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Abstract

Cutaneous melanocytic lesions, commonly known as moles, are mostly benign; however, some

of them are malignant melanomas, the most fatal form of skin cancer.  Because the survival rate

of melanoma is inversely proportional to the thickness of the tumor, early detection is vital to the

treatment process.  Many dermatologists have advocated the development of computer-aided

diagnosis systems for early detection of melanoma.

One of the important clinical features differentiating benign nevi from malignant

melanomas is the lesion border irregularity.  There are two types of border irregularity: texture

and structure irregularities. Texture irregularities are the small variations along the border, while

structure irregularities are the global indentations and protrusions that may suggest either the

unstable growth in a lesion or regression of a melanoma.  An accurate measurement of structure

irregularities is essential to detect the malignancy of melanoma.

This thesis extends the classic curvature scale-space filtering technique to locate all

structure irregular segments along a melanocytic lesion border.  An area-based index, called

irregularity index, is then computed for each segment.  From the individual irregularity index, two

important new measures, the most significant irregularity index and the overall irregularity index,

are derived.  These two indices describe the degree of irregularity along the lesion border .

A double-blind user study is performed to compare the new measures with twenty

experienced dermatologists' evaluations.  Forty melanocytic lesion images were selected and

their borders were extracted automatically after dark thick hairs were removed by a

preprocessor called DullRazor.  The overall irregularity index and the most significant irregularity

index were calculated together with three other common shape descriptors. All computed

measures and the dermatologists' evaluations were analysed statistically.  The results showed

that the overall irregularity index was the best predictor for the clinical evaluation, and both the

overall irregularity index and the most significant irregularity index outperformed the other shape

descriptors.  The new method has great potential for computer-aided diagnosis systems.
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Chapter 1
Introduction

1.1. Motivation

The most fatal form of skin cancer, cutaneous malignant melanoma, has been increasing rapidly

in the western world for the last few decades [7, 45, 64, 98].  Canada has an incidence rate

that reflects the world trend [107] (see Fig. 1.1) and melanoma has become the third most

common cancer for people between 30 and 40 years of age [112].  As the diagnosis frequently

occurs at young adulthood when the family and financial commitment is the greatest, the

potential person-years of life loss has a tremendous impact on the individual and his/her family.

In order to reduce the mortality rate, which is proportional to the thickness of the tumor, many

dermatologists have advocated the development of computer-aided diagnosis systems for early

detection of melanoma.  The development of such diagnostic devices begins with the

understanding of the benign form (nevus) and the malignant form (melanoma) of a melanocytic

lesion.

1.2. Melanocytic lesions

Melanocytic lesions are the brown pigmented skin lesions commonly known as moles.  They are

formed by nests of specialized cells called melanocytes.  Normal melanocytes live in isolation as

solitary units in the bottom layer, stratum basele, of the outmost part of the skin, the epidermis1

[49, 144, 155]. (See Fig. 1.2)  Intermixing with basal cells (keratinocytes), melanocytes make

                                                

1 Human skin consists of three principal parts: epidermis, dermis and subcutis.  The epidermis has
four to five layers of cells.  Acting as the protective barrier of the body, the basal cells, keratinocytes,
continuously migrate upward from stratum basle, the bottom layer of the epidermis.  During the
migration, these cells are flattened and mutate at the upper layers.  Finally, the dehydrated dead cells
are shed off the body.  The entire migration and maturation processes take about a month.  The
dermis is the main part of the skin structure, which is separated from the epidermis by a basement
membrane, the dermoepidermal junction.  There are dense connective tissues, blood vessels, sweat
glands, hair follicles and nerve endings in the dermis.  Inferior to the dermis is subcutis, which
consists of loose connective tissues and fat.
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up about 5% to 10% of the cell population in the basal layer and they synthesize a brown

pigment called melanin, which is transferred to nearby keratinocytes via dendritic processes.  As

keratinocytes move upwards during their migration journey, melanin is transported to the upper

layers of the epidermis [55, 128].  Melanin absorbs a broad range of the optical spectrum from

250 nm to 1200 nm [1, 3, 70].  The absorption is not uniform for the entire spectrum.  The

strongest attenuation occurs at the shortest wavelengths, especially at the ultraviolet (UV)

wavelength, and there is minimum absorption below 1200 nm.  When melanocytes are

irradiated by sunlight, melanin absorbs the radiation energy and becomes darker in colour [49,

144].  Prolonged radiation increases the number of melanocytes and the production of melanin.

Hence, melanocytes shield the body from harmful UV radiation.  When a group of melanocytes

congregates together and forms a lesion, a brown pigmented patch appears on the skin due to

the high concentration of melanin.  These melanocytic lesions may be composed of benign or

malignant cells [99].
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Figure 1.1. Canadian age-standardized incidence rates (ASIR) for melanomas.  The rates
for 1996 to 2000 are estimates.  Source: National Cancer Institute of Canada:
Canadian Cancer Statistics 2000, Toronto, Canada, 2000.
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1.2.1. Benign nevi

Benign melanocytic lesions (also called pigmented skin lesions or pigmented nevi)  usually have

a round or oval shape with a regular contour and uniform colour.  Sometimes the lesion is raised

[99].  Fig. 1.3a shows a typical benign nevus.  The course of evolution for these lesions, from

junctional nevi to compound nevi to intradermal nevi, may be revealed by counting the number

of nevi in various age groups and studying lesion specimens under a microscope.  About 1% of

infants are born with congenital nevi [14, 57, 99].  Acquired nevi soon appear in the early

stages of childhood.  Most of these nevi are junctional nevi, which are small nests of

melanocytes residing in the dermoepidermal junction.  The number of nevi then increases rapidly

to an average count of 15 to 40 in adolescence and early adulthood.  The increase is positively

Epidermis

Papillary
dermis

Reticular
dermis

Corneum

Basal cell
(Keratinocyte)

Melanocyte

Basement
membrane

Collagen

Blood vessel

Figure 1.2.  Skin structure
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associated with the amount of solar radiation the individual is exposed to in an unprotected state

[47, 48].  The common nevus type in the young adult age group is the compound nevus, which

has part of the lesion in the dermoepidermal junction and part of the lesion migrating down to

the enlarged papillary dermis.  After adulthood, the number of nevi declines and pigmented nevi

are rare after age 80.  This phenomenon can be explained by the evolution of compound nevi to

intradermal nevi: the compound nevi leave the dermoepidermal junction and descend entirely to

the dermis.  Intradermal nevi are usually only slightly pigmented because melanocytes seldom

undergo cell division in the dermis.  The number of melanocytes declines due to attrition [99].

1.2.2. Malignant melanomas

Malignant melanomas are usually described as enlarged lesions with multiple colour shades.

Furthermore, their borders tend to be irregular and asymmetric with protrusions and

indentations [99, 124].  (Fig. 1.3b shows a malignant melanoma.)  The formation of malignant

lesions usually begins with melanocytes damaged by UV radiation2 [7, 12, 46, 124].  The

damaged cells may be solitary melanocytes in the normally appearing skin (de novo) or a sub-

                                                

2 Similar to benign nevi, the major risk factors for malignant melanomas are solar UV radiation and
individual's genetic susceptibility.

(a)                                                                 (b)

Figure 1.3. Melanocytic lesions (a) Benign nevus  (b) Malignant melanoma
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population of the melanocytes in a pigmented lesion.  Fortunately, further development of

damaged melanocytes is usually stopped by the body's safeguards.  Only when all the body's

security checks are bypassed, can the run-away malignant cells form a cancer by becoming

immortal and proliferating indefinitely [37, 147, 148].

Initially, damaged melanocytes produce some slightly mutated but normal looking cells.

At this stage, the lesion is very difficult to detect.  Examining under a microscope, one may

detect a group of normal looking cells with excessive mitosis (cell division).  Over a period of

time, if the genetic disorder increases, some new cells show abnormal shapes and orientations.

Clinically, the lesion is called an atypical nevus.  The increasing genetic disorder is reflected by

colour variation and irregular shape.  The lesion may eventually be larger than 6 mm in diameter.

Even though atypical nevi are potential precursors and markers for melanomas, many of them

remain clinically stable and never progress to melanomas [14].  However, with more gene

mutations, some atypical nevi evolve continuously to melanomas with more abnormal cells.  At

this stage, the lesion is called in-situ cancer, where the lesion is entirely in the epidermis.  The

clinical distinction between atypical nevi and in-situ melanoma can be subtle.  Melanoma in-situ

is a flat and thin lesion.  The lesion may enter a period of horizontal growth phase [12, 99].  Due

to the variable growth rate of the atypical melanocytes, the in-situ lesion may exhibit a markedly

asymmetrical shape with indentations and protrusions.  A protrusion usually indicates the rapid

growth of a sub-population of the melanocytes.  Furthermore, the uneven distribution of melanin

may cause multiple shades of brown or red-brown colour [14].  Melanoma in-situ is a non-

invasive early stage cancer, which may remain contained indefinitely.

Through blood or lymphatic vessels, malignant cells are capable of establishing a colony

in other body parts.  Once having broken away from the basement membrane of the epidermis,

the cancerous lesion enters an aggressive vertical growth phase and quickly invades the papillary

dermis, reticular dermis and subcutis [12, 99].  The malignant cells can also spread to

downstream lymph nodes or blood vessels to disturb the vital function of distant internal organs,

such as lungs [127].  Sometimes when the body's immune system responds to a new cancer by
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attacking and destroying the abnormal melanocytes in the dermis, the lesion shows prominent

notches and indentations, called regression [12, 99, 101, 124].

Many staging systems have been developed to classify the disease and to guide disease

management [12, 14, 124].  The best prognosis factor for a localized primary melanoma is the

thickness of the lesion3, which is inversely proportional to the survival rate.  (See Table 1.1 for

the 10-year survival rate published by B.C. Cancer Agency (BCCA).)  A primary lesion with

thickness less than 1.0 mm is usually considered as a minimal or a low risk lesion due to a low

chance of metastasis.  However, the cure rate drops significantly when the lesion thickness is

over 1.0 mm.  The main treatment for all stages of melanoma is surgical excision with an

increasing margin for increasing lesion thickness.  Other treatments for possible metastases

include regional lymph node dissection or radiation, and chemotherapy [12, 14, 124].

Table 1.1. Melanoma thickness and 10 year survival rates (BC Cancer Agency 1999) [14]

Lesion thickness Survival rate (%)

< 1.0 mm 90

1.0 - 1.49 mm 78

1.50 - 4.00 mm 65

> 4.0 mm 40

1.3. Public health programs

The attempt to diagnose melanoma as early as possible has led to public education and

screening programs in many countries [80, 97, 115, 125].  Research programs promoting self-

screening for the high-risk groups are also underway [15]. Two well-known self-screening

guidelines are the ABCD rule [44, 57] and seven-point checklist [57, 62].  The ABCD rule,

promoted by the America Cancer Society, describes the clinical features of melanomas using

                                                

3 The thickness of a lesion is measured from the top of the skin, the granular layer of the epidermis,
to the base of the lesion by an ocular micrometer.
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mnemonics: A (asymmetry), B (border irregularity), C (colour variegation) and D (diameter >=

6mm).  On the other hand, the seven-point checklist, advocated by a group of dermatologists

from Glasgow, emphasizes the progression of the symptoms.  This checklist consists of three

major features (change in size, shape and colour) and four minor features (inflammation, crusting

or bleeding, sensory change, and diameter >= 7mm).  When any of the major features is

detected in a melanocytic lesion, immediate help from health professionals is recommended.

The presence of any minor features is advised to be monitored regularly.

The success of public campaigns for melanomas has also resulted in a flood of patients

with thin lesions to general practitioners.  Most of the general practitioners are not well equipped

to deal with these very thin lesions, which are difficult to diagnose clinically.  Therefore, to

improve diagnostic accuracy and to relieve the workload of physicians,   research studies for

non-invasive diagnostic devices have been carried out in many directions, such as lesion

progression tracking [18, 60, 136, 145], high-frequency ultrasound detection methods [36, 50,

71], and computer-aided diagnosis [21, 27, 40, 58, 59, 73, 138-140].  In particular,

computer-aided diagnosis shows potential to differentiate melanomas from nevi based on their

characteristics.

1.4. Non-invasive computer-aided diagnostic systems

A non-invasive computer-aided diagnostic system typically consists of several components:

image acquisition, image processing, and a classifier with a knowledge database.  (See Fig.

1.4.)  When a melanocytic lesion is captured in vivo as a digital image by either scanning a

colour slide or using a digital camera, the characteristics of the lesion, represented by a set of

numbers called feature scores, can be extracted from the digital image by the image processing

component.  Feeding the features to a classifier which is connected to a medical knowledge

database can generate a computerized diagnosis, suggesting whether the lesion is benign or

malignant.
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1.4.1. Image acquisition

Normally, the subsurface structures at the dermoepidermal junction and the superficial dermis

cannot be examined by the naked eye or by microscopes because of the surface reflection (also

called  regular reflectance) at the air/skin interface [1, 3, 74].  Therefore, imaging melanocytic

lesions with a camera or a microscope results in surface view images.  These images show all

four of the clinical features for the lesion, which can be described by the ABCD rule, namely

asymmetry, border irregularity, colour variegation and diameter.

To examine the subsurface features in vivo, a special procedure or some special

equipment is required.  There are two common techniques to capture the subsurface view.4

The first technique is known as epiluminescence microscopy (ELM), which applies a drop of oil

on the lesion before it is examined under a dermatoscope or a binocular stereomicroscope5 [11,

16, 74, 116].  The oil makes the epidermis transparent by reducing the refractive-index

                                                

4 Researchers have been experimenting with different in vivo techniques to extract subsurface
features.  Encouraging results have been reported recently by using multi-band spectrophotometric
intracutaneous analysis [106].

5 The technique is also called dermoscopy, dermatoscopy, or surface microscopy.

Image acquisition

Image processing

Melanocytic lesion

classification

diagnosis

Figure 1.4.  Schematic diagram for a non-invasive computer-aided diagnostic system
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mismatch between the corneum layer of the epidermis and air [74].  Then a glass slide is placed

on top of the oil and the subsurface features of the lesion are examined under a magnifying

device with magnification ranging from 10X to 40X.  However, air bubbles are often trapped

underneath the glass slide which may interfere with automatic analysis procedures.  A new

technique to capture subsurface features employs two polarized filters6 [67, 130, 131]: one of

them is attached to the light source and the other is attached to the viewing device.  (See Fig.

1.5.)  The filter at the light source ensures the incident light has the same phase angle.  When the

polarized incident light reaches the skin, part of the light is reflected by the air/skin interface and

the remaining part enters the skin.  The reflected portion is called regular reflectance which has

the same phase angle as the incident light.  The penetrated portion is further absorbed and

scattered by the epidermis and dermis, and becomes diffuse with a complete random phase

angle.  Finally, the diffused light is reflected out of the skin by white collagen fibres at the dermis

[1, 34].  Before the re-emitted light of the regular reflection and the diffused penetrated portion

reaches the viewing device, the re-emitted light is filtered by the second polarized filter, which

ensures that only the re-emitted light with a certain phase angle is detected.  When the viewing

device filter is set to the same phase angle as the source filter, a surface view is obtained by

capturing the regular reflection7.  A subsurface view is obtained by setting the viewing device

filter perpendicular to the source filter to block out the regular reflection entirely.

Both oil/glass slide and polarized filters techniques produce a similar and comparable

images [130, 131].  In the subsurface view, not only the ABCD features can be clearly seen8,

but the subsurface structures at the dermoepidermal junction and the superficial dermis are also

visible.  The most important subsurface structures are the pigment network, brown globules,

                                                

6 The technique is sometimes called digital videomicroscopy.

7 Part of the reflected light from the diffused, penetrated portion is also captured.  However, surface
view features are clearly visible when the two polarized filters are set to have the same phase angle.

8 The geometry properties (asymmetry, border shape and size) and colour property of the lesions are
presented in the subsurface view,  even though lesions manifest different colours in the surface view
and the subsurface view.
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black dots, radial streaming and pseudopods [6, 11, 74, 116].  (See Fig. 1.6.)  The pigment

network is a brown colour line network over a diffused brown colour background of the lesion.

These brown colour lines are caused by the melanin deposited along the vertical edges of the

convoluted papillary dermis, called rete ridges [120].  Brown globules are the melanocytic nests

around the papillary dermis, and black dots are chunks of melanin in the epidermis.  Radial

streaming and pseudopods are the brown or black line patterns and dots, respectively, at the

margin of the lesion.  These subsurface features can be used to augment the ABCD features in

diagnosing melanomas [17, 40, 41].  An irregular pigment network or brown globules, and the

existence of radial streaming and pseudopods are associated with melanomas.  However,

interpreting subsurface structures is difficult and subjective.  Only dermatologists properly

trained with the subsurface view recognition technique can benefit from subsurface features to

improve the diagnostic accuracy.  Untrained dermatologists tend to have difficulty in

distinguishing subsurface features, resulting in a low diagnostic accuracy.  [16, 122].

.

Polarized filter

Incident light

Polarized filter

Air/Skin
interface Epidermis

Dermis

Regular
reflectance

Figure 1.5.  Obtaining subsurface view using two polarized filters
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.

1.4.2. Image processing

Most experimental computer-aided diagnostic systems process and extract surface view

(ABCD) features from skin lesion images, which can be obtained from either the surface view

examination [4, 129, 149] or the subsurface view examination [130, 131].  Fully automatic

image processing systems on surface view features have been reported [56, 81].  On the other

hand, there has been very little work done on automatic subsurface feature extraction at the

present time.9 Subsurface features are often evaluated subjectively and entered manually in to a

classifier [17].

1.4.3. Lesion classification

Various classification methods based on well-developed theories have been examined.  The

popular neural networks [17] simulate the human neural system.  These neural networks are

usually treated as blackboxes and their classification rules cannot be interpreted with the input

features.  Other classification techniques have also been investigated, such as AI-based expert

systems [35, 77, 133], statistical based methods [56, 129, 130] and principal component

                                                

9 Automatic detection of pigment networks, brown globules and radial streaming have been reported
recently [25, 40, 41, 132].  More algorithms are expected in the future.

Figure 1.6. Subsurface view of a melanocytic lesion.  The pigment network is clearly seen.
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transformation methods [33].  Theoretically, classification results from these methods can be

interpreted in terms of the input features, but often the interpretation is extremely difficult,

especially when the input feature set is large.

1.5. Border shape as a defining feature

The computer-aided classification paradigm is promising when a large amount of medical

knowledge is accumulated.  However, one of the crucial factors for a system to succeed is to

select a set of features that provide good separation between nevi and melanomas.  According

to the two best-known clinical guidelines (ABCD rule and the seven-point checklist), the lesion

border shape is one of the important features.  In particular, irregularities (indentations and

protrusions) along a lesion border often reflect the genetic instability of the lesion.

When a lesion border is studied carefully, we notice that there are two types of

irregularities: texture and structure irregularities [31].  Texture irregularities are the fine variations

along the lesion border, while structure irregularities  are general undulations of the perimeter.

Fig. 1.7 shows examples of both types of irregularities.  Lesion A has no structure protrusion

and indentation, but a lot of texture irregularities.  Lesion B shows a structure protrusion at the

top of the border but has less texture irregularities than the other two borders, while lesion C

has a prominent structure protrusion and indentation at the bottom of the border.  Detecting and

measuring texture irregularities may be subject to noise of the hardware imaging devices and/or

software programs.  On the other hand, structure irregularities may infer unstable melanocyte

growth pattern or regression of a melanoma, and have been reported to have a higher

correlation with melanomas than texture irregularities [31].  Therefore, the success of the

computer-aided diagnostic system depends upon the ability to thoroughly assess the border

shape of melanomas, especially, the structure irregularity.
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      (a)          (b)

       (c)          (d)

(e) (f)
Figure 1.7. Three lesions and their borders.  (a) and (b) Lesion A and with its border

outlined.  (c) and (d) Lesion B and with its border outlined.  (e) and (f) Lesion C and
with its border outlined.  The procedure for extracting lesion border is discussed in
Chapter 3.
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1.6. Outline of the thesis

Chapter one states the motivation of the thesis: measuring the lesion border shape accurately

may improve the effectiveness of a computer-aided diagnostic system for malignant melanoma.

