segment U wraps around (i.e., u; > Uy), but segment V does not. Since
segment U spans both sides of the beginning point of the parameterization process and segment
V occupies only one side, segment U cannot be included inside segment V.

4.3.8. Flat irregularity segments

As locd segments smooth into globa segments and the border turns into an ova shape, the
overdl curvaure of the curve is reduced. Globd segments tend to be flatter than ther
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counterparts, loca segments. Without a retriction on the formation of a segment, sometimes a
flat ssgment, which is a dightly bent indentatior/protrusion segment, can be formed. This kind
of flat segment often occurs near the root postion of a tree structure in a segment hierarchy.
For example, when the indentation segment [B, C, D] in Fig. 4.3 issmoothed out at s = 102
and turnsinto alarger indentation segment [B1, C1, F|, the new globa segment [B1, C1, F] isa
flat segment with a hardly noticeable indentation in the middle of the segment. (The indentation
segments [B, C, D] and [B1, C1, F] are dso labelled in the extended scale-space image in Fig
4.8a) In order to remove the formation of such a'flat’ irregularity segment, the three curvature
extrema are checked a the formation level for every new segment U = [ty, tp, t3]. If the
absolute magnitude of the middle curvature extremum, t,, or the maximum absolute magnitude
of the first and the last curvature extrema, t;, and ts, are smdler than certain threshold and very
cose to zeo, the newly formed segment is consdered as an inggnificant ‘flat’

indentation/protruson segment. Mathematically, the criteriafor aflat segment can be written as.

|K(t)|l<e or ma{] K(t,) | |K(E)[} <e, (4.15)

where e is the threshold, which is st to 0.01. All flat segments are removed from further

computation.

In summary, by analyzing the extended scale-space image, we can track the evolution of
al irregularity segments for the entire smoothing process. These segments can span multiple
smoothing levels and they can be organized separately in two hierarchical gructures.
Furthermore, the smooth-out level for each segment is an important piece of information that
can be used in the computation of the border irregularity.

4.4. Calculating irregularity indices

Each detected indentation/protrusion segment has an irregularity measure, which is formed by
observing the smoothing effect on the area of an indentation or a protruson segment. When an
indentation (or a protrusion) is smoothed-out, the indentation (or protrusion) is partidly filled (or
removed). For example, Fig. 4.13a shows a leson border and the smoothed contour at the
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smooth-out level for the largest indentation at the bottom of the figure. The shaded area
indicates the filling done by the smoothing process. Likewise, Fig. 4.13b shows the same lesion
border and the smoothed border for the most prominent protrusion at the bottom of the border.
The shaded area represents the area removed by the smoothing process. The size of the filled

(or removed) area, termed irregularity area, is used to determine the irregularity index.

@

Figure 4.13. Smoothing effect on indentation and protrusion. (&) A lesion border is shown
by the solid line, while the smoothed curve corresponding to the smooth-out o leve
for the largest indentation is shown by the dashed line. The shaded area denotes the
irregularity area filled by the smoothing process. (b) The smoothed curve
corresponding to the smooth-out o level for the largest protrusion is shown by the
dashed line. The irregularity area removed by the smoothing process is marked by
the shaded area.

The index for an indentatioryprotrusion segment must be normalized so that it can be
used for comparison among irregularities in different leson borders. Normdization is achieved
by dividing the irregularity area by the area of smooth-out contour, which is the area of the
smoothed border at the smooth-out ¢ level. For example, the dashed line in Fig. 4.13a and
4.13b denote the smooth-out contour for the largest indentation and protruson. The areas
enclosed by the dashed lines are the normdization factors for the corresponding irregularity
segments.  Therefore, the Irregularity Index (I1) of an indentation/protruson segment U,
denoted by 1, isdefined as

5y - 1009, (4.16)
R,
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where Dy is the irregularity areafor ssgment U and Ry is the area enclosed by the contour of
the smooth-out level. Because Ry is proportiond to the origind leson sze, Iy can be
consdered as the ratio of the irregularity area and the leson sze. As the ratio increases, the

irregularity segment gppears more prominent and, hence, the Il increases.

The hierarchicd gructures described in Section 4.3.7 organize dl indentation and
protruson segments of the entire smoothing process into two forests of tree structures. In
particular, the set of root segments in the tree structures of both hierarchies represents dl global
irregular segments, which fully describe the complexity of the leson border. Let's assume the
root segments are Ui, Uy, ..., U,. Ther corresponding II's, denoted by 14, 15, ..., Iy
respectively, provide a rich set of descriptions of the border. From this set of indices, many
important parameters about a leson border can be inferred.  In particular, two important
descriptors, the Most Significant Irregularity Index (MSII) and the Overdl Irregularity Index
(OIl), can be derived. The MSII of alesion border L ranks dl individua indices and indicates
the largest indentati on/protrusion segment of the border:

Ml =max{ I,1,,---,1}. (4.17)
The OIl represents the entire leson shape, and is caculated by summing up dl individua

indices. Thus

on=31, (4.18)

=1

Fig. 4.14 depicts ten largest indentation/protruson segments for the leson border
shown in Fig. 41. The ssgments are sorted by therr corresponding 11. The top left-hand
subfigure depicts the largest irregularity segment, a protrusion, with the MSII = 4.2, while the
next subfigure illugrates the largest indentation segment with an index of 24. Note tha the
indentation segment overlaps partiadly with the largest protrusion segment of the border. The
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third largest irregularity segment is another protruson with an index of 1.9. The Oll for this
lesion border is 15.1.

424203 24171 1.8549 1.8152 1.5512
0.94416 0.57523 0.34093 023445 0.18572

o (P60 (0 L

Figure 4.14. Indentation/protruson segments of Fig. 41. Ten largest globd indentation
and protruson segments for leson border shown in Fig. 4.1 are plotted. The
segments are sorted by their irregularity index, which is shown at the top of each
subfigure.

4.5. Sengitivity analysisof irregularity indices

The new area-based method overcomes the non-linearity and the long-and-narrow indentation
problem with the earlier SR method reported in Section 4.3.3. The MSII and the Oll for the
phantom shown in Fig. 4.7a (also shown in Fig. 4.153) are 0.3 and 0.4, respectively.38 They
differ sgnificantly from the MSlI (7.4) and the Oll (7.5) for the phantom in Fig. 4.7b (dso
shown in Fig. 4.15b). (The comparison of the SR, OIl and MSlI for these two phantoms are
summarized in Table 4.1.) The smdl MSlI vadue for Fig. 4.15a reflects the smal area of the
indentation and implies the gability of the new method. Smadl dterations (noise) are detected as

38 The small texture irregularity, 0.1, is due to the discrete representation of a continuous curve,

80



locd irregular segments with smal irregularity areas, which do not sgnificantly dter the find

andyssreaults.