Chapter two reviews the previous work on measuring border irregularity of melanocytic

lesions.  Because shape analysis has been an active research topic in computer vision, methods

related to the development of the new shape measure are also examined.

Chapter three presents the data collection and the pre-processing steps for the new

shape measurement algorithm.  A full spectrum of melanocytic lesion images, ranging from

clinical benign lesions to malignant melanomas, has been collected.  Before these lesion images

can be used for border shape analysis, they have to be processed by two programs.  First, the

dark thick hairs of the skin images, which may interfere the subsequent automatic segmentation

program, are removed by the software program called DullRazor.  Then the lesion border is

extracted automatically from the skin image.

Chapter four describes the methodology of the new border irregularity algorithm, which

measures all indentations and protrusions along the lesion border in a multi-scale environment.

Two area-based indices generated from individual indentations and protrusions are important

measures for border irregularity that can be used as input features for a computer-aided

diagnostic system.

Chapter five reports a user study for validating the two new measures discussed in

chapter 4.  The user study result showed that the new measures vastly outperform other border

shape descriptors and may be useful for diagnosing the malignancy of a lesion.

Chapter six concludes the thesis with discussions on the contribution of the research

work and the future research directions.
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Chapter 2
Related Work

2.1. Published border shape descriptors for melanocytic lesions

Because the irregularity of a lesion border has a strong correlation with the genetic stability of

the melanocytes, all computer-aided diagnostic systems attempt to measure the border shape.

However, there is no standard algorithm for such a measurement, although several methods

have been investigated.

2.1.1. Global measures based on a single-scale

One of the most popular measurements is called compactness index (CI), which estimates the

roundness of a 2D object [33, 38, 51, 140, 149].  Since circles are the most compact 2D

objects, they have the smallest index of 1. The index for other 2D shapes is greater than 1 and is

computed by the following equation:

(2.1)

where P is the perimeter of the object and A is the object area.  The popularity of CI is due to

its computational simplicity; however, there are two drawbacks for this measure.  It is very

sensitive to noise along the border.  In particular, the square term of the perimeter used in

Equation 2.1 amplifies the noise.  More importantly, CI cannot detect structure irregularities.

Object with different shapes can associate with the same index.

Guthowicz-Krusin et al. [56] exploited another property of a 2D object to infer its

border shape.  For a lesion with irregular shape, there is a large variance in the radial distance,

the distance between its centroid and border.  Hence, Guthowicz-Krusin et al. estimated

border irregularity by analysing the variance of the radial distance distribution.  However, the

measure is unstable because the centroid location is very sensitive to noise along the lesion

,4/2 AP π
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border.  A small change to the border may move the centroid location and may completely alter

the radial distance distribution.

Bono et al. concentrated on the length of indentations along the border by computing

the ratio of the convex hull length and the perimeter of the lesion [20], but this measure does not

account for protrusions of the lesion border, which is also an important clinical feature.

Andreassi et al. [4] attempted to use two indices, form factor and circularity factor, to

capture the border shape.  Form factor is a variation of CI and is defined as the ratio of lesion

area over the normalized perimeter.  This measure also shares the same drawback as CI; in

particular, both measures cannot detect structure irregularities.  Circularity factor is defined as

the absolute area difference between the lesion and a circle centered at the centroid of the lesion

and having the same area size as the lesion.  However, circularity factor has the same drawback

as Guthowicz-Krusin et al.'s method [56] that the computed result may be unstable due to its

dependence on the centroid location.

2.1.2. Global measures based on multi-scale

Extending from single-scale methods, Seidenari et al. [130, 131] introduces a dual-scale index

called fractality factor, which is defined as the normalized ratio of two border lengths measured

by two different meters.  However, implementation details such as the meter size is not

reported; therefore, the algorithm cannot be reproduced and commented further.

Fractal dimension (FD) is an elegant multi-scale method that has been shown to possess

a strong correlation with human's intuitive notion of roughness for curve lines [118].  The idea is

based on Mandelbrot's observation that contradictory results are obtained when manmade

objects and natural objects are measured using rulers of various sizes [100] .  For a manmade

object, the measured length L converges to its true value as the ruler size r decreases:

(2.2),)( rrNL =



17

where N(r) is the number of rulers of size r required to cover the border.  However, for  natural

objects such as coastlines, which process self-similarity10 and randomness properties, the

measured length L increases as the measuring unit size r decreases.  The  surprising inverse

relationship between L and r is due to the fact that many bays and promontories smaller than the

ruler size r are unnoticed and omitted; they only become noticeable if the unit size r decreases.

Mandelbrot formulated the inverse relationship between N(r) and r as:

(2.3)

where λ is a scaling constant and D is the characteristic of the coastline known as fractal

dimension.  The value of D is a fractional number that is larger than or equal to the Euclidean

dimension of the object.  For example, a straight line and an open circle have a fractal dimension

of 1.  The fractal dimension increases monotonically and approaches 2 when the roughness of

the curve increases.  FD has been used to estimate the irregularity of a lesion border [31, 32,

57, 58, 108].  It has also been applied in analysing natural object textures [28], mammographic

density patterns [26, 119] and cervical cells [96].

Even though FD is designed to measure the overall roughness (jaggedness) of a border,

FD is insensitive to structure features and, hence, it is not suitable to measure structure

irregularities of a lesion border.  For example, the FD of an open circle is same as a straight line

(which equals to 1).  In other words, FD is insensitive to a smooth curve with a constant

curvature.  The problem is also demonstrated by computing the FD of two phantoms and two

lesion borders, shown in Fig. 2.1.  The phantom C1 has a larger indentation than C2, but they

have the same FD values.  More surprisingly, the lesion border L1 has a slightly larger FD

(1.16) than L2 (1.12) even though L2 has a prominent protrusion and indentation at the bottom

of the lesion.  The problem arises because L1 is more jagged (has more texture irregularities)

than L2.  From these two phantoms and two lesion borders, it is clear that the FD measure is

incapable of detecting structural features.

                                                

10 Self-similarity is an extension of the mathematical notion of similarity: two objects are similar if
they have the same shape, regardless of their size [117].

,)( DrrN −= λ
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In an attempt to capture major structural features, Claridge et al. [31] designed a

measure called Structure Fractal Dimension (SFD).  The SFD is computed based on Equation

2.3 too, but only rulers longer than a predefined threshold length are included in the

computation.11  The major difficulty for SFD is to properly determine the threshold ruler length

for all lesions.  As a result, SFD does not fully capture the structure irregularity of the lesion

border as shown in Fig. 2.1.12

                                                

11 In their implementation, Claridge et al. simulated the measuring process of a lesion border with
dilation operations.  The lesion border is covered by a series of overlapping discs with radius denoted
by s.  The border length is estimated by dividing the dilated border area by s.  By varying the disc
radius s and ensuring s is greater than a predefined threshold, the border lengths with their
corresponding s values are used to determined the SFD of the lesion border.

12 Our implementation of FD and SFD are discussed in Section 5.1.4.

Phantom         C1        C2
Fractal dimension 1.02 1.02
Structure fractal dimension 1.19 1.18

Lesion border     L1        L2
Fractal dimension 1.16 1.12
Structure fractal dimension 1.28 1.21

Figure 2.1.  Fractal dimension and structure fractal dimension of two phantoms, C1 and C2,
and two lesion borders, L1 and L2.



19

None of the above methods, described in both Section 2.1.1 and 2.1.2, capture the

proper notion of border irregularity for melanocytic lesions.  In particular, they all have problem

in detecting structure irregularities.  Many methods are also sensitive to noise and may not be

stable.  A review of other shape algorithms in the field of computer vision and multimedia may

help design a proper measure for border irregularity.

2.2. Other shape algorithms in computer vision

Analysing shape has always been an active research area for computer vision.  Studying these

algorithms provides some insights to the task of designing a new method for measuring the

border shape of a melanocytic lesion.  This section provides an extensive overview of shape

algorithms in the field of computer vision which may be useful for such a task.

Shape analysis programs can be classified in many different ways according to shape

attributes and analysing techniques. The most common classification scheme divides the

programs according to their input types [95, 113, 137].  A program is called contour-based or

external-based, when only the boundary of the object is utilized.  If the interior of the object is

also analyzed, the algorithm is called structural-based or internal-based.  Classification schemes

can also be made based on the internal shape representation of an object [113].  The scalar

transform technique represents the intended object shape quantitatively by numeric scalars or

vectors, called shape descriptors, which are often analyzed subsequently by statistical or neural

network methods.  A space-domain technique produces non-numeric and graphic

representations.  Shape analysis programs can also be dissected in other ways: global features

vs. local features and single-scale vs. multi-scale [8, 75, 137].  Algorithms based on global

features tend to be simple, but they may be unstable as a small change in the input shape may

drastically alter the analysis output [22, 95].  The instability may be alleviated by introducing

local information, at the expense of increasing programming complexity.  Moreover, local

information may be structured to facilitate the analysis.  Similar comparisons can be made for

single-scale and multi-scale algorithms.  Multi-scale programs are harder to implement but they

return more information than single-scale programs.
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2.2.1. Parameterization of object borders

When an object border is analysed, a well-known technique called parameterization can be

applied to reduce the dimensionality of an object from 2D to 1D.  There are many ways to

implement the parameterization technique.  The radial function used in the study of Guthowicz-

Krusin et al. [56] is one example.  A set of radial vectors with equal angular spacing is

extended from the object centroid to its boundary. The length of the radial vectors forms the

radial function r(θ), where θ is the regular sampling angle.  Although the radial function is easy to

compute, the function may be unstable.

Another way to implement the parameterization technique is to define the border

function f(t) as two linear functions x and y:

(2.4)

where 0 ≤ t ≤ 1 is the path length variable along the border, and x(t) and y(t) are the one

dimensional function of f(t) along the x and y coordinates [103].  When the boundary forms a

closed contour, f(t) is periodic.  There are many variations for the formulation of Equation 2.4.

Instead of using two linear functions x(t) and y(t), Freeman's chain code defines f(t) as the

direction of the pixel t with respect to its predecessor at t-1 [42, 43].  Zahn and Roskies define

f(t) as the net amount of angular bend between the initial point of the parameterization process

and the point t [154].  All three variations of f(t) are equivalent and they have often been used

as the shape representation of an object border.  In this thesis, we used the formulation of

Equation 2.4 to parameterize a lesion border, since the curvature of the border can be derived

directly from the equation.

2.2.2. Shape descriptors

Describing the object shape as numeric shape descriptors is more appropriate than the non-

numeric, graphic representation of the space-domain technique, because the numeric

descriptors can be analysed easily by most skin lesion classifiers.  There have been many

published methods for computing shape descriptors.  The well-known descriptors are fractal

)),(),(()( tytxtf =
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dimension (which is described in Section 2.1.2) Zahn and Roskies' Fourier Descriptors [154]

and moments.

2.2.2.1. Fourier Descriptors

To compute the Fourier Descriptors, a 2D object boundary is parameterized by a cumulative

function f(t), which is defined as the net amount of angular bend between the point t, 0 ≤ t ≤

2o, and the initial point of the parameterization process, t = 0.  Assuming the boundary forms a

clockwise-oriented simple closed curve with length L, it is seen that f(0) = 0 and f(L) = -2o.  A

normalized cumulative angular function f*(t) can be defined as

(2.5)

Expanding the normalized cumulative angular function in Fourier Series using polar coordinates,

Equation 2.5 becomes

(2.6)

where the coefficients Ak and hk are known as the kth harmonic amplitude and the phase angle of

the function f*(t), respectively.  Together they form the Fourier Descriptors of the object

boundary.13  Because the harmonic amplitudes Ak's are invariant under translation, scaling, and

rotation, they have been used to describe the object shape.14  The lower orders of the

amplitudes express the overall structural shape of the closed curve, while the higher orders

convey information about the fine details of the curve.  However,  there is no natural cutoff point

for the high and low order harmonic amplitudes, and  small changes along the curve may

produce a completely different set of Fourier Descriptors.  Another disadvantage is that spatial

information cannot be retrieved in the Fourier domain.

                                                

13 Fourier Descriptors can also be computed from other functions such as angular function,
curvature function, or radial function.

14 The phase angle hk also conveys the shape information about the closed curve, but it is not
invariant under rotation transformations.
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2.2.2.2. Moments analysis

Moments and their derivatives have been widely used for object-based recognition and

reconstruction.  The analysis is often carried out by the object's internal pixels [143], but the

boundary pixels can also be used [146].  Mathematically, the raw (p,q)th order moment of a 2D

image f(x,y) is defined as

(2.7)

where f(x,y) are the internal or boundary pixels.  In the traditional definition with internal pixels,

the low-order moments have well-understood physical meanings.  For example, the zero-order

moment m00 is the total image power.

For a binary image with the object denoted by 1 and the background by 0, m00 is the

area of the object.  The first-order moments, m10 and m01, can be used to compute the centroid

location of a binary image.  The x coordinate of the centroid, xc, equals to m10/m00 and the y

coordinate, yc, equals to m01/m00.  The second order moments, m20, m11, and m02, depict the

size and orientation of the object.  They can be used to construct the principal axes of the

object.  However, no simple physical meanings can be attached to higher-order moments.

Although infinite numbers of moments are required to portray an image precisely, only

few moment terms are required for most recognition tasks.  For example, recognizing

alphabetical characters requires up to third-order moments, while identifying airplanes requires

fourth-order to sixth-order terms.  However, a reasonable reconstruction of a binary alphabetic

character of 21 x 21 pixels requires all the moments up to 15th order terms [143].

Unfortunately, the raw moments defined by Equation 2.7 do not retain the same values

when the imaged object is translated or scaled.  With appropriate normalization, central

moments and normalized central moments are often used to overcome these problems.  Hu

proposed seven moment invariants, which are the linear combination of the central moments up

to the third-order to describe the object shape [29, 65].  These 7 shape descriptors are proven

to be invariant to scaling, translation and rotation.  The complex Zernike moments provide a

∫∫= .),( qp
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general solution for rotation invariant property [143].  In the language of linear algebra, Equation

2.7 is the projection of the image function f(x,y) onto the basis set {xp, yq}, which are not

orthogonal.  Applying an orthogonal basis set such as complex Zernike polynomials, a set of

rotation invariant moments can be obtained.  The Zernike moments respond to a rotation with a

phase shift and a constant magnitude, which can be used as an invariant shape descriptor.

Many other shape descriptors can be derived from moments.  Two of the well-known

ones are eccentricity and inertia shape [96, 137].  Eccentricity estimates the ratio of the major

axis and the minor axis of the best-fit ellipse over the object.  The axes are determined by the

second-order central moments of the binary image function f(x,y).  Circles give the minimal

value of 1.  On the other hand, inertia shape estimates the roundness of an object by a

normalized second-order moment.  For a binary image function f(x,y), inertia shape is defined

as:

(2.8)

where dc denotes the distance of an image pixel to the object centroid and the first-order raw

moment m00 is a normalization factor.  A circle again has the minimal inertia shape value of 1.

Similar to many border irregularity descriptors and Fourier Descriptors, the

disadvantage for moments and their derivatives is that they are constructed from global shape

features under a single-scale environment.  A small change in shape may lead to a completely

different set of moments.  This disadvantage can be minimized if the object is divided into parts.

Effects of a small shape change is  limited to a part of the object and stability of the measure can

be achieved.  Furthermore, object partitioning may form some structured organization which can

facilitate the analysis.
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2.2.3. Object partitioning

2.2.3.1. Skeleton based techniques

Partitioning an object into parts and deriving shape information from the partitioned parts can

provide much needed local information for shape analysis programs.  Blum and Nagel [19]

proposed a grassfire model, called symmetric axis transform (SAT), to divide and to represent

an 2D object.   The SAT can be explained by a grassfire analogue.  Imagine the boundary of a

piece of dry grassland surrounded by non-flammable wet grassland to be ignited simultaneously.

The fire propagates towards the centre of the grass block at a constant speed.  The meeting

point of two or more fire fronts from different directions is called a quench point and it has an

equal distance to each originated boundary of the fire fronts. The quench point can also be

interpreted as the centre of a maximal inscribed disc that touches two or more boundaries.  The

union of all such maximal inscribed discs represents the object.  Furthermore, the loci of all

quench points form the symmetric axes.15  Symmetric axes and their corresponding radial

functions are called SATs.  When points on the maximal inscribed discs other than the centres

are traced, the loci form variations of symmetric axes such as smoothed local symmetries [23]

and process inferring symmetry analysis [91, 92].

Symmetric axes can be used to segment the object at the branch points so that each

region is equally divided.  The segmented regions can be analyzed by the geometric properties

of the axes and the boundary.   Blum and Nagel categorized a region into four shape classes:

worm, wedge, cup and flare.  They also divided a boundary into seven curvature prototypes:

left and right spiral in, left and right circular, left and right spiral out and straight.

After SAT was proposed, many researchers developed algorithms to compute the axes.

For 2D discrete images, mathematical morphology is a popular technique which treats an input

image object as a set of points  [61].  With an appropriate disc structure element, an erosion

                                                

15 These graph-liked lines are also known as medial axes or skeletons.
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operation removes the boundary pixels.  Applying erosion operations successively strips off the

image object in layers and finally erases the entire object.  Therefore, the radial distance to the

object boundary for an image pixel can be computed as the number of erosion operations

required to remove the pixel.  The symmetric axes are formed by pixels whose radial distances

are greater than their neighbours.  (See Fig. 2.2.)  However, because of the intrinsic nature of

discrete space, radial distances cannot be determined precisely and rotation invariance cannot

be achieved.  Moreover, the resultant symmetric axes are sensitive to noise along the boundary

and may not be thin connected lines [82].

Many methods, including active snake contours rolling down a potential field [72, 90]

and Voronoi skeletons [110], have been investigated to alleviate the problems of generating

incorrect radial distances and non-thin and disconnected axis lines.  However, these methods

still suffer from the problem that a tiny protrusion always generates an axis, while indentations

Figure 2.2.  Computing the SAT by mathematical morphology method (a) The structure
element K centered at the middle pixel.  (b) The binary image A represents a simple
object.  (c) The radial distance of each pixel in the image A.  The radial distance is
computed as the number of erosion operations required to remove the pixel using the
structure element K.  (d) The final symmetric axes of image A.  The symmetric axes
consist of the points whose radial distances are greater than their neighbouring points
(defined by K).  Note that the resultant axes are not connected.
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could generate no axes.  Therefore, the SAT is not suitable for analysing skin lesion borders,

where an indentation may be a major feature and the lesion border is often jagged and rough.

2.2.3.2. Boundary based techniques

Another common partition scheme divides the object along the boundary.  The divided

segments can be analysed further or approximated by various type of polynomials such as

straight lines, splines and B-splines [95, 113, 114, 137].  One of the boundary partition

methods is called split-and-merge, which recursively splits a curve segment into two equal

halves whenever the height of the curve segment exceeds a predefined threshold.  Any two

neighbouring segments are merged when their heights are within some maximum distance

criterion.  A variation of the split-and-merge method is to split the curve at the point that has the

maximum height.  However, the initial point selection is important for all split-and-merge

methods as different initial points generate different partitions.

Partitioning objects based on human perception theory has received a lot of interest in

computer vision.  Researches from the fields of human perception, cognition and psychology

have shown that high curvature points possess high information content [9].  Hoffman and

Richards proposed to partition an object boundary at the concavities [63, 123].  When two 3D

objects interpenetrate at random, according to the principal of transversality, the objects always

meet in the contour of concave discontinuities.  This heuristic works well with block object

decomposition.  However, for a smooth surface without discontinuity, Hoffman and Richards

suggested a generalized approach.  For any point p in a 3D surface, the surface normal of p can

be defined as a vector pointing perpendicularly inwards to the surface.  Furthermore, there is

always a direction that the surface curves the most, and in the orthogonal direction the surface

curves the least.  These two directions are called the principal directions and their corresponding

curvatures are the principal curvatures.  Then the surface can be divided along the loci of the

negative minima, the concavities, of the principal curvatures.  When a 3D object is projected

into a 2D space, negative minima of the principal curvatures are mapped to concave cusps in a

2D silhouette.  Hence the 3D partitioning rule can be modified for 2D planar curves by dividing
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an object boundary along the minima of negative curvature, if the boundary is traced

counterclockwise.16

Siddiqi and Kimia [134] argued that proper object partition must involve both object

boundary and interior.  Therefore, they extended Hoffman and Richard's partition scheme and

introduced the concept of part-lines, which are curved lines located completely within the

interior of the object and terminated on the concavities of the boundary.  Specifically, there are

two types of part-lines: limbs and necks.  A limb is a part-line for a fixed attachment to an

object, such as bird's beak. (See Fig. 2.3a.)  The tangents along a limb vary smoothly.  On the

other hand, a neck part-line separates an articulate part, such as a human's neck or a fish tail

from its object body.  (See Fig. 2.3b.)  The length of a neck is the minimal diameter of an

inscribed circle.  To obtain all the limb-based and neck-based parts, the concavities of the

boundary are first located.  Then each pair of concavities must be considered separately to

determine whether there is a legitimate limb or neck part-line.  The notation of salience, a

likelihood of a part-line, is introduced to resolve the conflict with multiple part-lines from the

same concavity point.  However, both Hoffman and Richards' partition scheme and Siddiqi and

Kimia's part-line approach handle protrusions only.  They do not address indentations along the

border, which are important features to diagnosing melanocytic lesions.