Table4.1. Comparison of the SR, MSII and Ol for two phantoms .

Phantom shown in Fig. 4.15a Phantom shown in Fiqg. 4.15b
SR 0.96 0.97
M S| 0.3 7.4
Oll 0.4 7.5
0.33856 7.3863
@ (b)

Figure 4.15. The mog sgnificant indentations for two phantoms shown in Fig. 4.7. (a) and
(b) The most sgnificant indentation is highlighted and the associated MSlI is shown
at the top of each phantom.

4.6. The advantages of irregularity indices

As discussed in Section 2.1, many measures have been used to estimate the border irregularity
of ameanocytic leson. However, each of these methods has some drawbacks. The CI, form
factor, FD, and SFD are insengtive to structure indentations and protrusions. The convex hull
method falls to account for protruson, one of the important dinica features for the lesion.
Many methods are sendtive to noise aong the border. For example, the ClI amplifies the noise

by a square term. The radid distance distribution method and the circularity factor may be
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ungtable due to their dependence of the centroid location, which is very sengtive to noise.
Furthermore, dl these methods estimate the border shape using a single value.  Lesions with
completdy different shapes may associate with the same vaue.

Our irregularity index method addresses the above problems by detecting al globa and
local irregularity segments aong the border. For each irregular segment, an area-based index is
computed. Then an overdl irregularity index and the most sSgnificant irregularity index are
derived from the set of indices. This approach has many advantages.

1. Our method detects both indentation and protrusion segments, which are important clinica
features for melanocytic lesons.

2. Our method is sengdtive to dructure irregularities because the multi-scae method actualy
locate dl loca and globa segments in a rugged border and organize the segments into
hierarchical structures.

3. Our method is stable.  The arearbased agpproach implies the method is stable for small
changes (noise) aong the border.

4. Our method is linear. Defined as the sum of dl the irregularity indices of the globa
irregularity segments, the Ol is proportiond to the totd irregularity areas of the lesion.

Our method returns a set of irregularity segments with corresponding indices, which fully
describe the complexity of the lesion shgpe. This information set can be used to derive many
parameters for the leson. In particular, the overdl irregularity index and the most significant

irregularity index are two important derived indices.
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Chapter 5
A User Study

To verify the effectiveness of the two new measures (the MSII and OlIl), a user sudy has been
carried out to compare the new measures as well as other shape descriptors, namely the Cl, the
FD and the SFD, with 20 dermatologists clinica evauations3® The Cl was sdlected because it
is the most common shape descriptor based on single-scae computation, while the FD and the
SFD represent commonly used multi-scale methods.  Forty lesion borders sdlected from the
B.C. Cancer Agency pigmented lesion image database were used in the study. These tested

measurements were analysed datigticaly.

5.1. Method

5.1.1 Gold standard

One of the condderations for designing the user study was the gold standard selection for the
vaidation process. Should it be the clinicad evaluation or histology status? Because border
irregularity is a dinicd diagnoss feature defined by dermaologists, making dermatologist's
clinicd evduation as the gold standard was the most appropriate choice. In other words, when
dermatologists had concerns on an irregular border, the new measures should reflect the smilar
concerns. A computer program encoding such knowledge could be used by other non-
dermatologists such as hedth practitioners or the generd public. Also it could be used as an
objective dternative for dermatologists.

5.1.2. Assembling the data

Forty pigmented lesions were selected from the skin image database. In order to have a good

representation of lesons in the entire range of the Ol (one of the new measures to be verified)

39 A user study with 3 dermatologists has been reported earlier [89].
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and to void possible biases, the following sdection scheme was employed. Many melanocytic
leson images were firg processed by DullRazor and the automatic segmentation programs
described in Section 3.2. 108 of these melanocytic lesions with good segmentation results were
retained in the sdlection process. The Oll of these lesions were computed, and the sorted Oll
vaues are plotted in Fig. 5.1. All Oll vaues increased smoothly, except the 4 outliers (marked
as O) in the right-hand side of Fig. 5.1. These 4 outliers were included in the find sdlection for
the user study data set.  For the rest of the 104 lesions, the 10 lesion borders with the lowest
Oll values (denoted as V), the 10 lesion borders with the highest Oll values (denoted as A)
and the middle 16 lesions (denoted as +) were dso included. In total, we chose 40 leson
borders, spanning the entire range of the Oll values. These leson borders are depicted in Fig.
5.2.
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Figure5.1. The overdl irregularity index (Oll) of 108 lesons. The 40 lesions marked as v,
+, A and O were sdlected for the user study.



»
O

3
®

(D

border 1

O
-
O
-
<

(o]

border

-
e
(L

-
@

[EEN
[EEN

border

-

O
%
Q

&N

border 16

&

O
-

O
-

border 21

0
O
B
O
-

border 26

0

3
O

<
C

border 31

-y
(O

border 36

border 2

border 7

border 12

border 17

border 22

border 27

border 32

border 37

border 3

border 8

border 13

border 18

border 23

border 28

border 33

¢

o
-

border 38

border 4

border 9

border 14

border 19

border 24

border 29

border 34

border 39

Figure 5.2. Forty lesion borders selected for the user study.
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5.1.3. The compactness index implementation

The CI was implemented according to Equation 2.1. The program was tested by rea-vaued
circles of various sizes and the resultant values were 1.00, identical to the theoretical value.
However, when the circle was converted to a discrete circle with a radius 150-pixel by
rounding the x and y coordinates to the nearest integer, the derived Cl vaue became 1.11 (11%

error) because the discrete contour amplified the error.

5.1.4. Thefractal dimension implementation

The FD of aleson border L, denoted by D in Equation 2.3, was esimated using the box
counting method [28, 108]. The border L was represented by a binary mask where the border
was specified by 1 and the background was specified by 0. To ensure there were no partia
blocks, the background was extended to the nearest integer with power of 2. VariousSzesof r
X r boxes, where r was power of 2, were placed over the lesion and the number of boxes
containing the border, N(r), was counted. Applying r and N(r) to Equation 2.3, the value of D
could be estimated. Rearranging the terms and expanding Equation 2.3 by taking the log, the
equation could be expressed as.