Focusing on how to infer the deformation history of a 2D planar object, Leyton's

process-grammar analysed every protrusion and indentation along the border [91, 92].  He

conjectured that all deformable objects begin from a circular shape.  Applying continuation and

bifurcation forces on the border distorts the object shape into protrusions and indentations.  The

direction of the deformation force lies along the symmetric axis which bisects the protrusion or

indentation.  Therefore, by locating all protrusions and indentations and tracking their symmetric

axes, one may discover the history of the deformation process.  As the result, although Leyton

partition all protrusions and indentations along the border, his process-grammar does not return

                                                

16 Reversing the tracing direction flips the foreground and background and reverses the sign
curvature values.
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rigid curve segments nor interior parts, but rather dynamic processes, which can be used to

document deformation history.  Furthermore, both Leyton's process-grammar and Hoffman and

Richards' partition rule consider the theoretical aspect of partitioning an object boundary.  They

do not address how to handle a ragged border under a multi-scale environment.

2.2.4. Multi-scale methods

Some single-scale shape analysis methods can be extended to multi-scale by including two or

more resolutions.  Fischler and Wolf used two measuring sticks with different lengths, two

scales, to determine critical break points for curve partitioning in discrete space [39].  These

break points, termed salient points, correspond to the points with high curvature values.  The bi-

scale algorithm is repeated for each measuring stick by sliding it along the curve pixel by pixel.

The maximum deviation d from the curve to the stick is recorded.  The local maxima of all the

recorded d's are the salient points for that measuring stick.  The final salient points of the curve

are comprised of the findings from both sticks.   Similarly, many skeleton techniques can also be

extended into a multi-scale environment.  For example, the erosion operation can take disc

structure elements of various sizes to simulate different scales.

When more than one scale is applied, the natural questions to ask are:  What are the

optimal scales and how to incorporate results from various scales?   An object may manifest

different shapes at various resolutions, and shape features may disappear at a coarse scale, or

the salient locations may shift from scale to scale.  Hence, selecting appropriate scales,

Figure 2.3.  Limb-based and neck-based part-lines (a) A limb-based part.  The limb part-
line is denoted by the dotted curve line.  (b) A neck-based part.  The neck part-line
is denoted by the dotted line, which is the minimal diameter of an inscribed circle.
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organizing information computed from different scales and relating information from one scale to

another become important issues for multiple-scale analysis.  To address the above questions,

many multi-scale shape analysis methods take a systemic approach by working with all scales.

Fractal dimension is one of such methods where the statistical dimension, by definition, is

computed by measurements from all scales.  Other well-known multi-scale methods include

wavelet transform and scale-space filtering.

2.2.4.1. Wavelet transform

Another popular multi-scale method in active research is the wavelet transform, which linearly

decomposes a signal f(x) into multi-scales based on mother wavelet basis functions yk:

(2.9)

where ck are the coefficients for the transformation [2, 52, 69, 141, 142].  When sinusoidal

functions are used as the basis functions, wavelet transform becomes the well-known Fourier

Transform, which do not retain spatial information.  However, the balance of retaining

information on both spatial and frequency domains can be achieved for other basis functions

with local supports, such as Daubechies, Coiflet, Harr, and Symmlet wavelets [52, 141].  These

wavelets have some straight mathematical properties such that their dilations (compressions) and

translations are orthogonal.  A fast pyramidal algorithm has been designed for the discrete

wavelet transform.  The discrete signals f(x) of length 2D are convolved with a low-pass filter

and a high-pass filter which are derived from the mother wavelet functions.17  The filter outputs

are down-sampled and concatenated together to form the base level of the resultant pyramid

structure.  The high-passed outputs are not involved in further computation; however, the low-

passed output is processed recursively for higher pyramid scale levels.  For pyramid scale level

i+1, the low-passed output at level i is filtered again by the low-pass and the high-pass filters,

down-sampled and then concatenated.  The final pyramid has D scale levels.  Because of the

                                                

17 The signals f  can be 1D or 2D.  For a 2D discrete function, both dimensions must have size equal
to power of 2.
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down-sampling step, the transformed signals maintain the same size as the original signals.

However, similar to other pyramidal schemes, relating information from various wavelet scales

can become a complicated task.

2.2.4.2. Scale-space filtering

Witkin's scale-space theory provides another way of handling multi-scale problems that

emphasizes organizing and relating information among scales and the causality property of

filtering [151].  In particular, he introduces a new image space with a continuous scale

parameter r, called scale-space, to record the smoothing process of the signals by Gaussian

kernels because Gaussian kernels are the only kernel possessing the well-behaved causality

property: features manifest in the coarse scale must persist through to the zero-order scale

[10].18  During a continuous Gaussian smoothing process, no new feature is created.  For a 1D

object function f(t), the scale-space F(t,r) is defined by

(2.10)

where 1 denotes the convolution with respect to t and r is the Gaussian standard deviation that

controls the amount of smoothing.  Unlike the wavelet transformation, there is no sub-sampling

compression between scales.  Instead, information among scales is tracked by a 2D binary

scale-space image, which is constructed by placing r in the y-axis and the location of the

inflection points, the zero crossing of the second derivatives of F(t,r), in the x-axis.  (See Fig.

2.4.)  These inflection points are used to represent the function shape.  As r increases, the

smaller extrema of the function f(t) disappear first and F(t,r) evolves to a smoother function

where the number of inflection points decreases monotonically.  The causality property of

Gaussian smoothing guarantees that no new inflection points are created.  Therefore, a more

                                                

18 Chen and Yen showed that morphological open operations do not introduce new zero-crossings as
the smoothing operation moves to coarse scales [30, 66]; however, the morphological smoothing
behaves differently from Gaussian smoothing [75, 76, 79].
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significant structure of the function can survive a larger r.  Moreover, the localization problem of

the inflection points can be solved by a coarse-to-fine tracking of their locations in the scale-

space image back to the zero-order scale, the original function.

Asada and Brady used a scale-space technique to pinpoint the significant curvature

changes for a set of primitives (corner, smooth join, crank, end and bump) along a 2D object

boundary [8].  This method, termed curvature primal sketch, computes the curvature function

from the object boundary and smoothes it with Gaussian kernels of increasing r.  Then the local

extrema of the first derivatives and the second derivatives of the smoothed curvature function

are tracked in two scale-space images.  These two images are used to search for the unique

signature of the primitives.  Once the high curvature points of the primitives are located, they can

then be used as the knot points for spline approximation of the boundary.  Xin et al. [152]

extended the curvature primal sketch method to handle smoothed arcs that do not have

significant curvature change.

Mokhtarian built a 2D object recognition system [102, 103] and a corner detector

[105] using the scale space methodology.  For the object recognition system, an object border

(a) (b)

Figure 2.4.  Scale-space filtering  for a 1D function.  (a) The 1D function f(t) drawn at the
bottom of the graph is smoothed by various Gaussian kernels with increasing r.  (b)
The scale-space image of (a).  The zero crossing of the second derivatives of the 1D
functions in (a) are used to form this scale-space image.
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is smoothed by Gaussian convolutions with various r.  The locations of curvature zero-crossing

points are tracked in a curvature scale-space image, which is used as the signature for the

object.  (See Fig. 2.5.)  A special matching algorithm is designed to match against the scale-

space image with a large database.  For the corner detection system, the maxima of the absolute

curvature are extracted at the coarse scale and the scale-space image is used for localization of

these corners.  Mokhtarian reported that the corner detector can detect all corners without any

false positive findings.

Since no decompression is carried out between scales and an explicit data structure is

used to organize information for all scales, the scale-space approach is a powerful multi-scale

method to relate information between scales.  Unfortunately, the existing methods are designed

                    0 8    16              32            64            128

           (a)

                  (b)

Figure 2.5. Curvature scale-space filtering for a closed contour.  (a) The Gaussian
smoothing can be extended to a 2D object with increasing Gaussian r values, which
are reported at the bottom of each smoothed object.  (b) The curvature scale-space
image of (a), with the x-axis specified by the location of the inflection points of the
curvature curve.
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to work with points along object borders, and there is no notion of  protrusion and indentation

segments.

2.3. Multimedia shape coding

Shape coding is an important feature in the new Moving Picture Experts Group (MPEG)

standard.  In MPEG-4, MPEG enhances the video compression standard of MPEG-1 and

MPEG-2 by allowing the transmission of an arbitrarily shaped video object in one bit stream.

The new functionality provides the infrastructure for interactive manipulation of video objects

instead of pixels and paves the way for many content-based applications, such as [93].

In MPEG-4, there are two types of video objects, opaque and transparent objects.

The shape of these objects is represented by a 2D binary mask, where white pixels denote the

object and black pixels denote the background.  Coding efficiency, scalability, error resilience

and hardware complexity become important issues for a shape coder because of the potentially

huge amount of video data required to be transmitted over various types of networks.  MPEG-

4 carefully evaluated many proposed shape coding algorithms before selecting context-based

arithmetic encoder (CAE) [24] as the shape coding standard.  In this section, we examine the

final 4 proposed shape coding algorithms (vertex-based shape coding, baseline based shape

coding, Modified Modified Reed shape coding and CAE) in the selection process.

2.3.1. Vertex-based shape coding

Vertex-based shape coding [111] codes the object contour by a set of vertices.  The coding

scheme is equivalent to boundary-based partitioning method discussed in Section 2.2.3.2,

where the object is approximated by a polygon.  The number of vertices used controls the level

of lossy shape coding.  Unfortunately, the optimum number of vertices is difficult to determine

and their placements may alter the shape of the object, which is undesirable for analysing the

object shape.  For lossless shape coding, the coding scheme becomes a chain code, which has

been discussed in Section 2.2.1.
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2.3.2. Baseline based shape coding

Baseline based shape coding [111] is a variation of the parameterization method discussed in

Section 2.2.1.  First the object is rotated so that the longest axis is placed on the x-axis, which

is called the baseline.  The y coordinate denotes the distance between a point on the object

contour and the baseline.  The object contour is then sampled and the y-coordinates are

differentially encoded.  The contour points where the direction changes are also encoded.  This

coding scheme optimizes the data volume required to be transmitted over the network;

however, it is inefficient to access a point on the contour.  Random access for the contour points

is impossible until the entire coding is decoded.

2.3.3. Modified Modified Reed shape coding

The Modified Modified Reed shape coding [153] is a block-based shape coder which

enhances the standard coding method for G4 facsimile.  The object shape is divided into 16 x

16 macro blocks and the changing pixels (the first white/black pixels after a run of black/white

pixel block) are searched line-by-line and are encoded with respect to the reference line (the

line has just been processed).  Similar to the baseline based shape coding method, this method

is optimized for encoding efficiency at the expense of computing efficiency.  Decoding the entire

macro block is required to extract the original shape expressed in the block.

2.3.4. Context-based arithmetic encoder

The CAE [24] codes all pixels of an object shape after the shape is divided into 16 x 16 macro

blocks.  In the intra-frame mode19, the coding is based on the local context of 10 neighbouring

pixels, which account for 1024 contexts.  The probability distributions of the contexts and the

optimal coding are pre-computed in training sessions.  The CAE method was selected as the

standard shape coding for MPEG-4 because the CAE outperforms other shape coding

                                                

19 We concentrate on intra-frame coding method since there is no temporal encoding in analysing
lesion border shape.



35

methods in coding efficiency, scalability, error resilience and hardware simplicity.  However,

representing an object shape by its canonical form, a binary mask, often requires further

transformations to other representations such as border contours, skeletons or moments shape

descriptors.

In this chapter, many object shape algorithms have been discussed; however, none of

these general techniques can adequately analyse the complex features of a melanocytic lesion

border.  A new method is required.  The new method should generate numeric shape

descriptors so that they can be processed directly by a melanoma classifier.  Partitioning the

lesion into parts help derive important clinical information.  A multi-scale method is desired to

handle structural protrusions and indentations along a rugged border.  Combining these general

techniques, the resultant shape descriptors provide an effective measure for the border

irregularity of a melanocytic lesion.



36

Chapter 3
Data Collection and Preprocessing

Before the new shape measure is described, the data collection and data preprocessing steps

are discussed, as they are important for the development of such a measure.

3.1. Data collection

Obtaining a set of melanocytic lesion images which range from clinically benign nevi to malignant

melanomas is a crucial prerequisite for developing any computerized algorithms for analysing

skin lesions.  Pigmented skin lesion images were collected from two sources.

3.1.1. Images from a video microscopy device

The first source was a data collection project operated by B.C. Cancer Agency and Pigmented

Lesion Clinic.  From 1994 to 1998, dermatologists of the clinic invited patients with clinically

abnormal lesions, which required surgical removal, to participate in the project.  The pigmented

skin lesions specified by dermatologists were digitized by a hand-held camera (see Fig. 3.1).

The hand-held camera used in the data collection project (see Fig. 3.1a) was a video

microscopy imaging device.  This light-weight device was connected to a shoebox-sized main

unit (see Fig. 3.1b), which was further connected to a frame grabber in a Personal Computer

(see Fig. 3.1c).  Inside the main unit there was a halogen bulb providing a white light source.

Guided by optic fibers to the hand-held camera, the light source formed a ring within a silver-

coloured, hollow cylinder attached to the front of the camera.  During the imaging process, the

cylinder shielded off the room ambient light.  Furthermore, the cylinder was in direct contact

with the patient skin to stabilize the camera against excessive lateral or vertical movement.  The

camera had a fixed focal length, 20 times magnifying lens so that a standard imaging environment

could be achieved.  Polarized filters mounted in front of the camera lens and the light source

permitted subsurface view features to be examined.  Because the hand-held camera is both

small and light in weight, it can be moved around the patient's skin surface easily to capture
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images of skin lesions on different body parts.  The resultant images were in red/green/blue

(RGB) colour format, 512 x 486 pixels in size.  The spatial resolution for each pixel was 0.033

mm x 0.025 mm.  Every image had one lesion located near the centre and was surrounded by

normal skin of differing hue.  Some images also contained an additional colour marker used by

the dermatologist to designate which lesion was to be imaged.  The lesion could be vary in size,

shape, colour and saturation.  In many cases, the margin between a lesion and the surrounding

skin was clinically ill-defined.  Fig. 1.2a shows a skin image taken by the hand-held camera.    

 Follow-ups were maintained on all participants of the data collection project and the

pathology findings for the surgically removed lesions were retrieved.  During the project, 252

suspicious lesions from 155 patients were imaged.  After the follow-up period, 178 pathology

reports were collected. The histologic breakdown for the lesions included 131 pathologically

benign lesions, 40 pathologically dysplastic nevi and 7 superficial spreading melanomas.  We

also collected 78 clinically benign lesions so that we have data for the entire spectrum of

melanocytic lesions.  These clinically benign lesions had no pathology report because the lesions

were not removed from the patients.

(a) (b) (c)

Figure 3.1. The video microscopy imaging device.  (a) The hand-held video microscopy
camera.  (b) The main unit.  (c) The Personal Computer connected by the camera.
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3.1.2. Images from 35-mm colour slides

Another source was a set of forty-two 35-mm colour slides of malignant melanomas obtained

from Pigmented Lesion Clinic of Vancouver Hospital and Health Sciences Centre. These slides

were all of superficial spreading melanomas, where the entire lesion was clearly shown.  Slides

with non-flat body features such as digits or ears were excluded because these body parts may

distort the lesion shape.  The colour slides were scanned into Kodak PhotoCD digital format.

Fig. 1.2b shows one of these melanoma images.

3.2. Preprocessing

Before the skin images can be used for shape analysis, they have to be processed.  We use two

automatic programs.  First, a program called DullRazor performs dark thick hair removal [85,

86].  Then an automatic segmentation program extracts the lesion borders from the skin images

[87].

3.2.1. DullRazor

Many skin images contain hairs.  (Fig. 3.2 shows one of the lesion images covered by hairs.)

These hairs, especially the dark thick ones with a similar colour hue to the lesion, occlude the

lesion and may mislead the segmentation program.  In spite of the rapid growth in the image

processing applications for dermatology [40, 58, 140, 149], the hair problem has not been fully

addressed.  Of course, shaving the hairs before imaging sessions is one of the solutions [4, 131].

However, shaving not only adds extra costs and time to the imaging session, but also is

uncomfortable and impractical especially for  multiple lesions or total-body nevus imaging [136,

145].  Hence, a software approach for dark thick hair removal from skin images is needed.
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There are several approaches to handle the hair problem.  Since the skin image consists

of hairs, a lesion, and the surrounding normal skin, one way is to design a segmentation program

to recognize all the objects.  This method, however, requires a complicated segmentation

program due to the fact that the hairs divide a single lesion into many sub-parts.  The

segmentation program must be able to join all the sub-parts together to form a single lesion.

This merging process is a nontrivial task.  Instead of a designing a complicated segmentation

program, a preprocessor, called DullRazor, removes the thick and dark hairs from the skin

images before they are segmented by a segmentation program.

DullRazor consists of three basic steps:  (1) Identifying the dark hair locations, (2)

replacing the hair pixels with the nearby non-hair pixels, and (3) smoothing the final result.  All

these steps are discussed in detail.

To locate the dark hairs, a generalized grayscale morphological closing operation is

applied to the three colour bands separately [61].  The grayscale closing operation smoothes

out the low intensity values, i.e., the thick dark hair pixels, along the structure element direction.

The four structure elements, 0°, 45°, 90° and 135°, are shown in Fig. 3.3.  The generalized

grayscale closing image is obtained by taking the maximum response from the individual closing

operations for each colour band.  Finally, a binary hair mask image is created by thresholding

Figure 3.2. A melanocytic lesion image covered by dark thick hairs
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the absolute difference between the original colour band and the generalized grayscale closing

image.  This hair mask divides the hair and non-hair regions into disjoined areas.

0 1 1 1 1 1 1 1 1 1 1 1 0        0 0 0 0 0 0 0 0 0        0        0 0 0 0 0 0 0 0 0
                                                          0 1 0 0 0 0 0 0 0        1        0 0 0 0 0 0 0 1 0
                                                          0 0 1 0 0 0 0 0 0        1        0 0 0 0 0 0 1 0 0
                                                          0 0 0 1 0 0 0 0 0        1        0 0 0 0 0 1 0 0 0
                                                          0 0 0 0 1 0 0 0 0        1        0 0 0 0 1 0 0 0 0
                                                          0 0 0 0 0 1 0 0 0        1        0 0 0 1 0 0 0 0 0
                                                          0 0 0 0 0 0 1 0 0        1        0 0 1 0 0 0 0 0 0
                                                          0 0 0 0 0 0 0 1 0        1        0 1 0 0 0 0 0 0 0
                                                          0 0 0 0 0 0 0 0 0        1        0 0 0 0 0 0 0 0 0
                                                                                            1
                                                                                            1
                                                                                            1
                                                                                            0
            (a)                                      (b)                (c)                   (d)

Figure 3.3. Structure element for the generalized closing operation.  (a) 0° structure
element, centered at (6, 0), (b) 45° structure element, centered at (4, 4), (c) 90°
structure element, centered at (0, 6), (d) 135° structure element, centered at (4, 4)

Let Gr be the generalized grayscale closing image of the original red band, Or, and S0,

S45, S90 and S135 are the structure elements in the horizontal, diagonal, and vertical directions.