1 ,
|09W= D" log(r)- log(1), (5.2)

where | was a congtant. Thus, D was the dope of the linear equation, which could be
computed by least square fitting of log(1/N(r)) vs. log(r). Fig. 5.3 gives a sample of the log-log
plot using the lesion border of Fig. 4.1.
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log-log plot

log(1/N)

_8 1 1 1 1 1
0 1 2 3 4 5 6
log(r)

Figure 53. An example of the log-log plot for fractd dimensons. This plot was
congructed using the leson border shown in Fig. 41 The FD is the dope of the
solid line, estimated by al the datapoints. The SFD is the dope of the dashed line (-
-), esimated by the fifth to the ninth data points. The FD for this lesion border is
1.12, and the SFD is 1.21.

When a discrete circle with a radius of 150 pixels (the x and y coordinates were
rounded to the nearest integers) was used to test the FD implemented, the resultant FD was
0.99. (The error was 1% as the theoretica vaue of acircleis1.) Further tests were done by
using the well-know Koch snowflake (see Fig. 5.48) and Koch square flake (see Fig. 5.59)
[117]. The Koch snowflake was congructed using an equilatera triangle. Each sde of the
triangle was transformed recursively by dividing the line segment into 3 equa parts and replacing
the middle part with an equilatera triangle without a base. Fig. 5.4b illudrates the construction
of the Koch snowflake. The result of the transformation has atheoreticd FD vaue of 1og4/log3
@1.26. The estimated FD from the implementation was 1.29 (2.38% error). The Koch square
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flake was congtructed by 4 equd line segments placed as a square.  Each segment was
transformed recursively by dividing the segment into 4 equa parts and replacing the middle two
parts by two squares with no bases at the reverse orientations as illustrated in Fig. 5.5b. The
theoretical FD for Koch square flake is 1.5 and the computed FD was 1.50 (0% error).

step 1

step 2

——

step 3

W

@ (b)

Figure 5.4. Koch snowflake and its construction procedure. (@) Koch snowflake. (b) The
congtruction procedure: at each step, the middle section of aline segment is replaced
by an equilaterd trianale with no base.
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step 1

step 2

step 3

@ ()

Figure 5.5. Koch square flake and its construction procedure. () Koch square flake. (b)
The congtruction procedure: a each step, the middle two sections of a line segment
are replaced by two square with no bases at the reverse directions.

Asmentioned in Section 2.1, Claridge et al. [31] recognized that there were two types
of fractal dimensons, structure and texture fractal dimension, associated with a leson border.
Furthermore, the SFD had a higher corrdation with melanomas. When the log-log plots for the
fractd dimengons were examined (see Fig. 5.3 as an example for the log-log plot), evidence to
support the idea of two fractals was found. The breakpoint for these two fractals was estimated
to be located between the fourth and fifth data points in the log-log plot. Thus, the data points
were divided at the breakpoint and the upper haf of data, from the fifth data point, was used to
compute the SFD of the lesion border. The SFD's of a discrete circle with aradius of 150 (the

x and y coordinates were rounded to the nearest integers), Koch snowflake and Koch square
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flake were 1.05 (5% error), 1.29 (2.38% error) and 1.50 (0% error), respectively. The errors
for both the FD and SFD were considered smdl enough to be acceptable.

5.1.5. Theirregularity index implementation

The methodologica development described in Chapter 4 has been implemented in Matlab,
running on a Pentium 233MHz computer. The smoothing s level was incremented by unit
geps, which meant the computation was extensve. The execution time ranged from severd
minutes to an hour, depending on the border length.40 For each tested lesion border, the MSl|
and OIl were computed. When a discrete circle of radius 150 pixels (the x and y coordinates
were rounded to the nearest integers) was input to the program, the Oll and MSII were 0.06
(absolute error = 0.06) and 0.00 (absolute error = 0.00), respectively. The theoretical values
should be zero for both indices, but the computationd error was insgnificant.41

5.1.6. Clinical evaluation

Twenty experienced dermatologists were asked to visualy evauate the 40 tested lesion borders
shown in Fig. 5.2 using a scoring scade of 1 to 4. A user study package was prepared by
plotting the lesion borders into 4 pages, 10 borders per page. Because the size of aleson is
itsdf a marker of risks, dl lesion szes were standardized to an equa area S0 that the evauation
was based solely on the border features. To avoid dl leson borders with high (or low) Oll
vaues clugtering into one page, the following placement scheme was employed. The four lesion
borders associated with the highest Oll values (the four outliers marked as O in Fig. 5.1) were
placed separately, onein apage. The rest of the 36 lesion borders were divided into 4 groups
according to their Oll values and each group was randomized and distributed evenly in the four

pages. Furthermore, within a page, the placement of a leson border was randomized. The

40 The computation time can be improved substantially by using a faster computer language such as
C, skipping some smoothing s levels especially at the coarse scales, and, of course, running the
program on afaster computer.

41 The percentage of error cannot be computed as the based value (theoretical value) is 0.
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dermatol ogists were informed only that there was at least one border in the scale category 1 and
at least one border in the scde category 4 in each page. However, the number of lesions in
each of the 4 scale categories in a page and in the entire study were not mentioned. The
dermatologists could fredy assgn a lesion border into any scae category and any number of
bordersinto a category. A user consent form and an information sheet were dso included in the
package. (See Appendix A for the entire user sudy package) The information sheet
described the study and provided evauation indructions. The dermatologists were asked to
read over the ingtructions and complete the evauation. Other than the study package, there
was no further communication with the dermatologists. The study design and materid were
approved by the Univerdity Ethics Review Committee of Smon Fraser University (SFU).

The evduation was done on a scade of 1t0 4. The smdlest scde 1 implied the most
benign looking border contour and the highest scae 4 implied the most severe case with the
highest probability of being a melanoma. This was a double-blinded test because dl program
development and cdculations were done before the clinical evaduation and the dermatologists
did not know the results of the tested measurements prior to the evaluation. The computed
measurements were then compared daigticaly againgt the average of the 20 dermatologists

evauation, which was consdered as the gold standard.

5.1.7. Statistical methods

The user study results were tested by gatistical methods using SPSS [109]. Firgt the Kendall
W, the coefficient of concordance, was computed for the dermatologists eva uation to ensure a
reasonable agreement among the dermatologists so that the gold standard could be formed.
The null hypothesis of the test, often denoted as Hy, is tha there was no agreement among the
ratings of k judges (20 dermatologists) on n objects (40 lesion borders). In such a Stuation,
after the ratings for each judge is ranked from 1 to n, the sum of each object rankings among al
the judges would be approximately equa to the sum of average ranking, k(n+1)/2. The
difference between the sum of an object ranking among dl judges and the sum of average
ranking exhibits the amount of deviation from Ho. Kenddl W is defined by the sum of the
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square of such a difference for al objects with the appropriate normdization. The vaue of W
ranges from 0 to 1, where O implies there is no agreement among the judges and 1 implies a
perfect agreement. The significance of W is indicated by a probability p, where alarge p (p >

0.05) impliesthat Hy cannot be rejected. However, asmal p, where p < 0.05, rgects the null

hypothesis and accepts the dternative hypothess, often cdled H;, that there is an agreement

among the judges rating [32, 109, 135]. The gold standard should be formed by averaging the
clinica evauation for each tested lesion only with a good agreement among the dermatologists
(with alarge Wand asmdl p vaue).

Then the Spearman’'s rank correlation coefficient was determined for each pair of
measurements, the average clinica evauation, Cl, FD, SFD, Oll and MSlI, using SPSS [109].
The Spearman coefficient is the well-known Pearson correlation based on the rank of the
measurements.  Its value ranges from -1 to +1, where -1 (+1) implies a perfect negative
(pogitive) correlation between the rank of two measurements, and O implies there is no linear

correlation between the rank of two measurements.

Finaly, the relaionship between the average clinicd evaduation and the CI, FD, SFD,
Oll and MSII was tested out using multiple linear regression analysis under SPSS [109]. The
average clinical evaluation was set to be the dependent variable Y of the linear regresson modd
and dl tested measurements (Cl, FD, SFD, Oll and MSII) were the possible independent
variables, which were sdected in the stepwise fashion. The tested measurement that has the
best linear relaionship with Y was entered into the moddl as an independent variable. Then the
linear relationship between Y and al dependent variables in the mode were examined to ensure
their linear relationships were not atered due to the new entry. Any independent variable that
did not demondtrate a linear relationship any longer was removed. The procedure was repeated
until there were no more entries or removals. The final independent varigbles in the modd were

the best predictors of Y, the average clinicd evduation.
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5.2. Results

The user study results are presented in this section and the detalls of the results are discussed in
the next section. The clinicd evauation results of 20 dermatologists are reported in columns
"L1" to "L20" in Table 51. The coefficient of concordance, Kendal W, for dl 20 clinica
evaudions was then determined as W = 0.77 (p = 0.000). The average of the clinicdl
evaduationsis liged in column "AvgCL" of Table 5.2. The tested measurements (Cl, FD, SFD,
Oll, and MSII) were computed and presented in Table 5.2. The meanomas (based on
pathologicd assessments) are indicated in column "Pah” of Table 5.2. The mogt sgnificant
indentation/protrusion segment for each tested border is plotted in Fig. 5.6. The Spearman
coefficients, shown in Table 5.3, were caculated for each pair of the average clinica evauation
and the tested measurement. Among dl tested measurements, the OIl achieved the highest
correlation coefficient (0.88) with the average dlinicd evauation. To further expose the
relationship between the average clinical evauation and the tested measurements, the tested
messures are plotted againgt the average clinicd evauation separately in Fg. 5.7. Findly, the
multiple linear regression andysis result is presented in Table 5.4. After the stepwise regression
andysds, only one independent variable Oll was left in the model.

5.3. Discussion

5.3.1. Clinical evaluation and gold standard

Clinica evauation of border irregularity is a difficult task for dermatologists as they are trained
to diagnose melanocytic lesions using not only border shapes, but dso other features including
leson colour and size. Even experienced dermatologists have difficulty when interpreting the
lesion border as the sole feature. Claridge et al. [32] reported a low agreement (coefficient of
concordance W = 0.47) among 20 clinicians, when they were asked to sort 20 lesion borders
contours in the order of increasing border irregularity. Such a low agreement cast doubt on a

possible valid gold standard. Therefore, forming the gold standard becomes an issue.
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Table 5.1. Clinicd evaduation results of the leson borders shown in Fg. 5.2
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Table5.2. Average dinicd evauation and tested measurements for leson borders shown in
Fig. 5.2. The4 meanomas, based on pathologica assessments, are indicated in column *Path”.

Border | AvgCL Cl FD SFD| Oll | MSII Path
1 16| 344 1.18 1.35 5.7 11 -

2 19| 375 1.12 122 55 0.6 -

3 29| 230 1.08 1.20 8.7 14 -

4 39| 34 1.12 121 171 3.2| mdanoma
5 11| 1.69 1.10 124 2.8 0.4 -

6 16| 1.90 1.09 1.26 35 0.4| mdanoma
7 32| 372 1.15 1.24 54 11 -

8 12| 3.07 1.10 112 34 0.2 -

9 23| 213 1.08 122 5.7 1.0 -
10 3.6 390 1.13 1.25 8.2 2.2 -
11 18| 232 1.08 112 51 0.7 -
12 14| 205 1.08 1.18 5.2 1.3 -
13 1.7 319 1.13 122 5.0 0.7 -
14 26| 4.9 1.18 1.28 9.4 14 -
15 1.3| 149 111 1.40 34 0.8 -
16 15| 226 111 1.26 5.7 1.7 -
17 1.2| 3.02 1.18 1.35 33 0.3 -
18 3.6 450 1.13 1.22 8.4 15 -
19 39| 6.18 1.18 125( 108 3.6 -
20 33| 281 1.12 1.23 9.2 2.8 -
21 34| 422 1.13 1.15 8.9 15 -
22 19| 193 1.09 1.35 5.7 13 -
23 26| 191 1.11 1.59 9.0 2.2 -
24 22| 349 111 1.18 5.1 0.5 -
25 20| 352 1.16 1.30 5.3 0.6 -
26 1.7 391 1.12 1.18 5.7 0.5 -
27 12| 242 1.09 115 3.0 0.4 -
28 40| 343 1.12 130 22.7 7.2 | mdanoma
29 11| 277 1.08 1.10 35 0.3 -
30 18| 343 1.16 1.26 51 0.7 -
31 15| 263 1.09 1.18 34 0.6 -
32 23| 175 1.06 1.23 5.6 1.3| mdanoma
33 24| 205 1.08 121 8.4 2.4 -
34 29| 312 1.14 1.24 8.3 3.0 -
35 16| 260 111 118 55 0.5 -
36 16| 239 1.17 1.45 54 0.9 -
37 11| 253 1.15 1.32 35 0.6 -
38 40| 539 112 124| 189 41 -
39 26| 268 1.14 1.30 8.3 11 -
40 1.3| 261 1.15 1.29 3.1 0.5 -
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Figure 5.6. The mogt significant indentation/protruson segments. The tested lesion borders
are presented in Fig. 5.2. Their corresponding MSlI'sare listed in Table 5.2.
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Table 5.3. Spearman coefficients for al test data

Average Cl FD SFD oIl
clinical
evaluation
Cl 0.50
FD 0.21 0.60
SFD 0.03 -0.13 0.58
Oll 0.88 0.38 0.17 | 0.10
MSII 0.82 0.23 0.18 | 0.22 | 0.88

(a) Compactness Index

(b) Fractal Dimension (c) Structure Fractal Dimension
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Figure5.7. Plotting the tested measurements vs. dlinica evaduation. The CI, FD, SFD, Oll,
MSII are plotted (in the x-axis) againg the average clinica evaduation index (in the y-
axis) in subfigures (a) to (€) separatdly.
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Table 5.4. Multiple linear regresson andyssreaults. Details of the andyssresults are
discussed in Section 5.3.4.