Gr can be expressed as:

(3.1)

where • denotes the grayscale closing operation.  The binary hair mask pixel at location (x,y),

denoted as M(x,y), is computed  as:

(3.2)
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where T is a pre-defined threshold20.

A similar expression can be written for the green and blue bands and the final hair mask

of the colour image, M, is the union of all three hair masks:

(3.3)

where Mr, Mg, and Mb are the hair masks for the red, green, and blue band, respectively.  Fig.

3.4 shows the hair mask M for Fig. 3.2 after the generalized grayscale morphological closing

operation is applied.21

In the second step, the binary hair mask M guides the interpolation operation to replace

hair pixels by the nearby non-hair pixels.  Before the replacement is performed, each pixel in the

hair region of the mask M is checked to ensure that the pixel is located within a thin and long

structure, i.e. the hair structure; otherwise, the pixel is rejected as noise.  For each pixel inside

the hair region M, line segments are drawn in 8 directions, up, down, left, right and the four

diagonals, radiating from the pixel until the line segment reaches the non-hair region.  These 8

                                                

20 The skin images are 8 bit and the maximum intensity for each colour band, therefore, is 255.  The
threshold T is empirically set to 24 after testing a large set of skin images with dark thick hair covers.

21 Note the original mask is binary black/white, but reduction for printing makes it appears as
grayscale.

,bgr MMMM ∪∪=

Figure 3.4. Hair mask M after applying an generalized closing operation to Fig. 3.2
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line segments form 4 straight lines centered at the pixel.  The length of each line is calculated and

the longest one is noted.  The longest line must be longer than 50 pixels and other lines must be

shorter than 10 pixels.  Otherwise, the pixel is rejected.  The cleanup hair mask is shown in Fig.

3.5.

After a pixel is verified to be inside a hair structure, the corresponding pixel in the

original image is replaced by two nearby non-hair pixel values along the shortest line, the line

perpendicular to the longest one, using bilinear interpolation.22  Let I(x,y) be the intensity value

for the replacing pixel, and I1(x1,y1) and I2(x2,y2) be the selected non-hair pixel intensities along

the shortest direction.  The new intensity value In(x,y) can be expressed as:

(3.4)

where D(a,b) is the Euclidean distance between point a and b.

Fig. 3.6 shows the resultant skin image after the replacement step.  In this image, many

thin lines around the edge of hair structures are still visible.  The last step of DullRazor smoothes

away these thin lines by an adaptive median operator.  First, an extended hair mask is

                                                

22 Replacing hair pixels with spline interpolation may produce smoother results than bilinear
interpolation in the expense of computational complexity.  However, for the purpose of using
DullRazor as a preprocessor for an automatic segmentation program, bilinear interpolation produces
an adequate result.
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Figure 3.5. The cleanup hair mask of Fig. 3.4
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constructed by applying a binary dilation with a 5 x 5 square structure element of all 1’s

centering at the middle of the square.  (The enlarged hair mask for the adaptive median

smoothing is shown in Fig. 3.7.)  Then a 5 x 5 median filter is applied to only the enlarged hair

regions, while the non-hair regions are left un-touched to preserve fine details.  The final output

of DullRazor is shown in Fig. 3.8.

Figure 3.7. The enlarged hair mask for Fig. 3.5

Figure 3.6. The skin image of Fig. 3.2 after the replacement step
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3.2.2. Segmentation

The second phase of the preprocessor task extracts the lesion border from the skin image.

After occluding dark thick hairs are removed by DullRazor, skin images consist of a lesion

surrounded by normal skin.23  (See Fig. 3.8.)  The intensity of the normal skin is uniformly

distributed, but the lesion can vary in size, shape, colour and intensity.  In many cases, the

separation between a lesion and the surrounding skin is fuzzy.  A three-step algorithm is used to

extract the border.  These steps consists of (1) a multi-stage median filter to suppress noise, (2)

a process to determine the threshold value, and (3) a rule-based system to identify the lesion

and to extract the border.

The first step of the segmentation algorithm removes noise caused by the imaging

process while preserving image details such as fuzzy edges.24  A multi-stage central weighted

median filter (CWMF) [121] with a set of linear and curved filter windows is applied to the red,

green and blue bands of a skin image separately.  The CWMF is a special case of the well

studied median filter (MF), which outputs the median pixel values in a running window of size N

                                                

23 A few skin images also contains a colour marker used by the dermatologist to designate the lesion
to be imaged.

24 DullRazor focuses on hair regions of a skin image; non-hair regions are neither processed nor
altered.

Figure 3.8. The final output of DullRazor for Fig. 3.2
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x N, where N is an odd integer [5, 68, 126].  It is known that the MF preserves edges while

removing impulsive noise, but it also erases thin lines and clips sharp corners.  The problematic

behaviour of the MF can be alleviated by a set of linear and curved filter windows shown in Fig.

3.9.  For example, the filter window W(1) preserves details in the vertical direction, while W(2)

preserves details in the horizontal direction.

The CWMF puts more weight on the central pixel (the pixel being examined) by adding

multiple copies of the central pixel prior to the median operation [78].  Let X(i,j) be the input of

the filter, Y(i,j) be the output, and W be the N x N filter window with window size of 2L+1.

The output of the CWMF is denoted as:

(3.5)

where K is a constant.  When K = 0, the CWMF becomes a MF.  As K increases, the

CWMF puts more emphasis on preserving details until it becomes an identity filter (i.e. no

filtering) when K m L.

For our automatic segmentation program, a three-stage CWMF is constructed as

shown in Fig. 3.10 [121].  In the first stage, there are 8 CWMF operators.  Each CWMF

operator works with one of the linear and curved filter windows as defined in Fig. 3.9.   The

filter windows mask out the input pixels before they are sent to the operator.  The output from

the first stage is arranged into two groups.  Combining with the original central pixel, each group

is directed to a CWMF operator in the second stage.  Finally, the result of the entire three-stage

},),(|),( of copies2),,({),( WtsjiXKtjsiXmedianjiY ∋−−=

W(1)        W(2)        W(3)       W(4)        W(5)       W(6)        W(7)       W(8)

Figure 3.9. Filter windows for median filter
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CWMF operator is obtained by submitting the output of stage two with the central pixel to the

single CWMF in the third stage.

For each pixel in the image, there are 11 CWMF operations, and each operation

computes the median value from an extended set.  An interesting property of the CWMF is that

it can simplify the computation [78, 121].  Again, let Y(i,j) be the output and X(i,j) be the input

of a CWMF operator with 2K copies of X(i,j) being added.  Also let 2L+1 be the size of the N

x N filter window, where N is an odd integer.  Then the output Y(i,j) can be expressed as:

(3.6)

where X(i,j)[r; 2L+1] is the rth smallest element among the 2L+1 samples within the running

window centred at X(i,j).
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Figure 3.10. Scheme for the three-stage CWMF
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Fig. 3.11 shows the result of applying a three-stage CWMF to the lesion image in Fig.

3.8.  Because the purpose of the filtering step is to remove noise caused by the imaging process

while preserving image details, minimum modification is done on the input image.  The mean

absolute differences are 0.13, 0.09 and 0.12, and the maximum absolute differences are 19, 20,

21 for the red, green and blue band, respectively.25

The second step determines the threshold values to segment a lesion from the

surrounding normal skin.  Three threshold values, one for each colour band, are needed and

                                                

25 The maximum intensity for each colour band is 255.

(a) (b)

(c) (d)

Figure 3.11.  Effects of the three-stage CWMF on Fig. 3.8.  (a)-(c) specify the pixel
locations modified by the three-stage CWMF operator for the red, green, and blue
band, respectively.  (d) The three-stage CWMF output for Fig. 3.8.
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each threshold value is calculated from a histogram.  Since the normal skin and the lesion are the

dominant objects in the image, they correspond to the two highest peaks in the histogram.

Moreover, because the normal skin has a lighter colour tone than the lesions, the peak for the

skin can be identified with confidence as the peak with the higher intensity value.  The final

threshold value T, which falls between the two peaks, is fine tuned by analysing the pixel

distribution for each intensity value i between the two peaks.  When intensity i is examined, all

pixels corresponding to intensities [0 .. i-1] are classified as base-mole, while the pixels

corresponding to [i+1 .. 255] are classified as base-skin.  A pixel p whose intensity is i is

classified as noise if there exist no connected path between p and the base-mole.  In other

words, there does not exist a sequence of pixels p0, p1,  p2, …, pn, such that, for j = 1, 2, …, n,

the intensity value of all pj's are within [0..i], the pixels pj and pj+1 are adjacent neighbouring

pixels and pn is inside base-mole.  The term noise-ratio is defined as the ratio between the

number of pixels categorized as noise and the total number of pixels corresponding to intensity i.

The threshold T is set to the largest intensity i with an acceptable noise-ratio.

The above noise-ratio may break down if intensity i approaches the histogram peak of

the normal skin, S.  In this case, base-mole may occupy such a large area that there is always a

connected path between base-mole and most of the corresponding pixels of intensity i.  To

avoid this situation, the examination of intensity i too close to S is prohibited by another ratio,

skin-ratio, which is defined as the ratio between the number of pixels corresponding to i and the

number of pixels classified as base-skin.  With both ratios working together, the fine tuning

process of T selects the highest possible i whose noise-ratio and skin-ratio are within a pre-

defined range.

The final step of the segmentation algorithm combines the threshold results from the

three colour bands, identifies the lesions and extracts the borders.  A pigmented skin lesion is

darker or redder in colour than the surrounding skin not because there is more red in the lesion,

but the melanin nest absorbs most of the blue wavelength so that there is very little blue

component.  As illustrated by Fig. 3.12, the low intensity values in the blue band enable a stable

threshold computation and so the blue band has more discernment power than the red and
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green bands.  For some of the very faint, low contrast images, the red and green bands may not

produce a proper threshold value.  This observation suggests more weight should be put on the

blue band.  Hence, the last step uses the blue band as the dominant band.  The red and green

bands attempt to capture the fine details that the blue band misses, i.e., when the blue intensity is

slightly above the threshold value T and is well below S.  All these considerations guide the final

rule-based system to form a binary mask that divides the image into the skin region and the

lesion region: the pixel at location (i,j) of the binary mask is classified as part of the lesion region

if

(3.7)

where X(i j) is the intensity value of the band X at the pixel position (i, j), for X = R (red), G

(green) or B (blue).  T(X) is the final threshold value of band X.  C is a pre-defined parameter

where C < S.

Once a binary mask of the skin lesion image is generated, the mask is passed to a blob-

colouring process [13, 61] to enumerate the objects in the lesion region.  Cleanup is then

applied to eliminate noise objects whose sizes are smaller than some pre-defined minimum size.
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       (a)        (b)         (c)

Figure 3.12. The red (a), green (b) and blue (b) band of Fig. 3.8
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The remaining objects are declared as lesions with edges outlined by a boundary tracking

procedure [137].  (Fig. 3.13 demonstrates the segmented border for Fig. 3.8.26)

3.2.3. Issues arising in the data preprocessing phase

In the preprocessing phase, DullRazor attempts to simplify the segmentation task by removing

deleterious effects of hairs.  However, the software approach to hair removal has an inherent

problem.  It is obvious that pixel values underneath the hairs cannot be reconstructed accurately

by a single view.  A careful examination of Fig. 3.8 reveals traces of faded hair lines, which is

why the program is called DullRazor.  These traces can probably be removed, but at the cost of

an excessive loss of fine details in the image.  Therefore, these artifacts are not processed further

prior to the segmentation program.  Furthermore, other image analysis tasks, such as texture

analysis or pigment network extraction that tend to be sensitive to pixel modifications, can use

the hair mask as shown in Fig. 3.7 to locate the modified pixels.

Fig. 3.14 shows an example where, although most of the lesion was segmented

properly, a small region at the right side of the lesion and another one at the bottom-left  corner

                                                

26 DullRazor and the automatic segmentation program were implemented in C using a Sun Ultra-II
workstation.  The execution time for the preprocessing phase was about 30 seconds.

Figure 3.13. Segmentation result.  The original image is shown in figure Fig.3.2 and the
image after DullRazor is shown in Figure. 3.8.
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were misclassified due to heavy hair clusters and fuzzy borders.  Indeed, automatic

segmentation is a non-trivial task even for skin lesion images, which have a well-defined domain

of a lesion surrounded by the normal skin.  Hairs and fuzzy borders increase the difficulty of the

task.

In order to evaluate the segmentation program, Dr. David McLean and I examined all

segmentation results on a colour computer monitor.  First, the original skin image was shown on

the monitor, and then the skin image with the segmentation result, which was  superimposed as a

white outline, was shown along side with the original image.  By comparing these two images,

the segmentation results were assessed subjectively and categorized into three groups: good, fair

and poor.  When the computed border outline had a good agreement with the actual lesion

border, the segmentation result was classified as good.  If there were some minor

misinterpretations, the segmentation result was classified as fair.  Finally, a poor result indicated

the segmentation program missed a large portion of the actual border.  After all 298 skin

       (a)         (b)

Figure 3.14.  A skin lesion heavily covered by dark thick hairs. (a) the original hairy image,
(b) the segmentation result after DullRazor
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images27 were evaluated visually, we found that  only 108 skin images, or 36%, were classified

as good.  Fig. 3.13 and Fig. 3.15 show two examples of good segmentation results.  144 skin

images, or 48%, (see Fig. 3.14 and Fig. 3.16) were categorized as fair, and 46 skin images, or

15%, (see Fig. 3.17) were categorized as poor.

Because of the complexity of a skin image, which may consist of hairs, a multi-coloured

lesion, a fuzzy border and/or a low contrast image, a fully automated system that produces a

perfect segmentation for all lesions is not achievable.28  However, as the starting point of

developing such an automatic system, the preprocessing phase produces some good results.  If

there is any concern with the segmentation accuracy, the extracted border can be inspected and

modify manually before any subsequent analysis is applied.

                                                

27 These 298 images include 78 clinically benign lesion images, 131 pathologically benign lesion
images, 40 pathologically dysplastic nevi images and 7 superficial spreading melanoma images
recorded by the hand-held video microscopy camera, and 42 superficial spreading melanoma images
in Kodak CD format.

28 A precise manual segmentation may not be achievable for a fuzzy lesion border.  Increasing the
resolution of the imaging device may help; however, the partial volume effect of the melanin
distribution cannot be fully solved.

      (a)         (b)

Figure 3.15. Example of good segmentation results.  (a) The original image, which is also
shown in Fig. 1.2a.  (b) Segmentation result of (a).
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     (a)        (b)

Figure 3.17. Examples of poor segmentation results.  (a) A very faint, low contrast skin
lesion with a fuzzy border.  (b) The segmentation result of (a).  (c) A lesion divided
by white skin marks.  (d) The segmentation result of (c).

  (c)     (d)

(a) (b)
Figure. 3.16. Example of fair segmentation results.  (a) The original image  (b) Segmentation

result of (a).  The lesion border at the bottom and at the top-right hand side is
outlined incorrectly due to the subtle difference in hue between the lesion and the
normal skin.
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Chapter 4
Irregularity Indices

As discussed in chapter 2.1, the previously used methods for measuring border irregularity are

more sensitive to texture irregularities than structure irregularities (structural protrusions and

indentations), which are the important clinical features for diagnosing melanomas.  The single-

scale methods compute some global properties of a skin lesion but these methods are noise-

sensitive.  The problem is magnified when a melanocytic lesion border is extracted by an

automatic segmentation program, which tends to produce a more ragged (noisy) border than a

manual segmentation program.  Although fractal dimensions (FD) and structure fractal

dimensions (SFD) are multi-scale methods, they cannot detect structural irregularities.  To solve

these problems, a stable measure sensitive to structure irregularities needs to incorporate both

global and local features.   Our new measure achieves this by partitioning a lesion border into

protrusion and indentation segments under a multi-scale scheme.  This chapter describes our

algorithm in detail [84, 88].

4.1. Abstracting the lesion border

The algorithm begins with an abstraction of the lesion border, which can be extracted by a

segmentation program such as the one reported in the previous chapter, as a simple closed

planar curve L0 in C2.  Further simplification is made by parameterization of the x and y

coordinates into two linear functions x(t) and y(t), where 0 ≤ t ≤ 1 is the path length variable

along the planar curve:

(4.1)

The initial point of the parameterization, t = 0, can be selected arbitrarily; however, the border

is traced in the counterclockwise direction so that the interior of the lesion is in the left-hand side

of the border during the tracking process.  Furthermore, L0(x(0),  y(0)) =  L0(x(1),  y(1)),

because the border forms a closed contour.  An example of a lesion border is shown in Fig. 4.1

with the initial point of the parameterization marked by "|".

)).(),((0 tytxL =
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4.2. Defining indentation and protrusion segments

A simple method to measure irregularities (indentations and protrusions) along a curve is to

compute the corresponding curvature function.  For a point n in a curve L(x(t),  y(t)), the

curvature at n is defined as the instantaneous rate of change of the angle between the tangent at

n and the x-axis with respect to the arc length of L.  The curvature can be also expressed as

1/q, where q is the radius of the locally best-fit circle at n.  When the curvature is large at n, i.e.,

a small q, the curve turns rapidly at n.  However, for a small curvature, i.e., a large q, the curve

is nearly flat at n.  It is known that the curvature function K(t) can be computed as [53]:

(4.2)

where x' and y' are the first derivatives of the functions x(t) and y(t) with respect to t, and x"

and y" are the second derivatives of x(t) and y(t).  The curvature function portrays the curve L

in two ways.  The sign of K(t) indicates concavity or convexity of the curve at point n and the

magnitude denotes the amount of bending.  With our convention, using counterclockwise tracing
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Figure 4.1. Example of a extracted lesion border.  The corresponding melanocytic lesion is
shown in figure 1.7e and 1.7f.
Figure 4.1. Example of an extracted lesion border.  The initial point of the parameterization,

t = 0, is marked by "|" and the border is traced in the counterclockwise direction.
The corresponding melanocytic lesion is shown in Figure 1.7e and 1.7f.
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along the border and image coordinate system29, positive curvature values imply concavity,

while negative curvature values imply convexity.  Local curvature extrema, located by the zero-

crossings of the first derivative of K(t), mark the tip points of concave and convex segments.

These tip points are considered to have high information content [9], and have been frequently

used to partition border contours into parts.  Hoffman and Richards [63, 123] partitioned

object borders at concave tips and their part primitives, codons, are constituted of curve

segments with 0, 1 or 2 curvature extrema.  Leyton [91, 92] constructed symmetric axes by

bisecting concave and convex segments from their tips.  He further suggested that deformation

forces could act on these tip points in the direction of the symmetric axes.  Siddiqi and Kimia's

[134] neck-based and limb-based approach of object decomposition also put the terminals of

part-lines at the concave tips.

We exploit local curvature extrema to divide the border into a set of

indentation/protrusion segments (see Figure 4.2).  An indentation/protrusion segment is defined

as a curve segment composed of three consecutive local curvature extrema [t1, t2, t3], where t1,

                                                

29 The origin is in the top-left corner.

(a) (b)

Figure 4.2. Definition for indentations and protrusions.  (a) A curve segment with two
protrusions and one overlapping indentation. (b) The corresponding curvature
function.  The points A, B, C, D, and E are the local curvature extrema.
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t2 and t3 are specified by the path length variables of the curve.  The middle curvature extremum

t2 denotes the segment tip point and the segment type.   For example, when t2 is a concave

curvature extremum, K(t2) > 0, the corresponding segment is an indentation segment.

Otherwise, a convex curvature extremum t2, K(t2) < 0, specifies a protrusion segment.  The

local curvature extrema t1 and t3 delineate the extent of the segment and they have a different

sign from curvature extremum t2:

(4.3)

In other words, an indentation segment is defined as a curve segment that begins with a convex

curvature extremum, following by a concave curvature extremum and a convex curvature

extremum.  Similarly, a protrusion segment, defined as a dual of an indentation, is a curve

segment that begins with a concave curvature extremum, following by a convex curvature

extremum and a concave extremum.  For example, in Fig. 4.2a, a curve segment with two

protrusions and one overlapping indentation is shown.  The points B and D specify the tips of

the protrusion segments and the point C specifies the tip of the indentation segment.  The

corresponding curvature function is plotted in Fig. 4.2b. The local curvature extrema, points A,

B, C, D and E, are computed as the zero-crossings of the first derivative of the curvature

function, K'.  By applying the definition of the indentation/protrusion segments, one indentation

segment [B, C, D] and the two protrusion segments [A, B, C] and [C, D, E] can be located.