Dependent variable : average clinical evauation

N : 36

Independent variable | Estimate (SE) p Excluded variables p

oll 0.315 (0.032) 0.000 MSII 0.779
Cl 0.066
FD 0.973
SFD 0.171

In order to achieve areliable gold standard for our user study, we asked dermatologists
to classfy aleson border outline into a small score scale, ranging from 1 to 4. Other than the
most benign looking contour group (score vaue 1) and the most maignant looking contour
group (score vaue 4), there were only two intermediate groups. Dermatologists could
confidently assign a score vaue to a tested lesion border based on their own subjective cut
points between groups. Judging from the clinical evauation resultsin Table 5.1, this score scae
worked wdll and thetwenty —dermatol ogists achieved a good agreement. Among the 40 lesion
borders, 36 of them had a mgjority agreement, i.e. agreed by at least 11 dermatologists. More
importantly, 39 leson borders had a score difference of a most 2. This implied that the
dermatologists cut points were close to each other. The standard deviation for the clinical
evauation of the 40 lesion borders ranged from 0.00 to 0.73, with the average equaed to 0.50.
Furthermore, the high Kenddl W datisicc W = 0.77 (p = 0.000), confirmed the good
agreement among the dlinica evauaions. With the assurance of a good agreement, the gold
standard was set up by averaging the clinical evauations for each leson border.

5.3.2. Relationship between automatic methods and the average
clinical evaluations
In Fg. 5.7, the plots of the tested measurements againgt the average clinica evauation showed

that no tested measurement achieved a perfect corrdation with the gold standard. However,
the OIl and the MSII had a better linear reationship with the average clinica evauation than the
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other three tested measurements. Similarly, from the Spearman coefficients listed in Table 5.3,
the Oll had the highest correlation coefficient, 0.88, with the clinica evauation among al tested

measurements. The closest second wasthe MSl1, 0.82.

The Cl, FD, and SFD achieved much lower correlation coefficients, 0.50, 0.21, and
0.03, respectively, with the clinical evauation. These three measures had problems in detecting
large dructure indentations and protrusons. For example, they failed to properly measure the
prominent structure irregularities in tested border 28 of Fig. 5.2, where from Table 5.2, the CI
=343, FD = 1.12, SFD = 1.30. These three tested measurements were very close in vaue to
those for border 40 (Cl = 2.61, FD = 1.15, SFD = 1.29), which had no structure irregularity,
but only texture irregularities. Furthermore, it was surprising to discover that the SFD did not
perform better than the FD. The SFD's of lesion border 5 (1.24), border 6 (1.26), border 15
(1.40), border 17 (1.35), border 37 (1.32) and border 40 (1.29) were too high for the benign
looking borders in the test set.  The problem was caused by applying a wrong model to a
border that had only smdl texture variations. This type of border should have only one overdl
fractd dimenson. When the data points of the log-log plot were separated into two groups,
there were too few points to accurately estimate the SFD. Removing these six lesion borders,

the Spearman'’s coefficient for the SFD and the average clinica evauation improved to 0.30.

5.3.3. A single point estimation vs. a measurement set

The CI and the FD are well-known shape descriptors for the overal border roughness. Both
methods compute a single point estimation without actudly identifying the indentations and
protrusions on the lesion border. A higher vaue implies a rougher border with the existence of
indentations and protrusons. However, a Sngle point estimation can be easly skewed if the
variance of the border ruggedness is large. For example, alesion with a large protruson on a
relatively smooth border, such as leson border 20, might have the single point estimation
dampened by the smoothed portion. The low CI (2.81) and FD (1.12) values were mainly
caused by the smooth border that had few texture irregularities.
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On the other hand, the new irregularity index method identifies dl indentations and
protrusions on the lesion border. Because each irregularity is carefully analyzed independently,
this method not only returns a more accurate overdl measurement, which represents the
roughness for the entire border, but also gives a sat of measurements for dl globd irregularities
(see Fg. 4.14) that fully describes the complexity of the leson border. In particular, combining
the Oll and the MSII may deduce many interesting properties of the leson borders. For
example, the Oll (5.5) and the MSlI (0.5) of lesion border 35 indicated that it had no structure
irregularity, but a lot of texture irregularities. A Smilar Stuation holds for leson border 2
(Ql1=5.5, MSI1=0.6). However, leson border 32 with the OIl = 5.6 and the MSII = 1.3
implied that the lesion border had a larger irregularity, but less texture irregularities than leson
borders 35 and 2. On the other hand, the OIl = 22.7 and the MSII = 7.2 for lesion border 28
suggested the border had some mgjor indentations and protrusions. Furthermore, the rich set of
measurements for the global irregularities can be used to infer other border properties such as

enumerating the number of large or medium irregularities.

5.3.4. Linear regression model

5.3.4.1. Single group analysis

To determine which tested measurement or a linear combination of tested measurements best
predicted the average clinicad evauations, a linear regresson mode for the average clinica
evauations was computed. However, when dl leson borders (N = 40) were used in the
andysis, the assumptions for linear regresson were violated. For example, plots of the Oll and
the MSII againgt clinical evauation in Fig 5.7d and 5.7e clearly showed that there was no linear
relaionship between the average clinica evaduation and the Oll and the MSIl. The problem
was caused by limiting the evaluaion scores to 4. Limiting the evauation scores helped the
dermatologists properly evauate the leson border; however, the sde effect was an atificid
capping on the highly irregular borders to the score of 4, which might not accurately reflect the
degree of theirregularity. For example, the top four datapointsin Fig. 5.7d and Fig. 5.7e were
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leson borders 4, 19, 28 and 38, which had highly irregular contours. If there were no capping
in the clinicad evauation, their actua evauation scores might exceed 4. The capping produced a
flatting effect on Fig. 5.7d and Fig. 5.7e. In order to analyse the data set properly, the leson
borders should be divided into two groups. The first group consisted of the leson borders 4,
19, 28 and 38 and the second group consisted of the rest of 36 lesion borders.