Therefore, a lesion border is decomposed into a set of indentation/protrusion segments by

scanning the corresponding curvature function for three consecutive curvature extrema with

alternating signs.

4.3. Extracting structure indentation and protrusion segments

4.3.1. Scale dependence of irregularity segments

Computing indentation/protrusion segments in discrete space using the method described in

Section 4.2 is scale dependent because Equation 4.2 involves the first and second derivatives of
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the functions x(t) and y(t), which are estimated by difference functions.  For example, when x(t)

is transformed to a discrete function x(i), i = 1, 2, 3, …, x'(t) is approximated by:

(4.4)

where d is a constant.  Furthermore, the parameter d controls the scaling of the difference

function.  When d is small, Equation 4.4 estimates x' using local information.  On the other hand,

global information is used to estimate x' when d is large.  Therefore, estimating derivatives and,

in turn, determining indentation/protrusion segments are scale dependent.

The scale dependence of Equation 4.4 raises an important issue: what is the optimal

scale? One solution is to use several pre-defined scales. However, this approach has problems

of selecting appropriate scales and relating information found among scales.  For the new

measure, a well-known method called scale-space filtering technique is used to provide a

solution for scale selection and information passing in a multi-scale environment [8, 94, 105,

151].

4.3.2. Classic curvature scale-space

The idea of the classic curvature scale-space filtering [102, 103, 105] is based on continuously

smoothing the original border function L0(x(t), y(t)) by convolving x(t) and y(t) with a Gaussian

kernel g(t,r) of increasing width:

(4.5)

where L(t,r) is the smoothed border, ⊗ denotes an convolution operator,

(4.6)

and

(4.7)
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Before the smoothing process, the lesion border is parameterized (sampled) once to obtain x(t)

and y(t).  Then as expressed in Equations 4.5 to 4.7, the smoothed border is computed by

convolving the original x(t) and y(t) with Gaussian functions of different Gaussian standard

deviation r's, which control the amount of smoothing.30  During the smoothing process, fine

features are first detected when the scale parameter σ is small. As σ increases, fine features

along the border are smoothed-out and the smoothed border L(t,r) is transformed toward an

oval shape.  At this stage, large global features can be extracted.  The smoothing process is

terminated at σterm when all concavities of the border are removed.  The smoothing process is

demonstrated in Fig. 4.3 using the lesion border shown in Fig. 4.1.  For this border, the

smoothing process terminates at σterm = 129.

The classic curvature scale-space filtering technique employs a 2D scale-space image to

record certain features for the entire smoothing process in a precise format.  Fig. 4.4 shows an

example of a classic curvature scale-space image.  The y-axis of the image represents the

smoothing scale, denoted by Gaussian σ, while the x-axis represents the path length variable t,

which specifies the spatial locations of curvature zero-crossings along the lesion border.  The

curvature function K(t,r) of the smoothed border L(t,r) is defined as:

(4.8)

and the curvature zero-crossings are points that satisfy the following conditions along the border:

(4.9)

To construct such a scale-space image, smoothed borders are analysed in turn.  For each

smoothed border L(t,r), all curvature zero-crossings are located and plotted in the 2D scale-

                                                

30 The smoothed border is not re-parameterized (sampled) again.
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space image.  The resultant data representation is a binary image31 as shown in Fig. 4.4.  For

example, the labelled points A0 to A9 in Fig. 4.4 are the corresponding curvature zero-crossing

points shown in the smoothing process of Fig. 4.3 at σ = 40.  (The curvature function is shown

in Fig. 4.5.)  The scale-space image captures the detected feature for the entire smoothing

process.

                                                

31 The classic curvature scale-space image is considered as a binary image because it requires 2
values to encode the image.  The loci of curvature zero-crossings can be coded as 1, while the
background can be coded as 0.

Figure 4.3. Gaussian smoothing process for lesion border shown in Fig. 4.1.  Only some of
the σ smoothing levels, specified at the top of each subfigure, are plotted.  The
parameterization of the closed curves begins at the point marked as 'x' and the
parameterization is done in the counterclockwise direction.  The segment [H, I, J] at
σ = 32 wraps around the initial point of the parameterization process.  At σ = 40, all
curvature zero-crossing points are marked as '*' and are also shown in Fig. 4.4.  The
protrusion segment [H, I, J] at σ = 32, and the indentation segments [B, C, D] and
[B1, C1, F] at σ = 48 and 102, respectively, are shown in Fig. 4.8a.
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4.3.3. The sigma-ratio shape measure

The value σterm, the minimum amount of smoothing required to remove all concavities on the

border L0, reveals the overall roughness of the entire lesion border.  Such a property has been

recognized and evaluated in our early work towards development of a new measure for a

melanocytic lesion border.  We defined a simple index called Sigma-Ratio (SR) as the ratio of

σterm over the border length [83].32  Since a circle has a constant convex curvature with no

extrema, it has the minimum index value 0.  All other lesion borders have an index greater than 0

based on the roughness of the border.  For example, the sigma-ratio indices for the lesions A,

B, and C shown in Fig. 1.7 are 0.29, 0.53 and 0.71, respectively.  (The lesion borders are

shown in Fig. 4.6 again for convenience.)  These ratios correlate well with the structural

                                                

32 Normalization with the border length is required to yield a scale invariant measure.

Figure 4.4.  Classic curvature scale-space image for the smoothing process shown in Fig.
4.3.  At σ = 40, the spatial locations for curvature zero-crossings are labelled as A0,
..., A9.  Their corresponding points are also marked in Fig. 4.3.  The point AC,
denoted the peak of a contour arc, is discussed in Section 4.3.5.
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roughness of the lesion borders.  Lesion border A has no structure irregularities other than

texture irregularities.  Lesion border B has an protrusion at the top of border, while lesion

border C has major structural indentations and protrusions at the bottom of the border.

Even though this simple index works well with many lesion borders, there are some

shortcomings.  First the SR is non-linear.  Transforming r to log(r) is required to maintain

linearity [151].  A sensitivity test also shows that a very high SR value (0.96) is returned for a

       (a)                (b)                   (c)

Figure 4.6. Three lesion borders of Fig. 1.7.  (a) Lesion border A.  (b) Lesion border B.
(c) Lesion border C.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

path length variable t

curvature k

0

Figure 4.5. Curvature function of the smoothed border at r = 40 of Fig 4.3.  All curvature
zero-crossing points are labelled as A0 to A9.



63

circle with a long and narrow indentation such as the phantom shown in Figure 4.7a.  It implies

that if an occluding hair of a skin lesion is misinterpreted as a long and narrow indentation by a

segmentation program, a high index value may be returned.  Therefore, the SR shape index

requires all hairs to be removed carefully either by shaving, or by using a software program such

as DullRazor [85].  The other shortcoming is more problematic than the previous one.  Since the

SR is constructed from the global feature of the lesion border length, it cannot properly

recognize certain structure features.  In particular, the phantom with a much larger indentation

shown in Fig. 4.7b has a only slightly higher SR value (0.97) than the phantom in Fig. 4.7a.

These shortcomings suggest that the new measure should be area-based so that the measure is

proportional to the area of the irregularity.  Furthermore, the necessity of properly identifying

structure protrusions and indentations is reinforced.  In the next sections, we describe how to

analyse the indentation/protrusion segments using the extended curvature scale-space image.

4.3.4. Extended curvature scale-space

Previously, the locations of curvature zero-crossings have been used as the detecting feature in

the classic curvature scale-space filtering technique [102, 103, 105].  To analyse

indentation/protrusion segments instead of border points with zero curvature values, local

   (a)        (b)

Figure 4.7.  Two phantoms for sigma-ratio.
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curvature extrema are chosen to be the investigated feature of our extended curvature scale-

space image.  These curvature extrema are defined as the zero-crossings of the partial derivative

of K(t,r) with respect to t, i.e.

(4.10)

Also, the classic curvature scale-space image is extended from a binary image to a three-valued

image to encode the concavity or convexity property of the curvature extrema.  Local curvature

extrema whose curvature value is greater than zero (i.e., concave curvature extrema) are

marked as shaded points in the image, while local curvature extrema whose curvature value is

less than 0 (i.e., convex curvature extrema) are marked as solid points.  Such an extended

three-valued scale-space image33 for the smoothing process of Fig. 4.3 is depicted in Fig. 4.8a.

To construct the extended curvature scale-space image, the zero-crossings of the partial

derivative of the curvature function with respect to t for each smoothing scale σ  are determined

and their positions are recorded on the image along with their concavity or convexity property.

For example, the curvature extrema B, C and D at σ = 48 of Fig. 4.3 are recorded as

corresponding points B, C, and D in Fig. 4.8a.  The concavity property of C (as a shaded

point) and the convexity property of B and D (as solid points) are also marked accordingly. The

curvature function for σ = 48 and its partial derivative with respect to t are shown in Fig. 4.9.

                                                

33 The extended curvature scale-space image is considered as a three-valued image because it
requires 3 values to encode the concave curvature extrema, the convex curvature extrema and the
background.
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Figure 4.8.  The extended and classic curvature scale-space images for Gaussian smoothing
process shown in Fig. 4.3.  (a) The extended curvature scale-space image. (b) The
overlay of the classic and extended curvature scale-space image shown in Fig. 4.4
and Fig. 4.8a.
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Figure 4.9. Curvature function and its first derivative for r = 48 of Fig. 4.3. (a) The
curvature function.  The points B, D, N are convex curvature extrema, while C and
M are concave curvature extrema.  (b) The first partial derivative of the curvature
function in (a) with respect to t.  Curvature extrema in (a) become zero-crossing
points.

path length variable t

curvature K

0

B

C

D

M

N

path length variable t

first derivative of curvature K

0 B C D M N

        (a)

        (b)



67

4.3.5. Comparison of classic and extended curvature scale-space

images

There are similarities and differences between the classic and the extended curvature scale-

space processes.  Both scale-space images contain many contour arcs which are formed by the

loci of the respective investigated features.   However, the important difference between the two

processes is the selection of points from the curvature function of the smoothed borders.  The

classic scale-space process selects the curvature zero-crossing points while the extended scale-

space process selects the curvature extrema points.  Fig. 4.8b manifests the similarities and

differences between the two scale-space images by overlaying Fig. 4.4 (the classic curvature

scale-space image) and 4.8a (the extended curvature scale-space image).   In this section, we

present the parallel properties and the differences for these two images.

Property 1a: In classic curvature scale-space images, the apex of a contour arc is

the point (t, n) such that K(t, n)=0 and ØK(t, n)/Øt=0.34

For any r in the internal of [0, n) in the classic curvature scale-space image, let the

points t1 and t2 be the curvature zero-crossings at the two sides of the contour arc.  Since K(t1,

r) = K(t2, r) = 0 by definition (see Equation 4.9) and K is a continuous function, according to

Rolle's Theorem, there exists a point t3 such that t1 < t3 < t2 and ØK(t3, r)/Øt = 0 in K-t space.

At the smoothing level n, the points t1, t2 and t3 merge together to the point t.   Because K is

continuous, K(t, n)=0 and ØK(t, n)/Øt=0.

For example, the points A2 and A3 in Fig. 4.3 and 4.4 are the curvature zero-crossing

points for the smoothed border at r = 40.  The corresponding smoothed border is shown with

its curvature function K40 in Fig. 4.10a and 4.10b, respectively.  The point AC1 is a concave

curvature extremum between A2 and A3.   At the contour apex (see Fig. 4.10c and 4.10d), the

                                                

34 Note that the apex point (t, n) of a contour arc is not selected in the classic curvature scale-space
process due to the definition of the process as expressed in Equation 4.9.  However, the property of
the point can be derived.
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loci of A2, A3 and AC1 merge together, and, therefore, the curvature of the merged point and its

partial derivative with respect to t are equal to zero.

Property 1b: In extended curvature scale-space images, the apex of a contour arc

is the point (t, n) such that ØK(t, n)/Øt=0 and Ø2K(t, n)/Øt2=0.35

                                                

35 Note that the apex point (t, n) of a contour arc is not selected in the extended curvature scale-
space process due to the definition of the process as expressed in Equation 4.10.  However, the
property of the point can be derived.

A2
A3

path length variable t

curvature K at sigma = 40

0 A2 A3

AC1

X
path length variable t

curvature K at sigma = 63

0 X

Figure 4.10.  Smoothed borders of Fig. 4.3 at r = 40 and r = 63.  (a) The smoothed
border at r = 40, the points A2 and A3 are curvature zero-crossing points.  (b) The
curvature function of (a) in K-t space.  The point AC1 is the concave curvature
extreme which is between A2 and A3.  (c) For the smoothed border at r = 63, the
point X marks the location where the loci of A2, A3 and AC1 merge together.  (d)
The curvature function of (c) in K-t space.

      (a) (b)

      (c) (d)
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For any r in the internal of [0, n) in the extended curvature scale-space image, let the

points t1 and t2 be the curvature extrema at the two sides of the contour arc.  Since ØK(t1, r)/Øt

= ØK(t2, r)/Øt = 0 by definition (see Equation 4.10) and ØK/Øt is a continuous function,

according to Rolle's Theorem, there exists a point t3 such that t1 < t3 < t2 and Ø2K(t3, r)/Øt2 = 0

in ØK/Øt-t space.  At the smoothing level n, the points t1, t2 and t3 merge together to the point t.

Because ØK/Øt is continuous, ØK(t, n)/Øt=0 and Ø2K(t, n)/Øt2=0.

For example, the points D and M are curvature extrema in Fig. 4.3 and 4.8a.  The

corresponding smoothed border curve is shown along with its partial derivative of the curvature

function with respect to t in Fig. 4.11a and 4.11b, respectively.  There exists a local extremum

AE1 such that D < AE1 < M.  At the contour apex (see Fig. 4.11c and 4.11d), the loci of D, M

and AE1 merge together, and, therefore, the first and second partial derivatives of K with respect

to t are equal to zero at the merged point.

Property 2a: In classic curvature scale-space images, excluding the apex point,

one side of a contour arc has the property ØK/Øt > 0 and the other side of the contour arc

has the property ØK/Øt < 0.

Assume the contour apex is the point (t, n) in the classic curvature scale-space image.

For any r in the internal of [0, n) of the smoothing axis, let the points t1 and t2 be the curvature

zero-crossings at the two sides of the contour arc.  By definition, K(t1, r) = 0, ØK(t1, r)/Øt  g 0

and K(t2, r) = 0, ØK(t2, r)/Øt  g 0.  (See Equation 4.9.)  Let's first consider the point t1.

Without loss of generality, we assume K(t1, r) = 0 and ØK(t1, r)/Øt > 0.  In other words, for

the smoothing level r, K crosses the zero from below at t1 in the K-t space.  Because K is

continuous, for K to cross the next zero at t2, K must cross the zero from above, i.e., ØK(t2,

r)/Øt < 0.  Otherwise, there exists a curvature zero-crossing in between t1 and t2, which

contradicts the classic curvature scale-space process.  Therefore, ØK(t1, r)/Øt and ØK(t2, r)/Øt

must have different sign.
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To complete our argument for the property, we have to show that if ØK(t1, r)/Øt > 0, all

curvature zero-crossings in the same side of the contour arc must have the property ØK/Øt > 0.

Since ØK(t1, r)/Øt > 0 and ØK/Øt = 0 only at the contour apex (t, n), moving along the contour

arc from (t1, r) to (t, n) in the ØK/Øt surface cannot go to negative because ØK/Øt is

continuous.  Therefore, the curvature zero-crossing along the same side as t1 have the property

ØK/Øt > 0.

D

M

path length variable t

first derivative of curvature K at sigma = 48

0

D

MAE1

X

path length variable t

first derivative of curvature K at sigma = 101

0
X

      (a)                                      (b)

   (c)           (d)

Figure 4.11.  Smoothed borders of Fig. 4.3 at r = 48 and r = 101.  (a) The smoothed
border at r = 48.  The points D and M are curvature extrema.  (b) The partial
derivative of the curvature function K of (a) with respect to t in ØK/Øt-t space.  The
point AE1 is a local maximum which is between D and M.  (c) The smoothed border
at r = 101, the point X marks the location where the loci of D, M and AE1 merge
together.  (d) The partial derivative of the curvature function K of (c) with respect to
t in ØK/Øt-t space.
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Property 2b: In extended curvature scale-space images, excluding the apex point,

one side of a contour arc has the property Ø2K/Øt2 > 0 and the other side of the contour

arc has the property Ø2K/Øt2 < 0.

The argument is parallel to property 2a if we can show Ø2K/Øt2 is a continuous function.

Since the border L0 is C2, the smoothed border L(t,r) and curvature K are C3 and Ø2K/Øt2 is

C1.  Therefore, Ø2K/Øt2 is a continuous function.

Assume the contour apex is the point (t, n) in the extended curvature scale-space

image.  For any r in the internal of [0, n) of the smoothing axis, let the points t1 and t2 be the

curvature extrema at the two sides of the contour arc.  By definition, ØK(t1, r)//Øt = 0, Ø2K(t1,

r)/Øt2  g 0 and ØK(t2, r)//Øt = 0, Ø2K(t2, r)/Øt2  g 0.  (See Equation 4.10.)  Let's first consider

the point t1.  Without loss of generality, we assume ØK(t1, r)//Øt = 0 and Ø2K(t1, r)/Øt2 > 0.  In

other words, for the smoothing level r, ØK crosses the zero from below at t1 in the ØK/Øt-t

space.  Because ØK//Øt is continuous, for ØK//Øt to cross the next zero at t2, ØK/Øt must cross

the zero from above, i.e., Ø2K(t2, r)/Øt2 < 0.  Otherwise, there exists a curvature extrema in

between t1 and t2, which contradicts the extended curvature scale-space process.  Therefore,

Ø2K(t1, r)/Ø2t and Ø2K(t2, r)/Øt2 must have different sign.

To complete our argument for the property, we have to show that if Ø2K(t1, r)/Øt2 > 0,

all curvature extrema in the same side of the contour arc must have the property Ø2K/Øt2 > 0.

Since Ø2K(t1, r)/Øt2 > 0 and Ø2K/Øt2 = 0 only at the contour apex (t, n), moving along the

contour arc from (t1, r) to (t, n) in the Ø2K/Øt2 surface cannot go to negative because Ø2K/Øt2 is

continuous.  Therefore, the curvature extrema along the same side as t1 have the property

Ø2K/Øt2 > 0.

Property 3: In the contours of an extended curvature scale-space image, the

points where the concave extrema and convex extrema meet are the zero curvature

points.
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The curvature of a convex curvature extremum is less than 0 and the curvature of a

concave curvature extremum is greater than 0; hence, the meeting point has the property of zero

curvature.  The Points AC and G in Fig. 4.8a and 4.8b are the examples of such points.

Even though the extended curvature scale-space process captures the locations of

curvature extrema, some zero curvature points (the contour arc apices of the classic curvature

scale-space image) can be identified easily with our 3-valued scale-space image.  However,

there is no corresponding property for the classic curvature scale-space image.

Property 4a: In classic curvature scale-space images, all curvature zero-crossings

disappear at rterm.

When a Gaussian smoothing process terminates at rterm, the object is transformed into

an oval shaped border with convex curvature for the entire border (i.e. K(t,rterm) < 0 for all t);

therefore, all curvature zero-crossings disappear.

Property 4b: In extended curvature scale-space images, all curvature extrema

may disappear (a special case of a circle) or at least 4 curvature extrema remain at rterm.

When a Gaussian smoothing process terminates at rterm, the object is transformed into

an oval shaped border with convex curvature for the entire border (i.e. K(t,rterm) < 0 for all t).

In a special case, K(t,rterm) is a negative constant (i.e. a circle) and there will be no curvature

extrema.  Otherwise, curvature extrema must exist.  Since an ellipse has 4 curvature extrema,

there must be at least 4 curvature extrema remain at rterm for the oval shaped border.36

The most important difference between the two scale-space images is the functionality

of the image.  Classic curvature scale-space images are designed to analyse point features, while

extended curvature scale-space images analyse indentation and protrusion curve segments,

                                                

36 If the smoothing is carried out after rterm, these convex curvature extrema may remain until the
object border is turned into a point.
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which can be organized into hierarchical structures.  Details of the segment analysis are

discussed in the following sections.

4.3.6. Identifying the span of indentation/protrusion segments

Our extended curvature scale-space image captures all indentation/protrusion segments as

defined in Section 4.2 for the entire smoothing process.  To reveal these segments at each

smoothing level, we scan for three consecutive curvature extrema with alternating signs (shaded

or solid points) sequentially from σ = 0, the original non-smoothed curve, to σterm.

As an indentation/protrusion segment evolves through the smoothing process, the

segment may span several scales.  Unfortunately, Gaussian smoothing distorts the contour length

and, hence, the location of indentation/protrusion segments shifts from scale to scale.   Matching

up the segments between scales becomes a difficult task.  The extended scale-space image

facilitates the matching by analysing the loci formed by the curvature extrema points.  For

example, tracking the convex extrema lines B and D of the indentation segment [B, C, D] at σ =

48 of Fig. 4.8a down toward the zero-scale reveals the cover, the true position of the segment

specified by the non-smoothed curve at σ = 0.  More precisely, for any segment U = [t1, t2, t3]

at smoothing level σ, the cover ΓU specifies the segment's corresponding position at the zero-

scale and is defined as:

(4.11)

where u1 and u2 are the path length variables for the beginning and ending positions of the

segment.  The positions u1 and u2 are obtained by coarse-to-fine tracing the loci of the terminal

curvature extrema t1 and t3.  ΓU is considered the true position of the segment U, and hence,

matching segments found in different scales can be done by comparing their corresponding

covers.  For any two segments U and V at the levels σU and σV, respectively, where σU > σV,

segments U and V are considered the same segment if ΓU = ΓV.

Identifying the span of a segment in the smoothing scale axis reveals the evolution of the

segment.  There are two important properties for a segment evolution: the formation level and

],,[ 21 uuU =Γ
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the smooth-out level.  The formation level indicates the first appearance of an irregularity

segment, while the smooth-out level indicates the disappearance of the segment.  More

precisely, let the maximum sigma level spanning for a segment U with the cover ΓU = [u1, u2] be

i, i+1, …, j.  In other words, for the consecutive sigma levels ranging from i, i+1, …, j, there

exists an irregularity segment whose cover is [u1, u2] in each level and there is no irregularity

segment with cover [u1, u2] in the sigma level i-1 and j+1.  Then the formation level of the

irregularity segment U is defined as i and the smooth-out level is defined as j+1.  For example,

the indentation segment [B, C, D] emerges at σ = 44 in Fig. 4.8a when all nested smaller

irregularities have been smoothed out, and it ends at σ = 102 when the convex curvature line D

closes off at the top with the line E.

4.3.7. Hierarchical structures for indentation/protrusion segments

The extended scale-space image not only illustrates the evolution of the indentation/protrusion

segments; it also helps organize segments into a hierarchical structure.  Because of the causality

property of Gaussian smoothing [94, 104], segments are smoothed out in a 'proper' order: small

ones disappear before larger ones.  Now when some smaller segments are smoothed out, larger

segments may emerge at the same locations.  The larger segments are considered as the 'global'

segments to the smaller 'local' ones.  Hence, a hierarchical structure of indentation/protrusion

segments is formed.

As illustrated by Fig. 4.2, adjacent indentation segments and protrusion segments may

overlap at a smoothing level.  To avoid the complexity of overlapping segments within a

hierarchical structure, we divide indentation segments and protrusion segments into two separate

hierarchies, which are constructed by examining the inclusion property of the segment covers.

For a segment U with the cover ΓU = [u1, u2] and the smooth-out level σU and a segment V

with the cover ΓV = [v1, v2] and the smooth-out level σV, segment U is a local segment for the

global segment V if σU < σV and ΓU is included inside ΓV.  (See Fig.  4.12.)  The inclusion of ΓU

inside ΓV, denoted by ΓU ⊆ ΓV, is expressed as:

(4.12).2211 vuandvu ≤≥
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The segments U and V form a hierarchical tree structure because a global segment can nest one

or more local segments.  For instance, the indentation segments [B, C, D] and [D, M, N] are

local indentation segments for the global segment [B1, C1, F] shown in Fig. 4.8a.  (These

segments are also shown in Fig. 4.3 at σ = 48 and 102, respectively.37)  By analysing the

inclusion property of all indentation and protrusion segments, two hierarchical structures are

obtained.  One is for indentation segments and the other is for protrusion segments.  Each

hierarchical structure consists of a forest of tree structures, where the root of a tree structure is a

global segment and its corresponding local segments are in the leaves of the tree.

                                                

37 Actually, the indentation segment [D, M, N] is best illustrated at σ = 32 as it is almost smoothed
out at σ = 48.

path length variable t

smoothing out level

segment V

v1 v2

segment U

u1 u2

segment R

r 2

segment S
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segment W

0 w2

segment W

1w1

Figure 4.12.  Hierarchical relationship between segments.  Segments are abstracted by their
covers and are plotted at the smooth-out level, which is represented by the y-axis of
the plot.  Segments U with covers [u1, u2] is included inside the segment V whose
cover is [v1, v2].   Furthermore, segment R and S with covers [v1, r2] and [s1, v2],
respectively, are also included inside segment V.  Note: A segment can wrap around
the beginning point of the parameterization process such as segment W, whose cover
is [w1, w2], where w1 > w2.
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Note that all smoothed borders are periodic.  Special care has to be taken when a

segment wraps around the beginning point of the parameterization process such as the

protrusion segment [H, I, J] shown in Fig. 4.8a and in Fig. 4.3, σ = 32.  (See also segment W

in Fig. 4.12.)  The hierarchical relation between segments need to be checked carefully.

To properly analyse the inclusion property of a segment U with the cover ΓU = [u1, u2]

and the smooth-out level σU, and a segment V with the cover ΓV = [v1, v2] and the smooth-out

level σV, where σU  < σV, we have to consider 4 sub-cases depending on whether segment U

and/or segment V wrap around the beginning point of the parameterization process.

Sub-case 1: Both the segment U and V do not wrap around.  Equation 4.12 can be

applied directly for verifying the inclusion property of ΓU inside ΓV.

Sub-case 2: Both the segment U and V wrap around the beginning point of the

parameterization process, i.e., u1 > u2 and v1 > v2.  The segment U can be divided in the sub-

segments [0, u2 ] and [u1, 1] and the segment V can be divided into [0, v2] and [v1 , 1].  The

inclusion property of ΓU inside ΓV can be expressed as:

(4.13)

Sub-case 3: Segment U does not wrap around, but segment V does, i.e., v1 > v2.  The

segment V can be divided into [0, v2] and [v1 , 1].  The inclusion property of ΓU inside ΓV can

be expressed as:

(4.14)

Sub-case 4: Segment U wraps around (i.e., u1 > u2), but segment V does not.  Since

segment U spans both sides of the beginning point of the parameterization process and segment

V occupies only one side, segment U cannot be included inside segment V.

4.3.8. Flat irregularity segments

As local segments smooth into global segments and the border turns into an oval shape, the

overall curvature of the curve is reduced.  Global segments tend to be flatter than their

).()( 1122 vuandvu ≥≤
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counterparts, local segments.  Without a restriction on the formation of a segment, sometimes a

flat segment, which is a slightly bent indentation/protrusion segment, can be formed.  This kind

of flat segment often occurs near the root position of a tree structure in a segment hierarchy.

For example, when the indentation segment [B, C, D] in Fig. 4.3 is smoothed out at σ  = 102

and turns into a larger indentation segment [B1, C1, F], the new global segment [B1, C1, F] is a

flat segment with a hardly noticeable indentation in the middle of the segment.  (The indentation

segments [B, C, D] and [B1, C1, F] are also labelled in the extended scale-space image in Fig

4.8a.)  In order to remove the formation of such a 'flat' irregularity segment, the three curvature

extrema are checked at the formation level for every new segment U = [t1, t2, t3].  If the

absolute magnitude of the middle curvature extremum, t2, or the maximum absolute magnitude

of the first and the last curvature extrema, t1, and t3, are smaller than certain threshold and very

close to zero, the newly formed segment is considered as an insignificant 'flat'

indentation/protrusion segment.  Mathematically, the criteria for a flat segment can be written as:

(4.15)

where ε is the threshold, which is set to 0.01.  All flat segments are removed from further

computation.

In summary, by analyzing the extended scale-space image, we can track the evolution of

all irregularity segments for the entire smoothing process.  These segments can span multiple

smoothing levels and they can be organized separately in two hierarchical structures.

Furthermore, the smooth-out level for each segment is an important piece of information that

can be used in the computation of the border irregularity.

4.4. Calculating irregularity indices

Each detected indentation/protrusion segment has an irregularity measure, which is formed by

observing the smoothing effect on the area of an indentation or a protrusion segment.  When an

indentation (or a protrusion) is smoothed-out, the indentation (or protrusion) is partially filled (or

removed).  For example, Fig. 4.13a shows a lesion border and the smoothed contour at the

,|})(||,)(max{||)(| 312 εε << tKtKortK



78

smooth-out level for the largest indentation at the bottom of the figure.  The shaded area

indicates the filling done by the smoothing process.  Likewise, Fig. 4.13b shows the same lesion

border and the smoothed border for the most prominent protrusion at the bottom of the border.

The shaded area represents the area removed by the smoothing process.  The size of the filled

(or removed) area, termed irregularity area, is used to determine the irregularity index.

The index for an indentation/protrusion segment must be normalized so that it can be

used for comparison among irregularities in different lesion borders.  Normalization is achieved

by dividing the irregularity area by the area of smooth-out contour, which is the area of the

smoothed border at the smooth-out r level.  For example, the dashed line in Fig. 4.13a and

4.13b denote the smooth-out contour for the largest indentation and protrusion.  The areas

enclosed by the dashed lines are the normalization factors for the corresponding irregularity

segments.  Therefore, the Irregularity Index (II) of an indentation/protrusion segment U,

denoted by IU, is defined as:

(4.16)%,100×
∆

=
U

U
U R

I

           (a)                                          (b)

Figure 4.13.  Smoothing effect on indentation and protrusion.  (a) A lesion border is shown
by the solid line, while the smoothed curve corresponding to the smooth-out r level
for the largest indentation is shown by the dashed line.  The shaded area denotes the
irregularity area filled by the smoothing process.  (b) The smoothed curve
corresponding to the smooth-out r level for the largest protrusion is shown by the
dashed line.  The irregularity area removed by the smoothing process is marked by
the shaded area.
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where ∆U is the irregularity area for segment U and RU is the area enclosed by the contour of

the smooth-out level.  Because RU is proportional to the original lesion size, IU can be

considered as the ratio of the irregularity area and the lesion size.  As the ratio increases, the

irregularity segment appears more prominent and, hence, the II increases.

The hierarchical structures described in Section 4.3.7 organize all indentation and

protrusion segments of the entire smoothing process into two forests of tree structures.  In

particular, the set of root segments in the tree structures of both hierarchies represents all global

irregular segments, which fully describe the complexity of the lesion border.  Let's assume the

root segments are U1, U2, …, Un.  Their corresponding II's, denoted by I1, I2, …, In

respectively, provide a rich set of descriptions of the border.  From this set of indices, many

important parameters about a lesion border can be inferred.  In particular, two important

descriptors, the Most Significant Irregularity Index (MSII) and the Overall Irregularity Index

(OII), can be derived.  The MSII of a lesion border L ranks all individual indices and indicates

the largest indentation/protrusion segment of the border:

(4.17)

The OII represents the entire lesion shape, and is calculated by summing up all individual

indices.  Thus:

(4.18)

Fig. 4.14 depicts ten largest indentation/protrusion segments for the lesion border

shown in Fig. 4.1.  The segments are sorted by their corresponding II.  The top left-hand

subfigure depicts the largest irregularity segment, a protrusion, with the MSII = 4.2, while the

next subfigure illustrates the largest indentation segment with an index of 2.4.  Note that the

indentation segment overlaps partially with the largest protrusion segment of the border.  The
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third largest irregularity segment is another protrusion with an index of 1.9.  The OII for this

lesion border is 15.1.

4.5. Sensitivity analysis of irregularity indices

The new area-based method overcomes the non-linearity and the long-and-narrow indentation

problem with the earlier SR method reported in Section 4.3.3. The MSII and the OII for the

phantom shown in Fig. 4.7a (also shown in Fig. 4.15a) are 0.3 and 0.4, respectively.38   They

differ significantly from the MSII (7.4) and the OII (7.5) for the phantom in Fig. 4.7b (also

shown in Fig. 4.15b).  (The comparison of the SR, OII and MSII for these two phantoms are

summarized in Table 4.1.)  The small MSII value for Fig. 4.15a reflects the small area of the

indentation and implies the stability of the new method.  Small alterations (noise) are detected as

                                                

38 The small texture irregularity, 0.1, is due to the discrete representation of a continuous curve.

Figure 4.14.  Indentation/protrusion segments of Fig. 4.1.  Ten largest global indentation
and protrusion segments for lesion border shown in Fig. 4.1 are plotted.  The
segments are sorted by their irregularity index, which is shown at the top of each
subfigure.
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local irregular segments with small irregularity areas, which do not significantly alter the final

analysis results.

Table 4.1.  Comparison of the SR, MSII and OII for two phantoms .

Phantom shown in Fig. 4.15a Phantom shown in Fig. 4.15b
SR 0.96 0.97
MSII 0.3 7.4
OII 0.4 7.5

4.6. The advantages of irregularity indices

As discussed in Section 2.1, many measures have been used to estimate the border irregularity

of a melanocytic lesion.  However, each of these methods has some drawbacks.  The CI, form

factor, FD, and SFD are insensitive to structure indentations and protrusions.  The convex hull

method fails to account for protrusion, one of the important clinical features for the lesion.

Many methods are sensitive to noise along the border.  For example, the CI amplifies the noise

by a square term.  The radial distance distribution method and the circularity factor may be

0.33856 7.3863

(a) (b)

Figure 4.15.  The most significant indentations for two phantoms shown in Fig. 4.7.   (a) and
(b) The most significant indentation is highlighted and the associated MSII is shown
at the top of each phantom.
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unstable due to their dependence of the centroid location, which is very sensitive to noise.

Furthermore, all these methods estimate the border shape using a single value.  Lesions with

completely different shapes may associate with the same value.

Our irregularity index method addresses the above problems by detecting all global and

local irregularity segments along the border.  For each irregular segment, an area-based index is

computed.  Then an overall irregularity index and the most significant irregularity index are

derived from the set of indices.  This approach has many advantages:

1. Our method detects both indentation and protrusion segments, which are important clinical

features for melanocytic lesions.

2. Our method is sensitive to structure irregularities because the multi-scale method actually

locate all local and global segments in a rugged border and organize the segments into

hierarchical structures.

3. Our method is stable.  The area-based approach implies the method is stable for small

changes (noise) along the border.

4. Our method is linear.  Defined as the sum of all the irregularity indices of the global

irregularity segments, the OII is proportional to the total irregularity areas of the lesion.

Our method returns a set of irregularity segments with corresponding indices, which fully

describe the complexity of the lesion shape.  This information set can be used to derive many

parameters for the lesion.  In particular, the overall irregularity index and the most significant

irregularity index are two important derived indices.
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Chapter 5
A User Study

To verify the effectiveness of the two new measures (the MSII and OII), a user study has been

carried out to compare the new measures as well as other shape descriptors, namely the CI, the

FD and the SFD, with 20 dermatologists' clinical evaluations.39  The CI was selected because it

is the most common shape descriptor based on single-scale computation, while the FD and the

SFD represent commonly used multi-scale methods.   Forty lesion borders selected from the

B.C. Cancer Agency pigmented lesion image database were used in the study.  These tested

measurements were analysed statistically.

5.1. Method

5.1.1 Gold standard

One of the considerations for designing the user study was the gold standard selection for the

validation process.  Should it be the clinical evaluation or histology status?  Because border

irregularity is a clinical diagnosis feature defined by dermatologists, making dermatologist's

clinical evaluation as the gold standard was the most appropriate choice.  In other words, when

dermatologists had concerns on an irregular border, the new measures should reflect the similar

concerns.  A computer program encoding such knowledge could be used by other non-

dermatologists such as health practitioners or the general public.  Also it could be used as an

objective alternative for dermatologists.

5.1.2. Assembling the data

Forty pigmented lesions were selected from the skin image database.  In order to have a good

representation of lesions in the entire range of the OII (one of the new measures to be verified)

                                                

39 A user study with 3 dermatologists has been reported earlier [89].
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and to void possible biases, the following selection scheme was employed.  Many melanocytic

lesion images were first processed by DullRazor and the automatic segmentation programs

described in Section 3.2.  108 of these melanocytic lesions with good segmentation results were

retained in the selection process.  The OII of these lesions were computed, and the sorted OII

values are plotted in Fig. 5.1.  All OII values increased smoothly, except the 4 outliers (marked

as Ο) in the right-hand side of Fig. 5.1.  These 4 outliers were included in the final selection for

the user study data set.  For the rest of the 104 lesions, the 10 lesion borders with the lowest

OII values (denoted as =), the 10 lesion borders with the highest OII values  (denoted as <)

and the middle 16 lesions (denoted as +) were also included.  In total, we chose 40 lesion

borders, spanning the entire range of the OII values.  These lesion borders are depicted in Fig.

5.2.

Figure 5.1. The overall irregularity index (OII) of 108 lesions.  The 40 lesions marked as =,
+, < and Ο were selected for the user study.
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border 1 border 2 border 3 border 4 border 5

border 6 border 7 border 8 border 9 border 10

border 11 border 12 border 13 border 14 border 15

border 16 border 17 border 18 border 19 border 20

border 21 border 22 border 23 border 24 border 25

border 26 border 27 border 28 border 29 border 30

border 31 border 32 border 33 border 34 border 35

border 36 border 37 border 38 border 39 border 40

Figure 5.2. Forty lesion borders selected for the user study.



86

5.1.3. The compactness index implementation

The CI was implemented according to Equation 2.1.  The program was tested by real-valued

circles of various sizes and the resultant values were 1.00, identical to the theoretical value.

However, when the circle was converted to a discrete circle with a radius 150-pixel by

rounding the x and y coordinates to the nearest integer, the derived CI value became 1.11 (11%

error) because the discrete contour amplified the error.

5.1.4. The fractal dimension implementation

The FD of a lesion border L, denoted by D in Equation 2.3, was estimated using the box

counting method [28, 108].  The border L was represented by a binary mask where the border

was specified by 1 and the background was specified by 0.  To ensure there were no partial

blocks, the background was extended to the nearest integer with power of 2.  Various sizes of r

x r boxes, where r was power of 2, were placed over the lesion and the number of boxes

containing the border, N(r), was counted.  Applying r and N(r) to Equation 2.3, the value of D

could be estimated.  Rearranging the terms and expanding Equation 2.3 by taking the log, the

equation could be expressed as:

(5.1)

where λ was a constant.  Thus, D was the slope of the linear equation, which could be

computed by least square fitting of log(1/N(r)) vs. log(r).  Fig. 5.3 gives a sample of the log-log

plot using the lesion border of Fig. 4.1.

),log()log(
)(

1
log λ−×= rD

rN
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When a discrete circle with a radius of 150 pixels (the x and y coordinates were

rounded to the nearest integers) was used to test the FD implemented, the resultant FD was

0.99.  (The error was 1% as the theoretical value of a circle is 1.)  Further tests were done by

using the well-know Koch snowflake (see Fig. 5.4a) and Koch square flake (see Fig. 5.5a)

[117].  The Koch snowflake was constructed using an equilateral triangle.  Each side of the

triangle was transformed recursively by dividing the line segment into 3 equal parts and replacing

the middle part with an equilateral triangle without a base.  Fig. 5.4b illustrates the construction

of the Koch snowflake.  The result of the transformation has a theoretical FD value of log4/log3

≅ 1.26.  The estimated FD from the implementation was 1.29 (2.38% error).  The Koch square
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log(r)
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1/
N

)

Figure 5.3.  An example of the log-log plot for fractal dimensions.  This plot was
constructed using the lesion border shown in Fig. 4.1  The FD is the slope of the
solid line, estimated by all the data points.  The SFD is the slope of the dashed line (-
-), estimated by the fifth to the ninth data points.  The FD for this lesion border is
1.12, and the SFD is 1.21.