5.3.4.2. Subgroup analysis

It is difficult to generate any datidticaly sgnificant results with only 4 data points.  Therefore,
ingeed of running a regresson modd, the visud ingpection method was used with the first group
of 4 leson borders. Fig. 5.7 was re-plotted in Fig. 5.8 with the first data group denoted by O.
All these data points were at the top of each subfigure because their average clinica evaduations
were closeto 4. For the subfigure of Cl, Fig. 5.8a, there was no obvious relationship between
the points marked as O's and the average clinica evauations because the range of the 4 data
points were large. Even though the range of the 4 data points for the FD#2 and the SFD were
relaively small, these data points were located in the middle of the entire FD and SFD ranges
with respect to the entire data set. On the other hand, the OIl and the MSII showed a clear
relaionship as these four data points were the highest Oll and MSII values among dl leson

borders.

The second data group (N = 36) was analysed by a multiple linear regresson anadysis.
One step was required to complete the analysis and the salected independent variable was Oll.
The parameters for Oll and the excluded variables are reported in Table 5.4. The regresson
lineis plotted in Fig. 5.9. A second attempt has been made to fit the linear regresson mode
after dso excluding the lesion borders 5, 6, 15, 17, 37, and 40, where the SFD method had
problems in generating proper indices. However, no sgnificant changes could be identified in

the second regression results. The Oll was sdlected again as the sole independent variable with

42 Two of the data points for FD were almost overlapped; therefore, only three O's were clearly
recognized.
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Figure5.8. Thereplot of Fig. 5.7. Thetop 4 data points, the first data group in the linear
regresson analyss, is plotted as O.  These points had the highest average clinicd
evaduations. For thefractd dimension subfigure (b), two of the points (marked as O)
are amost overlapped; therefore, only three points are clearly shown.

the parameter estimated as 0.316 (p = 0.000). According to the linear regression analyss, the

Oll was the best predictor for the average clinica evauations.

Fig. 5.9 ds0 reveds an interesting observation among the three groups of data points.

The groups marked with N, +, and D correspond to the low, middie and high OIl values

respectively.

(See Section 5.1.2 for the data selection scheme) The Oll has a better

prediction power when its value is smdl, i.e. the deviation from the data point to the regresson

line increases as the Oll increases.  This phenomenon may be caused by the dgorithm design

for the OIl, which accumulates the individud irregularity index for every indentation and
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average clinical evaluation

0 1 2 3 4 5 6 7 8 9 10
Overall irregularity index

Figure5.9. Predicting average dlinicd evaduaion by Oll. The regresson line from the first
regression model was plotted (N = 36). The data points marked by N were a group
of leson borders with the smdl Oll vaues. The data points marked by + were &
group of leson borders with the middle Oll vaues. The data points marked by D
were agroup of leson borderswith large Oll values. See Section 5.1.2 for the data
selection scheme.

protruson. Therefore the error of the Oll is proportiona to the number of irregularities aong

the border. Highly irregular borders tend to have alarger error than smooth borders.

5.3.5. Overall irregularity index and histology

Among dl tested measurements, the OIl achieved the best corrdation with our gold standard,
the average dinicd evduation. It would be interesting to compare the Oll with histologica
results of the lesons. Unfortunately, because our data collection period for the 40 lesions
gpanned four and a half years (from February 1994 to November 1998) and the pathological
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asessments were performed in 5 inditutions (Vancouver Genera Hospitd, Royd Columbia
Hospitd, . Paul's Hospitd, Lions Gate Hospitd, and . Vincent's Hospitd), forming a gold
histologicd standard for various types of nevi and melanoma was not feasible43 Therefore, we
grouped the lesons into only two definite diagnogtic groups. meanoma and non-melanoma
groups. Within our 40 tested lesions, there were 4 melanomas (corresponding to lesion borders
4, 6, 28 and 32 as shown in Table 5.2) and 36 non-melanomas based on pathological

assessments.

To assess the discriminatory power of the Oll, we had to classfy the lesons into
melanoma and non-melanoma groups based on the Oll values. The selection of a classfication
method became criticd. A smple objective classfication method assumes dl melanomas would
have mogt irregular border and al non-melanomas would have most regular border [31].
Therefore, the 4 lesons with the highest Ol values were classfied as melanomas and al other
lesons were classfied as non-melanomas. With this classification method for melanomeas, there
were 2 true postives, 2 fase postives, 34 true negatives and 2 fdse negatives. The sengtivity

of detecting melanomeas [54] was determined as.

o t iti ,
sengitivity = .r.ue POSTTIVE —" 100% = 50%, (5.2)
true positive+ false negative

and specificity [54] was computed as.

truenegative

specificity = - —
truenegative+ false positive

* 100% = 94%. (5.3)

43 We had difficulty in quantifying the likelihood of melanoma because the pathological reports
contained subjective descriptions (e.g. melanocytic hyperplasia, mild/moderate architectural atypia,
and cytologic abnormality). Furthermore, the reports were done by many pathologists. Ideally, we
should have at least two pathologists reviewing all specimens at a single session. The pathol ogists
should agree on the final assessment using a standard protocol and quantify the assessments.
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The above discriminatory anadyss* suggested that border shape information had
excdlent power to screen out non-melanomas, but moderate power to detect melanomas. The
andysis result confirmed our knowledge that melanomas cannot be diagnosed properly by a
sngle clinicd festure. In particular, some meanomas may have regular borders and some non-
melanomas may have irregular borders. Based on a sole clinical feature, there is a high
probability of misclassfication. To properly diagnose melanomas, we have to incorporate Oll
with other clinica features (discussed in Sect. 1.3) and subsurface features (discussed in Sect.

1.4.1) in aclassfier.

In order to verify the actud performance of the Oll, we aso need to compare the
average clinical evaudions and the higtologica results. Once agan, the smple objective
classfication method was applied. The average clinica evaduations were ranked and the 4
lesons with the highest scores were classfied as melanomas and the rest as non-melanomeas.
With this classfication method, we found that the 40 lesions were classified the same asthe Oll
classfication method, i.e., the same 4 lesions were classfied as meanomas and the same 36
lesons were classified as non-meanomas. The dermatologists mis-classfied the same two
pathologica melanomas as non-melanomeas (fase negative) and the same two pathologica non-
melanomas as melanomas (false postive). Therefore, we confirmed that our agorithm indeed

captured the knowledge of expert dermatol ogists on analysing border shape.