88

flake was constructed by 4 equal line segments placed as a square.  Each segment was

transformed recursively by dividing the segment into 4 equal parts and replacing the middle two

parts by two squares with no bases at the reverse orientations as illustrated in Fig. 5.5b.  The

theoretical FD for Koch square flake is 1.5 and the computed FD was 1.50 (0% error).

step 1

step 2

step 3

  (a)     (b)

Figure 5.4. Koch snowflake and its construction procedure.  (a) Koch snowflake.  (b) The
construction procedure: at each step, the middle section of a line segment is replaced
by an equilateral triangle with no base.
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As mentioned in Section 2.1, Claridge et al. [31] recognized that there were two types

of fractal dimensions, structure and texture fractal dimension, associated with a lesion border.

Furthermore, the SFD had a higher correlation with melanomas.  When the log-log plots for the

fractal dimensions were examined (see Fig. 5.3 as an example for the log-log plot), evidence to

support the idea of two fractals was found.  The breakpoint for these two fractals was estimated

to be located between the fourth and fifth data points in the log-log plot.  Thus, the data points

were divided at the breakpoint and the upper half of data, from the fifth data point, was used to

compute the SFD of the lesion border.  The SFD's of a discrete circle with a radius of 150 (the

x and y coordinates were rounded to the nearest integers), Koch snowflake and Koch square

step 1

step 2

step 3

   (a)          (b)

Figure 5.5. Koch square flake and its construction procedure.  (a) Koch square flake.  (b)
The construction procedure: at each step, the middle two sections of a line segment
are replaced by two square with no bases at the reverse directions.
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flake were 1.05 (5% error), 1.29 (2.38% error) and 1.50 (0% error), respectively.  The errors

for both the FD and SFD were considered small enough to be acceptable.

5.1.5. The irregularity index implementation

The methodological development described in Chapter 4 has been implemented in Matlab,

running on a Pentium 233MHz computer.  The smoothing σ level was incremented by unit

steps, which meant the computation was extensive.  The execution time ranged from several

minutes to an hour, depending on the border length.40  For each tested lesion border, the MSII

and OII were computed.  When a discrete circle of radius 150 pixels (the x and y coordinates

were rounded to the nearest integers) was input to the program, the OII and MSII were 0.06

(absolute error = 0.06) and 0.00 (absolute error = 0.00), respectively.  The theoretical values

should be zero for both indices, but the computational error was insignificant.41

5.1.6. Clinical evaluation

Twenty experienced dermatologists were asked to visually evaluate the 40 tested lesion borders

shown in Fig. 5.2 using a scoring scale of 1 to 4.  A user study package was prepared by

plotting the lesion borders into 4 pages, 10 borders per page.  Because the size of a lesion is

itself a marker of risks, all lesion sizes were standardized to an equal area so that the evaluation

was based solely on the border features.  To avoid all lesion borders with high (or low) OII

values clustering into one page, the following placement scheme was employed.  The four lesion

borders associated with the highest OII values (the four outliers marked as Ο in Fig. 5.1) were

placed separately, one in a page.  The rest of the 36 lesion borders were divided into 4 groups

according to their OII values and each group was randomized and distributed evenly in the four

pages.  Furthermore, within a page, the placement of a lesion border was randomized.  The

                                                

40 The computation time can be improved substantially by using a faster computer language such as
C, skipping some smoothing σ levels especially at the coarse scales, and, of course, running the
program on a faster computer.

41 The percentage of error cannot be computed as the based value (theoretical value) is 0.
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dermatologists were informed only that there was at least one border in the scale category 1 and

at least one border in the scale category 4 in each page.  However, the number of lesions in

each of the 4 scale categories in a page and in the entire study were not mentioned.  The

dermatologists could freely assign a lesion border into any scale category and any number of

borders into a category.  A user consent form and an information sheet were also included in the

package.  (See Appendix A for the entire user study package.)  The information sheet

described the study and provided evaluation instructions.  The dermatologists were asked to

read over the instructions and complete the evaluation.  Other than the study package, there

was no further communication with the dermatologists.  The study design and material were

approved by the University Ethics Review Committee of Simon Fraser University (SFU).

The evaluation was done on a scale of 1 to 4.  The smallest scale 1 implied the most

benign looking border contour and the highest scale 4 implied the most severe case with the

highest probability of being a melanoma.  This was a double-blinded test because all program

development and calculations were done before the clinical evaluation and the dermatologists

did not know the results of the tested measurements prior to the evaluation.  The computed

measurements were then compared statistically against the average of the 20 dermatologists'

evaluation, which was considered as the gold standard.

5.1.7. Statistical methods

The user study results were tested by statistical methods using SPSS [109].  First the Kendall

W, the coefficient of concordance, was computed for the dermatologists' evaluation to ensure a

reasonable agreement among the dermatologists so that the gold standard could be formed.

The null hypothesis of the test, often denoted as H0, is that there was no agreement among the

ratings of k judges (20 dermatologists) on n objects (40 lesion borders).  In such a situation,

after the ratings for each judge is ranked from 1 to n, the sum of each object rankings among all

the judges would be approximately equal to the sum of average ranking, k(n+1)/2.  The

difference between the sum of an object ranking among all judges and the sum of average

ranking exhibits the amount of deviation from H0.  Kendall W is defined by the sum of the
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square of such a difference for all objects with the appropriate normalization.  The value of W

ranges from 0 to 1, where 0 implies there is no agreement among the judges and 1 implies a

perfect agreement.  The significance of W is indicated by a probability p, where a large p (p >

0.05) implies that H0 cannot be rejected.  However, a small p, where p ï 0.05, rejects the null

hypothesis and accepts the alternative hypothesis, often called H1, that there is an agreement

among the judges' rating [32, 109, 135].  The gold standard should be formed by averaging the

clinical evaluation for each tested lesion only with a good agreement among the dermatologists

(with a large W and a small p value).

Then the Spearman's rank correlation coefficient was determined for each pair of

measurements, the average clinical evaluation, CI, FD, SFD, OII and MSII, using SPSS [109].

The Spearman coefficient is the well-known Pearson correlation based on the rank of the

measurements.  Its value ranges from -1 to +1, where -1 (+1) implies a perfect negative

(positive) correlation between the rank of two measurements, and 0 implies there is no linear

correlation between the rank of two measurements.

Finally, the relationship between the average clinical evaluation and the CI, FD, SFD,

OII and MSII was tested out using multiple linear regression analysis under SPSS [109].  The

average clinical evaluation was set to be the dependent variable Y of the linear regression model

and all tested measurements (CI, FD, SFD, OII and MSII) were the possible independent

variables, which were selected in the stepwise fashion.  The tested measurement that has the

best linear relationship with Y was entered into the model as an independent variable.  Then the

linear relationship between Y and all dependent variables in the model were examined to ensure

their linear relationships were not altered due to the new entry.  Any independent variable that

did not demonstrate a linear relationship any longer was removed.  The procedure was repeated

until there were no more entries or removals.  The final independent variables in the model were

the best predictors of Y, the average clinical evaluation.
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5.2. Results

The user study results are presented in this section and the details of the results are discussed in

the next section.  The clinical evaluation results of 20 dermatologists are reported in columns

"L1" to "L20" in Table 5.1.  The coefficient of concordance, Kendall W, for all 20 clinical

evaluations was then determined as W = 0.77 (p = 0.000).   The average of the clinical

evaluations is listed in column "AvgCL" of Table 5.2.  The tested measurements (CI, FD, SFD,

OII, and MSII) were computed and presented in Table 5.2.  The melanomas (based on

pathological assessments) are indicated in column "Path" of Table 5.2.  The most significant

indentation/protrusion segment for each tested border is plotted in Fig. 5.6.  The Spearman

coefficients, shown in Table 5.3, were calculated for each pair of the average clinical evaluation

and the tested measurement.  Among all tested measurements, the OII achieved the highest

correlation coefficient (0.88) with the average clinical evaluation.  To further expose the

relationship between the average clinical evaluation and the tested measurements, the tested

measures are plotted against the average clinical evaluation separately in Fig. 5.7.  Finally, the

multiple linear regression analysis result is presented in Table 5.4.  After the stepwise regression

analysis, only one independent variable OII was left in the model.

5.3. Discussion

5.3.1. Clinical evaluation and gold standard

Clinical evaluation of border irregularity is a difficult task for dermatologists as they are trained

to diagnose melanocytic lesions using not only border shapes, but also other features including

lesion colour and size.  Even experienced dermatologists have difficulty when interpreting the

lesion border as the sole feature.  Claridge et al. [32] reported a low agreement (coefficient of

concordance W = 0.47) among 20 clinicians, when they were asked to sort 20 lesion borders

contours in the order of increasing border irregularity.  Such a low agreement cast doubt on a

possible valid gold standard.  Therefore, forming the gold standard becomes an issue.
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Table 5.1. Clinical evaluation results of the lesion borders shown in Fig. 5.2

Border L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20
1 2 1 2 1 2 2 2 1 1 1 2 1 2 2 1 2 2 1 1 2
2 3 2 2 1 2 2 2 1 1 1 2 2 3 2 2 3 2 1 2 2
3 2 3 4 2 3 3 2 2 3 3 3 3 4 3 3 3 3 2 3 3
4 4 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
6 1 1 2 1 2 2 2 2 1 1 2 1 2 2 2 1 2 1 1 2
7 3 3 4 4 4 3 3 3 3 2 3 3 4 2 3 3 3 3 4 3
8 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
9 3 2 3 3 3 2 2 2 2 2 2 2 3 1 2 3 3 1 2 2
10 3 4 4 4 4 4 3 4 3 4 3 3 4 3 4 3 3 4 4 4
11 2 2 3 1 2 2 2 1 1 2 1 1 3 1 2 3 2 1 2 1
12 1 1 2 1 2 2 2 1 1 1 2 1 1 1 2 2 2 1 1 1
13 2 3 2 1 2 2 1 2 2 2 2 2 2 1 2 1 1 1 1 2
14 3 3 2 2 3 3 2 3 2 3 2 4 3 2 3 3 3 2 2 2
15 1 1 3 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1
16 1 2 2 2 2 2 2 1 1 1 1 2 1 1 1 2 2 1 1 1
17 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1
18 4 4 4 3 4 3 3 3 3 4 3 4 4 4 4 4 3 4 4 3
19 4 4 4 4 4 3 4 4 4 4 4 4 4 2 4 4 4 4 4 4
20 2 3 4 4 4 4 3 3 2 3 3 3 4 3 4 3 3 3 4 3
21 3 4 4 3 3 3 3 3 3 4 4 3 4 2 3 4 3 3 4 4
22 1 2 2 1 3 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2
23 2 3 3 2 2 2 2 3 2 3 3 3 4 2 2 2 4 2 3 3
24 1 2 3 2 3 2 3 2 1 2 2 3 2 3 2 1 2 2 3 2
25 2 1 2 1 2 3 2 2 1 2 2 3 2 3 2 1 2 2 2 2
26 3 2 2 1 2 2 2 2 1 2 2 2 1 1 2 2 2 1 1 1
27 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
28 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
29 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30 3 2 2 1 2 2 2 2 1 2 2 1 2 1 1 2 2 1 2 2
31 1 1 3 1 2 1 2 1 1 2 2 1 1 1 3 1 2 1 1 1
32 1 3 4 2 2 1 3 2 2 3 2 2 3 2 2 2 3 2 2 3
33 2 3 3 2 3 1 3 2 2 2 2 2 3 2 3 2 3 2 2 3
34 3 3 4 2 3 2 3 2 2 3 3 3 4 3 3 3 3 3 3 2
35 2 2 2 1 2 1 2 1 2 2 1 2 2 1 1 2 2 1 2 1
36 2 2 2 1 1 2 2 1 1 2 1 2 1 1 2 2 2 2 2 1
37 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
38 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
39 2 3 3 2 2 3 2 3 2 2 2 3 4 2 3 3 3 3 2 2
40 1 1 1 1 1 2 2 1 1 2 1 1 1 1 1 2 2 1 1 1
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Table 5.2.  Average clinical evaluation and tested measurements for lesion borders shown in
Fig. 5.2.  The 4 melanomas, based on pathological assessments, are indicated in column "Path".

Border AvgCL CI FD SFD OII MSII Path
1 1.6 3.44 1.18 1.35 5.7 1.1 -
2 1.9 3.75 1.12 1.22 5.5 0.6 -
3 2.9 2.30 1.08 1.20 8.7 1.4 -
4 3.9 3.44 1.12 1.21 17.1 3.2 melanoma
5 1.1 1.69 1.10 1.24 2.8 0.4 -
6 1.6 1.90 1.09 1.26 3.5 0.4 melanoma
7 3.2 3.72 1.15 1.24 5.4 1.1 -
8 1.2 3.07 1.10 1.12 3.4 0.2 -
9 2.3 2.13 1.08 1.22 5.7 1.0 -
10 3.6 3.90 1.13 1.25 8.2 2.2 -
11 1.8 2.32 1.08 1.12 5.1 0.7 -
12 1.4 2.05 1.08 1.18 5.2 1.3 -
13 1.7 3.19 1.13 1.22 5.0 0.7 -
14 2.6 4.95 1.18 1.28 9.4 1.4 -
15 1.3 1.49 1.11 1.40 3.4 0.8 -
16 1.5 2.26 1.11 1.26 5.7 1.7 -
17 1.2 3.02 1.18 1.35 3.3 0.3 -
18 3.6 4.50 1.13 1.22 8.4 1.5 -
19 3.9 6.18 1.18 1.25 10.8 3.6 -
20 3.3 2.81 1.12 1.23 9.2 2.8 -
21 3.4 4.22 1.13 1.15 8.9 1.5 -
22 1.9 1.93 1.09 1.35 5.7 1.3 -
23 2.6 1.91 1.11 1.59 9.0 2.2 -
24 2.2 3.49 1.11 1.18 5.1 0.5 -
25 2.0 3.52 1.16 1.30 5.3 0.6 -
26 1.7 3.91 1.12 1.18 5.7 0.5 -
27 1.2 2.42 1.09 1.15 3.0 0.4 -
28 4.0 3.43 1.12 1.30 22.7 7.2 melanoma
29 1.1 2.77 1.08 1.10 3.5 0.3 -
30 1.8 3.43 1.16 1.26 5.1 0.7 -
31 1.5 2.63 1.09 1.18 3.4 0.6 -
32 2.3 1.75 1.06 1.23 5.6 1.3 melanoma
33 2.4 2.05 1.08 1.21 8.4 2.4 -
34 2.9 3.12 1.14 1.24 8.3 3.0 -
35 1.6 2.60 1.11 1.18 5.5 0.5 -
36 1.6 2.39 1.17 1.45 5.4 0.9 -
37 1.1 2.53 1.15 1.32 3.5 0.6 -
38 4.0 5.39 1.12 1.24 18.9 4.1 -
39 2.6 2.68 1.14 1.30 8.3 1.1 -
40 1.3 2.61 1.15 1.29 3.1 0.5 -
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Figure 5.6. The most significant indentation/protrusion segments.  The tested lesion borders
are presented in Fig. 5.2.  Their corresponding MSII's are listed in Table 5.2.
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Table 5.3.  Spearman coefficients for all test data

Average
clinical

evaluation

CI FD SFD OII

CI 0.50
FD 0.21  0.60
SFD 0.03 -0.13 0.58
OII 0.88  0.38 0.17 0.10
MSII 0.82  0.23 0.18 0.22 0.88

Figure 5.7.  Plotting the tested measurements vs. clinical evaluation. The CI, FD, SFD, OII,
MSII are plotted (in the x-axis) against the average clinical evaluation index (in the y-
axis) in subfigures (a) to (e) separately.
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Table 5.4. Multiple linear regression analysis results.  Details of the analysis results are
discussed in Section 5.3.4.

Dependent variable : average clinical evaluation
N : 36
Independent variable Estimate (SE) p Excluded variables p
OII 0.315 (0.032) 0.000 MSII 0.779

CI 0.066
FD 0.973
SFD 0.171

In order to achieve a reliable gold standard for our user study, we asked dermatologists

to classify a lesion border outline into a small score scale, ranging from 1 to 4.  Other than the

most benign looking contour group (score value 1) and the most malignant looking contour

group (score value 4), there were only two intermediate groups.  Dermatologists could

confidently assign a score value to a tested lesion border based on their own subjective cut

points between groups.  Judging from the clinical evaluation results in Table 5.1, this score scale

worked well and the twenty    dermatologists achieved a good agreement.  Among the 40 lesion

borders, 36 of them had a majority agreement, i.e. agreed by at least 11 dermatologists.  More

importantly, 39 lesion borders had a score difference of at most 2.  This implied that the

dermatologists' cut points were close to each other.  The standard deviation for the clinical

evaluation of the 40 lesion borders ranged from 0.00 to 0.73, with the average equaled to 0.50.

Furthermore, the high Kendall W statistic, W = 0.77 (p = 0.000), confirmed the good

agreement among the clinical evaluations. With the assurance of a good agreement, the gold

standard was set up by averaging the clinical evaluations for each lesion border.

5.3.2. Relationship between automatic methods and the average

clinical evaluations

In Fig. 5.7, the plots of the tested measurements against the average clinical evaluation showed

that no tested measurement achieved a perfect correlation with the gold standard.  However,

the OII and the MSII had a better linear relationship with the average clinical evaluation than the
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other three tested measurements.  Similarly, from the Spearman coefficients listed in Table 5.3,

the OII had the highest correlation coefficient, 0.88, with the clinical evaluation among all tested

measurements.  The closest second was the MSII, 0.82.

The CI, FD, and SFD achieved much lower correlation coefficients, 0.50, 0.21, and

0.03, respectively, with the clinical evaluation.  These three measures had problems in detecting

large structure indentations and protrusions.  For example, they failed to properly measure the

prominent structure irregularities in tested border 28 of Fig. 5.2,  where from Table 5.2, the CI

= 3.43, FD = 1.12, SFD = 1.30.  These three tested measurements were very close in value to

those for border 40 (CI = 2.61, FD = 1.15, SFD = 1.29), which had no structure irregularity,

but only texture irregularities.  Furthermore, it was surprising to discover that the SFD did not

perform better than the FD.  The SFD's of lesion border 5 (1.24), border 6 (1.26), border 15

(1.40), border 17 (1.35), border 37 (1.32) and border 40 (1.29) were too high for the benign

looking borders in the test set.  The problem was caused by applying a wrong model to a

border that had only small texture variations.  This type of border should have only one overall

fractal dimension.  When the data points of the log-log plot were separated into two groups,

there were too few points to accurately estimate the SFD.  Removing these six lesion borders,

the Spearman's coefficient for the SFD and the average clinical evaluation improved to 0.30.

5.3.3. A single point estimation vs. a measurement set

The CI and the FD are well-known shape descriptors for the overall border roughness.  Both

methods compute a single point estimation without actually identifying the indentations and

protrusions on the lesion border.  A higher value implies a rougher border with the existence of

indentations and protrusions.  However, a single point estimation can be easily skewed if the

variance of the border ruggedness is large.  For example, a lesion with a large protrusion on a

relatively smooth border, such as lesion border 20, might have the single point estimation

dampened by the smoothed portion.  The low CI (2.81) and FD (1.12) values were mainly

caused by the smooth border that had few texture irregularities.
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On the other hand, the new irregularity index method identifies all indentations and

protrusions on the lesion border.  Because each irregularity is carefully analyzed independently,

this method not only returns a more accurate overall measurement, which represents the

roughness for the entire border, but also gives a set of measurements for all global irregularities

(see Fig. 4.14) that fully describes the complexity of the lesion border.  In particular, combining

the OII and the MSII may deduce many interesting properties of the lesion borders.  For

example, the OII (5.5) and the MSII (0.5) of lesion border 35 indicated that it had no structure

irregularity, but a lot of texture irregularities.  A similar situation holds for lesion border 2

(OII=5.5, MSII=0.6).  However, lesion border 32 with the OII = 5.6 and the MSII = 1.3

implied that the lesion border had a larger irregularity, but less texture irregularities than lesion

borders 35 and 2.   On the other hand, the OII = 22.7 and the MSII = 7.2 for lesion border 28

suggested the border had some major indentations and protrusions.  Furthermore, the rich set of

measurements for the global irregularities can be used to infer other border properties such as

enumerating the number of large or medium irregularities.

5.3.4. Linear regression model

5.3.4.1. Single group analysis

To determine which tested measurement or a linear combination of tested measurements best

predicted the average clinical evaluations,  a linear regression model for the average clinical

evaluations was computed.  However, when all lesion borders (N = 40) were used in the

analysis, the assumptions for linear regression were violated.  For example, plots of the OII and

the MSII against clinical evaluation in Fig 5.7d and 5.7e clearly showed that there was no linear

relationship between the average clinical evaluation and the OII and the MSII.  The problem

was caused by limiting the evaluation scores to 4.  Limiting the evaluation scores helped the

dermatologists properly evaluate the lesion border; however, the side effect was an artificial

capping on the highly irregular borders to the score of 4, which might not accurately reflect the

degree of the irregularity.  For example, the top four data points in Fig. 5.7d and Fig. 5.7e were
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lesion borders 4, 19, 28 and 38, which had highly irregular contours.  If there were no capping

in the clinical evaluation, their actual evaluation scores might exceed 4.  The capping produced a

flatting effect on Fig. 5.7d and Fig. 5.7e.  In order to analyse the data set properly, the lesion

borders should be divided into two groups.  The first group consisted of the lesion borders 4,

19, 28 and 38 and the second group consisted of the rest of 36 lesion borders.

5.3.4.2. Subgroup analysis

It is difficult to generate any statistically significant results with only 4 data points.  Therefore,

instead of running a regression model, the visual inspection method was used with the first group

of 4 lesion borders.  Fig. 5.7 was re-plotted in Fig. 5.8 with the first data group denoted by Ο.

All these data points were at the top of each subfigure because their average clinical evaluations

were close to 4.  For the subfigure of CI, Fig. 5.8a, there was no obvious relationship between

the points marked as Ο's and the average clinical evaluations because the range of the 4 data

points were large.  Even though the range of the 4 data points for the FD42 and the SFD were

relatively small, these data points were located in the middle of the entire FD and SFD ranges

with respect to the entire data set.  On the other hand, the OII and the MSII showed a clear

relationship as these four data points were the highest OII and MSII values among all lesion

borders.

The second data group (N = 36) was analysed by a multiple linear regression analysis.

One step was required to complete the analysis and the selected independent variable was OII.

The parameters for OII and the excluded variables are reported in Table 5.4.  The regression

line is plotted in Fig. 5.9.  A second attempt has been made to fit the linear regression model

after also excluding the lesion borders 5, 6, 15, 17, 37, and 40, where the SFD method had

problems in generating proper indices.  However, no significant changes could be identified in

the second regression results.  The OII was selected again as the sole independent variable with

                                                

42 Two of the data points for FD were almost overlapped; therefore, only three Ο's were clearly
recognized.
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the parameter estimated as 0.316 (p = 0.000).  According to the linear regression analysis, the

OII was the best predictor for the average clinical evaluations.

Fig. 5.9 also reveals an interesting observation among the three groups of data points.

The groups marked with ∇, +, and  ∆ correspond to the low, middle and high OII values,

respectively.  (See Section 5.1.2 for the data selection scheme.)  The OII has a better

prediction power when its value is small, i.e. the deviation from the data point to the regression

line increases as the OII increases.  This phenomenon may be caused by the algorithm design

for the OII, which accumulates the individual irregularity index for every indentation and

Figure 5.8.  The re-plot of Fig. 5.7.  The top 4 data points, the first data group in the linear
regression analysis, is plotted as Ο.   These points had the highest average clinical
evaluations.  For the fractal dimension subfigure (b), two of the points (marked as Ο)
are almost overlapped; therefore, only three points are clearly shown.
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protrusion.  Therefore the error of the OII is proportional to the number of irregularities along

the border.  Highly irregular borders tend to have a larger error than smooth borders.

5.3.5. Overall irregularity index and histology

Among all tested measurements, the OII achieved the best correlation with our gold standard,

the average clinical evaluation.  It would be interesting to compare the OII with histological

results of the lesions.  Unfortunately, because our data collection period for the 40 lesions

spanned four and a half years (from February 1994 to November 1998) and the pathological
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Figure 5.9.  Predicting average clinical evaluation by OII.  The regression line from the first
regression model was plotted (N = 36).  The data points marked by ∇ were a group
of lesion borders with the small OII values.  The data points marked by + were a
group of lesion borders with the middle OII values.  The data points marked by ∆
were a group of lesion borders with large OII values.  See Section 5.1.2 for the data
selection scheme.
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assessments were performed in 5 institutions (Vancouver General Hospital, Royal Columbia

Hospital, St. Paul's Hospital, Lions Gate Hospital, and St. Vincent's Hospital), forming a gold

histological standard for various types of nevi and melanoma was not feasible.43  Therefore, we

grouped the lesions into only two definite diagnostic groups: melanoma and non-melanoma

groups.  Within our 40 tested lesions, there were 4 melanomas (corresponding to lesion borders

4, 6, 28 and 32 as shown in Table 5.2) and 36 non-melanomas based on pathological

assessments.

To assess the discriminatory power of the OII, we had to classify the lesions into

melanoma and non-melanoma groups based on the OII values.  The selection of a classification

method became critical.  A simple objective classification method assumes all melanomas would

have most irregular border and all non-melanomas would have most regular border [31].

Therefore, the 4 lesions with the highest OII values were classified as melanomas and all other

lesions were classified as non-melanomas.  With this classification method for melanomas, there

were 2 true positives, 2 false positives, 34 true negatives and 2 false negatives.  The sensitivity

of detecting melanomas [54] was determined as:

(5.2)

and specificity [54] was computed as:

(5.3)

                                                

43 We had difficulty in quantifying the likelihood of melanoma because the pathological reports
contained subjective descriptions (e.g. melanocytic hyperplasia, mild/moderate architectural atypia,
and cytologic abnormality).  Furthermore, the reports were done by many pathologists.  Ideally, we
should have at least two pathologists reviewing all specimens at a single session.  The pathologists
should agree on the final assessment using a standard protocol and quantify the assessments.
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The above discriminatory analysis44 suggested that border shape information had

excellent power to screen out non-melanomas, but moderate power to detect melanomas.  The

analysis result confirmed our knowledge that melanomas cannot be diagnosed properly by a

single clinical feature.  In particular, some melanomas may have regular borders and some non-

melanomas may have irregular borders.  Based on a sole clinical feature, there is a high

probability of misclassification.  To properly diagnose melanomas, we have to incorporate OII

with other clinical features (discussed in Sect. 1.3) and subsurface features (discussed in Sect.

1.4.1) in a classifier.

In order to verify the actual performance of the OII, we also need to compare the

average clinical evaluations and the histological results. Once again, the simple objective

classification method was applied.  The average clinical evaluations were ranked and the 4

lesions with the highest scores were classified as melanomas and the rest as non-melanomas.

With this classification method, we found that the 40 lesions were classified  the same as the OII

classification method, i.e., the same 4 lesions were classified as melanomas and the same 36

lesions were classified as non-melanomas. The dermatologists mis-classified the same two

pathological melanomas as non-melanomas (false negative) and the same two pathological non-

melanomas as melanomas (false positive).  Therefore, we confirmed that our algorithm indeed

captured the knowledge of expert dermatologists on analysing border shape.

5.3.6. Summary

In spite of its good predictive power, there is a disadvantage for the OII.  The algorithm for the

OII and the MSII is more complicated than for the CI, FD and SFD.  The OII and the MSII

are computationally expensive even though the computation time can be reduced by

optimization and by using a faster computer language and computer hardware.  On the other

hand, the CI, the most popular method, has the simplest computation complexity.  The CI

                                                

44 The specificity could be improved to 97% by classifying the 3 lesions with the highest OII scores
as melanomas.



106

achieved a moderate Spearmen coefficient (0.50) with the average clinical evaluations.  The FD

is based on a sound mathematical theory, but it is less sensitive for structural irregularities.  The

SFD is supposed to be able to detect structure features by analysing the coarse scale data of

the log-log plot, but the difficulty of properly determining the cutoff point between the fine and

coarse scale data for all lesion borders limits the SFD's performance.

The user study reveals many advantages of the irregularity index method.  The OII and

the MSII correlate well with experienced dermatologists' evaluations.  The Spearman's

coefficients are 0.88 and 0.83 for the OII and the MSII, respectively.  Furthermore, the OII is

the best predictor among all tested measures.  Because the OII is defined as the sum of a set of

irregularity indices for all global irregularity segments, the OII avoids the skewing (averaging)

effects of many single point estimators.  The single point estimation is dampened by the

smoothed portion of the lesion border.  Another advantage of the new method is that the

algorithm pinpoints and highlights a potential problematic area, such as the most significant

irregular segment, and explains the OII value by its individual sub-components, which fully

describe the lesion shape.  Therefore, physicians can verify the highlighted irregular segments

and their indices before making the final diagnosis.  The detailed information provided by the

new indices may be useful for a computer-aided diagnostic device.
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Chapter 6
Conclusion and Future Work

The most effective method to reduce mortality for malignant melanomas is early detection since

the survival rate is inversely proportional to the thickness of the lesion.  Many physicians have

advocated some kind of automatic early diagnostic aided systems to improve the diagnostic

accuracy and to combat the rapidly increasing incidence rate.  Many experimental classifiers

have been attempted [33, 38, 56, 58, 129, 149, 150].  The powers of these systems depend

on the input features.  For my thesis, I focus on one of the important clinical features, border

irregularity, which may suggest the malignancy of the skin lesion.

The tasks of designing and implementing automatic procedures to measure lesion

borders can be divided into three parts.  First, a set of melanocytic images spanning from benign

nevi to malignant melanomas have been collected and automatic programs for hair removal and

lesion border extraction have been designed.  Second, a new shape measure called Irregularity

Index (II) has been developed using an extension to classic curvature scale-space images.  This

method directly locates all indentation and protrusion segments along the border enabling an

area-based index to be computed for each irregular segment.  From the rich set of

measurements, two new shape indices, the overall irregularity index (OII) and the most

significant irregularity index (MSII), were derived.  Third, the new indices were compared to

dermatologists' evaluations in a user study.  The result demonstrated that the OII and the MSII

vastly outperform other lesion shape descriptors.

6.1. Contribution and originality

In this section, the contribution and the originality of the project is discussed:

1. We constructed new border shape descriptors for melanocytic lesions that were sensitive to

structure and texture irregularities by detecting all local and global indentation/protrusion

segments.  The new method combined and extended many computer shape analysis

techniques:
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• Object partitioning approach:  We extended the border partition rules proposed by

Hoffman and Richards, and Siddiqi and Kimia to address indentation segments because

their partition rules included only protrusion segments.  With the new partition rule, a

lesion border was decomposed into a set of indentation and protrusion segments, which

are the important clinical features for diagnosing malignant melanomas.

• Multi-scale approach:  We extended the classic curvature scale-space approach, which

investigates point features, to capture all global and structural indentation and protrusion

curve segments of a rugged border.  The extended curvature scale-space image differs

significantly from the classic curvature scale-space image because of different

investigated features.  The extended curvature scale space image allowed us:

§ to identify all indentation and protrusion segments, defined by our partitioning rule at

each smoothing step.

§ to track the evolution of all indentation and protrusion segments by linking the

segments across the smoothing scales.

§ to map the segments back to their true positions at the original border.

§ to place the segments in hierarchical structures that helped understand the lesion

shape.  The segments at the top of the hierarchical structure are considered as the

global segments, while the segments at the bottom of the hierarchical structure are

the local segments.

§ to investigate the segment properties at all smoothing scales.

• Area-based approach: The construction of the irregularity index was based on the

irregularity area.

By combining the above approaches, a new technique to measure border irregularity was

designed.  The resultant method possessed many advantages over other shape measures:

• The OII and the MSII had high correlation with experienced dermatologists' evaluation

of the lesion border in a user study.  Moreover, when comparing to other common

shape descriptors, the OII was the best predictor for the clinical evaluation of lesion

borders in a multiple linear regression model.
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• The multi-scale method handled a rugged border and was sensitive to structure

irregularities.

• The irregularity index method was stable because of the area-based approach.  An

irregularity index was proportional to its irregularity area of an irregular segment.

• The OII was linear because it summed all the irregularity areas of a lesion.

Furthermore, the summation avoided the skewing (averaging) effect of an single point

estimator, which could be dampened by the smoothing section of the border.

• The irregularity method actually detected all local and global indentations and

protrusions.  This set of irregularity segments provided a rich description of the lesion

border shape and could be used to derive other parameters for the border shape.

• The method offered an extra feature: localization of the significant indentations and

protrusions, which might be useful for pinpointing problematic areas of a melanocytic

lesion in an expert-system type of diagnostic device.  Physicians could verify the

highlighted area before the final diagnosis were made.

2. We collected a set of skin image data ranging from clinically benign nevi, pathologically

benign nevi, pathologically dysplastic nevi and malignant melanomas for future investigation.

3. The preprocessor DullRazor was designed to reduce the interference of thick dark hairs

from skin images, for subsequent analysis programs.  Without DullRazor, hairs have to be

physically removed by shaving, which is uncomfortable and time consuming.  Also it is not

possible to remove hairs from existing images without the software approach.

4. We constructed a segmentation program for the pigmented lesion images.  The program

extracted the lesion for further analysis.

5. Forming a reliable gold standard has been an issue for clinical evaluation of lesion border

contours.  Claridge et al. [32] reported low agreement among expert clinicians, when they

were asked to sort lesion borders contours in the order of increasing border irregularity.

Such a low agreement cast doubt on forming a credible gold standard in a clinical evaluation

setting.  For the validation step in this project, we adopted a different experiment design.

Dermatologists were asked to score the lesion border on a 4-point scale.  The narrow
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score scale gave enough separation to the degrees of irregularity and helped dermatologists

provide a reliable evaluation.

6.2. Future work

My thesis is part of a larger project: to develop an automatic non-invasive, in-vivo diagnostic

device for malignant melanomas.  Work developed so far can be the base of the larger project.

Of course, improvements can still be made.  Also some of the work can be applied to other

areas.

DullRazor was developed to simplify the segmentation task by removing dark thick hairs

from skin images.  However, thick light-coloured hairs such as the one shown in Fig. 6.1 may

interfere with some automatic analyses.  Extending DullRazor to such a task could be necessary

for this type of skin images.

There are other ways to extend DullRazor.  It could be used to measure hair growth on

a shaved patch of scalp for treatment of alopecia.  Present accepted methodology involves

either manual counting of hair and/or shaving and weighing the hairs from the scalp.  The shaving

and weighing procedure is complicated by the requirement of separating  the skin cells from the

hairs prior to weighing.  An automatic procedure using scalp images could simplify this

problematic task greatly.  Another application for DullRazor might allow for the development of

Figure 6.1. A skin image covered by light coloured hairs
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an index related to the vascularity of  images of the retina.  This could be useful in monitoring the

progression of retinal disease, or the response of such disease to therapeutic intervention.

Automatic segmentation is still a challenging active research topic in medical imaging and

computer vision.  However, without a perfect automatic segmentation program, many analysis

programs cannot have a reliable input.

Instead of measuring the lesion border shape, the irregularity index approach may be

able to measure the colour shape inside a melanocytic lesion.  Malignant melanomas tend to

have multiple colours and each colour could have an irregularity shape.  Outlining all internal

colour edges of a lesion and computing the corresponding OII for the colour edges may provide

a better malignancy indicator for a melanocytic lesion.

Although the irregularity index is designed for melanocytic lesions, the shape measure

can also be applied to other medical related problems, such as differentiating the malignancy of

other solid tumors.  For example, the new algorithm can be used to detect and measure the

spikes of a breast mass from a mammogram.  Furthermore, since the formation of the

methodology depends only on a planar closed curve, it can also be used as a shape descriptor

for other general 2-D image analysis problems, such as identifying the largest bay, the most

significant indentation, on an aerial map.  The methodology can potentially be a powerful tool for

many medical and scientific applications.
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Appendix A

FORM #5

SIMON FRASER UNIVERSITY

INFORMATION SHEET FOR SUBJECTS

Title of Project: Evaluation of melanocytic lesion images

One clinical feature of superficial spreading melanomas is irregularity of edge, often associated
with colour variation.  This study is an attempt to assess the usefulness of edge information
alone, in the absence of colour changes, as a clinical marker of melanoma probability.

These figures are the border outlines of melanocytic lesions.  The contours are extracted by an
automatic computer program.  Because the size of a lesion is itself a marker of risks, all lesions
are standardized and enlarged to the same enclosed area when they are printed on the paper.
There are two types of variations along a lesion border: global and fine variations.  The fine
variations could be artifact that is caused by the automatic segmentation program and/or the
enlargement process.  Therefore, these fine variations should have a less weight than the global
variations during the evaluation.

Please evaluate these border contours, rate them individually in the scale of 1 to 4, and record
the rating in the space provided just beneath the border.  The lowest value of 1 implies the most
benign looking nevus border contour, and the highest scale of 4 implies the most severe case
with the highest probability of a melanoma contour.  There are 4 pages of border contours.  At
least one contour on each page is a 1, and at least one is a 4.  Please find a 1 and a 4 contour,
and record that rating before assessing other contours on that page.  Do this for each of the four
pages.

There is no side effect or risk for this research procedure.  Furthermore, there is no personal
benefit for the participants.  However, information and knowledge gained from the experiment,
in the future, may be beneficial to patients with melanoctyic lesions.
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SIMON FRASER UNIVERSITY

INFORMED CONSENT BY SUBJECTS TO PARTICIPATE
IN A RESEARCH PROJECT OR EXPERIMENT

The University and those conducting this project subscribe to the ethical conduct of research and to
the protection at all times of the interests, comfort, and safety of subjects.  This form and the
information it contains are given to you for your own protection and full understanding of the
procedures.   Your signature on this form will signify that you have received an Information Sheet for
Subjects which describes the procedures, possible risks, and benefits of this research project, that
you have received an adequate opportunity to consider the information in the Information Sheet for
Subjects, and that you voluntarily agree to participate in the project.

Any information that is obtained during this study will be kept confidential to the full extent permitted
by law.  Knowledge of your identity is not required.  You will not be required to write your name or
any other identifying information on the research materials.  Materials will be held in a secure
location.

Having been asked by Tim Lee of the School of Computing Science, Simon Fraser University
to participate in a research project experiment, I have read the procedures specified in the
Information Sheet for Subjects.

I understand the procedures to be used in this experiment and there is no personal risks or benefits
to me in taking part.

I understand that I may withdraw my participation in this experiment at any time.

I also understand that I may register any complaint I might have about the experiment with the
researcher named above or with Dr. James Delgrande (604 291-4335) Chair of the School of
Computing Science, Simon Fraser University.

I may obtain copies of the results of this study, upon its completion, by contacting Tim Lee of
School of Computing Science, Simon Fraser University.

I have been informed that the research material will be held confidential by the Principal Investigator.

I understand that my supervisor or employer may require me to obtain his or her permission prior to
my participation in a study such as this.

I agree to participate by evaluating the set of melanocytic lesion images into a scale from 1 to 4.
The lowest value of 1 implies the most benign looking nevus, and the highest scale of 4 implies the
most severe case with the highest probability of being a melanoma.

NAME (please type or print legibly): ______________________________________

ADDRESS: __________________________________________________________

______________________________________________________________________

SIGNATURE:  _______________________   WITNESS:  ______________________

DATE:                                                   
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99/06 1

Evaulate the following lesion border contours using a scale of 1 to 4
    1 : most benign looking nevus border contour
    4 : highest probability of a melanoma contour
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99/06 2

Evaulate the following lesion border contours using a scale of 1 to 4
    1 : most benign looking nevus border contour
    4 : highest probability of a melanoma contour
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99/06 3

Evaulate the following lesion border contours using a scale of 1 to 4
    1 : most benign looking nevus border contour
    4 : highest probability of a melanoma contour
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99/06 4

Evaulate the following lesion border contours using a scale of 1 to 4
    1 : most benign looking nevus border contour
    4 : highest probability of a melanoma contour
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