5.3.6. Summary

In spite of its good predictive power, there is a disadvantage for the Oll. The dgorithm for the
Oll and the MSII is more complicated than for the CI, FD and SFD. The Oll and the MSII
are computationdly expensve even though the computation time can be reduced by
optimization and by usng a faster computer language and computer hardware. On the other
hand, the CI, the most popular method, has the smplest computation complexity. The ClI

44 The specificity could be improved to 97% by classifying the 3 lesions with the highest Ol scores
as melanomas.
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achieved a moderate Spearmen coefficient (0.50) with the average clinicd evaduations. The FD
is based on a sound mathematica theory, but it is less sengtive for ructurd irregularities. The
SFD is supposed to be able to detect structure features by anaysing the coarse scae data of
the log-log plot, but the difficulty of properly determining the cutoff point between the fine and

coarse scale datafor all lesion borders limits the SFD's performance.

The user study reveals many advantages of the irregularity index method. The Oll and
the MSII corrdlate well with experienced dermatologists evauations. The Spearman's
coefficients are 0.88 and 0.83 for the Oll and the MSlI, respectively. Furthermore, the Oll is
the best predictor among al tested measures. Because the Ol is defined as the sum of a set of
irregularity indices for al globa irregularity segments, the Oll avoids the skewing (averaging)
effects of many dngle point esimators. The single point estimation is dampened by the
smoothed portion of the leson border. Another advantage of the new method is that the
dgorithm pinpoints and highlights a potentid problematic area, such as the most sgnificant
irregular segment, and explains the Oll vadue by its individua sub-components, which fully
decribe the leson shape.  Therefore, physicians can verify the highlighted irregular segments
and ther indices before making the find diagnoss. The detaled information provided by the
new indices may be useful for acomputer-aided diagnostic device.
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Chapter 6
Conclusion and FutureWork

The mogt effective method to reduce mortality for maignant melanomas is early detection snce
the survivd rate is inversely proportiond to the thickness of the leson. Many physicians have
advocated some kind of automatic early diagnogtic aided systems to improve the diagnostic
accuracy and to combat the rapidly increasing incidence rate. Many experimenta classfiers
have been attempted [33, 38, 56, 58, 129, 149, 150]. The powers of these systems depend
on the input features. For my thesis, | focus on one of the important clinical features, border
irregularity, which may suggest the maignancy of the skin leson.

The tasks of designing and implementing automatic procedures to measure leson
borders can be divided into three parts. First, a set of melanocytic images spanning from benign
nevi to malignant melanomas have been collected and automatic programs for hair remova and
lesion border extraction have been designed. Second, a new shape measure called Irregularity
Index (11) has been developed using an extension to classic curvature scale-space images. This
method directly locates dl indentation and protruson segments aong the border enabling an
arearbased index to be computed for each irregular segment. From the rich set of
measurements, two new shape indices, the overdl irregularity index (Oll) and the most
ggnificant irregularity index (MSl1), were derived. Third, the new indices were compared to
dermatologists evauationsin a user sudy. The result demonstrated that the Oll and the MSlI
vadtly outperform other lesion shape descriptors.

6.1. Contribution and originality

In this section, the contribution and the origindity of the project is discussed:

1. We congtructed new border shape descriptors for melanocytic lesions that were sensitive to
dructure and texture irregularities by detecting dl locd and globa indentation/protrusion
segments.  The new method combined and extended many computer shape anayss

techniques:
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Object partitioning approach: We extended the border partition rules proposed by

Hoffman and Richards, and Siddigi and Kimia to address indentation segments because

ther partition rules included only protruson segments.  With the new partition rule, a

lesion border was decomposed into a set of indentation and protrusion segments, which

are the important clinica fegtures for diagnosng maignant melanomas.

Multi-scale approach: We extended the classic curvature scale-space approach, which

investigates point features, to capture al globa and structura indentation and protrusion

curve segments of a rugged border. The extended curvature scale-space image differs

ggnificantly from the dasic curvaure scde-gpace image because of different

investigated features. The extended curvature scae space image alowed us:

= toidentify al indentation and protrusion segments, defined by our partitioning rule at
each smoothing step.

= to track the evolution of dl indentation and protruson segments by linking the
segments across the smoothing scales.

= to map the segments back to their true positions at the origina border.

= to place the segments in hierarchical structures that helped understand the lesion
shape. The segments at the top of the hierarchical structure are consdered as the
globa segments, while the segments a the bottom of the hierarchica structure are
the loca segments.

= toinvestigate the ssgment properties at dl smoothing scaes.

Area-based approach: The congtruction of the irregularity index was based on the

irregularity area.

By combining the above gpproaches, a new technique to measure border irregularity was
designed. The resultant method possessed many advantages over other shape measures.

The OIl and the MSII had high corrdation with experienced dermatologists evauation

of the lesion border in a user sudy. Moreover, when comparing to other common

shape descriptors, the Oll was the best predictor for the clinical evauation of lesion

borders in amultiple linear regresson modd.
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The multi-scde method handled a rugged border and was sendtive to sructure
irregularities.

The irregularity index method was stable because of the area-based gpproach. An
irregularity index was proportiond to itsirregularity area of an irregular segment.

The Oll was linear because it summed dl the irregularity areas of a leson.
Furthermore, the summation avoided the skewing (averaging) effect of an sngle point
estimator, which could be dampened by the smoothing section of the border.

The irregularity method actudly detected dl locd and globd indentations and
protrusons. This set of irregularity segments provided a rich description of the lesion
border shape and could be used to derive other parameters for the border shape.

The method offered an extra feature: locdization of the sgnificant indentations and
protrusions, which might be useful for pinpointing problematic areas of a meanocytic
leson in an expert-system type of diagnogsic device. Phydcians could verify the
highlighted area before the final diagnosis were made.

. We collected a sat of skin image data ranging from dinicaly benign nevi, pathologicaly
benign nevi, pathologicaly dysplagtic nevi and malignant melanomas for future investigation.

. The preprocessor DullRazor was designed to reduce the interference of thick dark hairs
from skin images, for subsequent andysis programs.  Without DullRazor, hairs have to be
physicaly removed by shaving, which is uncomfortable and time consuming. Also it is not
possible to remove hairs from existing images without the software approach.

. We condructed a segmentation program for the pigmented leson images. The program
extracted the leson for further andysis.

. Forming a rdiable gold standard has been an issue for clinica evauation of lesion border
contours. Claridge et d. [32] reported low agreement among expert clinicians, when they
were asked to sort lesion borders contours in the order of increasing border irregularity.
Such alow agreement cast doubt on forming a credible gold standard in a clinical evauation
setting.  For the validation step in this project, we adopted a different experiment design.

Dermatologists were asked to score the lesion border on a 4-point scae. The narrow
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score scae gave enough separation to the degrees of irregularity and helped dermatologists

provide a rdliable eva uation.

6.2. Futurework

My thesis is part of a larger project: to develop an automatic non-invasive, in-vivo diagnostic
device for malignant melanomas. Work developed so far can be the base of the larger project.
Of course, improvements can till be made. Also some of the work can be applied to other

areas.

DullRazor was developed to smplify the segmentation task by removing dark thick hairs
from skin images. However, thick light-coloured hairs such as the one shown in Fig. 6.1 may
interfere with some automatic analyses. Extending DullRazor to such atask could be necessary
for thistype of skinimages.

There are other ways to extend DullRazor. It could be used to measure hair growth on
a shaved patch of scalp for treatment of dopecia. Present accepted methodology involves
ether manua counting of hair and/or shaving and weighing the hairs from the scap. The shaving
and weighing procedure is complicated by the requirement of separating the skin cells from the
hairs prior to weighing. An automatic procedure usng scap images could smplify this
problematic task greetly. Another application for DullRazor might alow for the development of
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an index related to the vascularity of images of the retina. This could be ussful in monitoring the
progression of retind disease, or the response of such disease to thergpeutic intervention.

Automatic segmentation is ill a chalenging active research topic in medicd imaging and
computer vison. However, without a perfect automatic segmentation program, many andyss

programs cannot have areliable input.

Instead of measuring the leson border shape, the irregularity index approach may be
able to measure the colour shape indde a melanocytic leson. Maignant melanomeas tend to
have multiple colours and each colour could have an irregularity shape. Outlining dl internd
colour edges of aleson and computing the corresponding Ol for the colour edges may provide

a better maignancy indicator for amelanocytic leson.

Although the irregularity index is desgned for melanocytic lesons, the shape measure
can aso be gpplied to other medical rdated problems, such as differentiating the maignancy of
other solid tumors. For example, the new agorithm can be used to detect and measure the
goikes of a breast mass from a mammogram. Furthermore, since the formation of the
methodology depends only on a planar closed curve, it can aso be used as a shape descriptor
for other generd 2-D image andysis problems, such as identifying the largest bay, the most
ggnificant indentation, on an aerid map. The methodology can potentidly be a powerful tool for
many medicd and scientific applications.
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Appendix A

FORM #5

SIMON FRASER UNIVERSITY

INFORMATION SHEET FOR SUBJECTS

Title of Project: Evaluation of melanocytic lesion images

One dinicd feature of superficid spreading melanomas is irregularity of edge, often associated
with colour variation. This dudy is an atempt to assess the ussfulness of edge information
aone, in the absence of colour changes, as a clinical marker of melanoma probability.

These figures are the border outlines of melanocytic lesons. The contours are extracted by an
automatic computer program. Because the size of aleson isitsdf a marker of risks, dl lesons
are standardized and enlarged to the same enclosed area when they are printed on the paper.
There are two types of variaions dong a leson border: globd and fine variations. The fine
variaions could be artifact that is caused by the automatic segmentation program and/or the
enlargement process. Therefore, these fine variations should have a less weight than the globa
variations during the eva uation.

Please evauate these border contours, rate them individualy in the scale of 1 to 4, and record
the rating in the space provided just benesth the border. The lowest vaue of 1 implies the most
benign looking nevus border contour, and the highest scale of 4 implies the most savere case
with the highest probability of a melanoma contour. There are 4 pages of border contours. At
least one contour on each pageisal, and at least oneisa4. Pleasefind a1 and a4 contour,
and record that rating before assessing other contours on that page. Do this for each of the four

pages.

There is no sde effect or risk for this research procedure. Furthermore, there is no persond
benefit for the participants. However, information and knowledge gained from the experiment,
in the future, may be beneficid to patients with melanoctyic lesions.
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SIMON FRASER UNIVERSITY

INFORMED CONSENT BY SUBJECTS TO PARTICIPATE
INA RESEARCH PROJECT OR EXPERIMENT

The University and those conducting this project subscribe to the ethical conduct of research and to
the protection at all times of the interests, comfort, and safety of subjects. This form and the
information it contains are given to you for your own protection and full understanding of the
procedures. Your signature on this form will signify that you have received an Information Sheet for
Subjects which describes the procedures, possible risks, and benefits of this research project, that
you have received an adequate opportunity to consider the information in the Information Sheet for
Subjects, and that you voluntarily agree to participate in the project.

Any information that is obtained during this study will be kept confidential to the full extent permitted
by law. Knowledge of your identity is not required. You will not be required to write your name or
any other identifying information on the research materials. Materials will be held in a secure
location.

Having been asked by Tim Lee of the School of Computing Science, Simon Fraser University
to participate in a research project experiment, | have read the procedures specified in the
Information Sheet for Subjects.

I understand the procedures to be used in this experiment and there is no personal risks or benefits
to me in taking part.

| understand that | may withdraw my participation in this experiment at any time.
| also understand that | may register any complaint | might have about the experiment with the
researcher named above or with Dr. James Delgrande (604 291-4335) Chair of the School of

Computing Science, Simon Fraser University.

| may obtain copies of the results of this study, upon its completion, by contacting Tim Lee of
School of Computing Science, Simon Fraser University.

| have been informed that the research material will be held confidential by the Principal Investigator.

| understand that my supervisor or employer may require me to obtain his or her permission prior to
my participation in a study such as this.

| agree to participate by evaluating the set of melanocytic lesion images into a scale from 1 to 4.
The lowest value of 1 implies the most benign looking nevus, and the highest scale of 4 implies the
most severe case with the highest probability of being a melanoma.

NAME (please type or print legibly):

ADDRESS:

SIGNATURE: WITNESS:

DATE:
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Evaulate the following lesion border contours using a scale of 1 to 4
1 : most benign looking nevus border contour
4 : highest probability of a melanoma contour
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Evaulate the following lesion border contours using a scale of 1 to 4
1 : most benign looking nevus border contour
4 : highest probability of a melanoma contour
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Evaulate the following lesion border contours using a scale of 1 to 4
1 : most benign looking nevus border contour
4 : highest probability of a melanoma contour
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Evaulate the following lesion border contours using a scale of 1 to 4
1 : most benign looking nevus border contour
4 : highest probability of a melanoma contour
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