

Performance Analysis of Algorithms for Retrieval of Magnetic Resonance
Images for Interactive Teleradiology
M. Stella Atkins, Robert Hwang and Simon Tang,

School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.

ABSTRACT

We have implemented a prototype system consisting of a Java-based image viewer and a web server extension component for
transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval
techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical
Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non-progressive
and progressive transmission, focussing on the running times of the algorithm, client memory usage and garbage collection.
We also compared the Java implementation with a native C++ implementation of the non-progressive SPIHT decompression
variant.

Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR
images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side
decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving
uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To
provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using
progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly
due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage
collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression
does not provide advantages for image retrieval performance.

1. INTRODUCTION
Teleradiology systems facilitate electronic transmission of medical images from one location to another, for the purposes of
interpretation and/or consultation [1]. In a typical client-server teleradiology system, a radiologist uses the client computer to
view images that have been transmitted over a network from a server. Hence a client/server teleradiology system must allow
the client to efficiently retrieve and display medical images. Radiographic images vary widely in their sizes, and large data
sets such as are encountered in magnetic resonance images (MRI) may take a long time to transmit over a computer network
with limited bandwidth. Some teleradiology systems utilize image compression to solve this problem [18][13][6].

In this project, we studied the performance of the Set Partitioning in Hierarchical Trees (SPIHT) image compression
algorithm for interactive client-server teleradiology. We chose the SPIHT algorithm as it has been shown to produce high
quality compressed medical images [10][3], and the algorithm also has the property of progressive reconstruction, whereby
the decompression algorithm can truncate the data stream at any point to generate an approximation of the original image.
Furthermore, the quality of the image can be refined by using additional data from the stream (Fig. 1).

Figure 1. A progressively transmitted image. These images were generated from a single data stream using 512, 2048, 4096,
and 6144 bytes from left to right.

Visualization, Display, and Image-Guided Procedures, Seong Ki Mun, Editor,
Proceedings of SPIE Vol. 4319 (2001) © 2001 SPIE · 1605-7422/01/$15.00 671

2. RELATED WORK
This work is concerned with the application of the SPIHT compression algorithm to teleradiology. The inventors of the
algorithm give performance results for the compression and decompression of images on a single computer [14]. Manduca et
al. [10] and Ericksen et al. [3] give favourable results for applying the algorithm to medical images.

Aside from the SPIHT algorithm, there are many wavelet-based image compression algorithms, and reports of these
algorithms often include some computational performance results, but they all use a single computer for such evaluations.
Examples include a space-frequency segmentation method to compress ultrasound images [2], and a comparison of the
AWIC algorithm to the JPEG algorithm [8]. Wu et al. [18] give round-trip results for a teleradiology system that uses images
compressed with a readily-available program called gzip. Gzip uses a lossless, dictionary-based compression technique. The
underlying network was Fast Ethernet (100Mbps). Reponen et al. [13] analyze the performance of a mobile teleradiology
system where the client is connected to the server using a cellular modem. The test images were compressed using JPEG.
Maldjian et al. [9] use a simple wavelet-based compression technique to compress MR images, and give round-trip
performance results for retrieving these images using a modem. The author also gives results for using the wavelet
compression technique, followed by compression using gzip. Png et al. [12] study the performance of using an Integrated
Services Digital Network (ISDN) connection for transmitting uncompressed CT and MR images. Nagata et al. [11] use JPEG
compression, and measure the performance over the Internet between sites that are separated by various distances and
interconnected by a communications network with varying capabilities. Hercus et al. [4] consider the computation and
communication tradeoffs in a client/server image retrieval system, comparing the UNIX utility compress, the lossless JPEG
algorithm, and the CALIC algorithm [17] to compress satellite images in their study. They build a model of a client/server
system and consider the performance of the algorithms using various network bandwidths.

None of these systems have studied the particular demands of viewing MR images in a Java client, particularly with a
progressive decompressor. This research is based on our earlier study [15] using the same Java-based MR image viewer, but
the earlier work used a non-Java, non-progressive SPIHT image decompressor.

3. METHODS
We analyzed the performance of the SPIHT image compression algorithm in a teleradiology application, using a server to
provide MRI data sets, and a client-side decompressor written in Java. We used the MR image viewer developed by [16],
augmented to be a client/server application by [15]. This viewer uses a detail-in-context algorithm to solve the problem of
limited screen real-estate [7]. The MR image viewer initially displays the images of a volume as a tiled data set at a reduced
scale, and the user may expand on one or more of these images as desired (Fig 2) by selecting it. For convenience, we refer to
the first, scaled-down image as the initial image, and the selected image as the expanded image.

Figure 2. The Image Viewer after selecting a focal node (enlarged).

Proc. SPIE Vol. 4319672

The client/server system may be implemented in several ways, where:
1. The server sends the uncompressed image data set for the client to scale to the appropriate size for display at the size of

the initial image.
2. The server sends a complete pre-compressed non-progressive SPIHT image for each initial image, which has to be scaled

by the client as above, after decompression.
3. The server scales the images and sends them at the appropriate size to the client. When a user expands an image, the

server sends the full, uncompressed image for that expanded image to the client. The client must then decompress and
display the expanded image.

4. The server sends a progressive SPIHT image stream, where the initial image is generated from the first N bytes, where N
is determined by some criteria to be a sufficient number of bytes to reproduce an acceptable scaled-down image. If the
expanded image is requested, an additional M bytes starting from byte N+1 of the stream are used to reconstruct the
expanded image. Again, M is determined by some subjective criteria, described in [5].

3.1 Implementation
We implemented the SPIHT algorithm using the Java language as a set of classes suitable for encoding and decoding an
image. The client was connected over a dedicated 10Mbps Ethernet to the server and the images were requested using the
hypertext transfer protocol (HTTP). The client uses an HTTP GET request to retrieve each image from the web server. One
thread of control made sequential image requests, so multiple requests did not overlap. Full details are given in [5].

We used identical PC computers at both client and server. Although their speed was only 133 MHz, tests on a faster
computer (550 MHz) showed an almost linear improvement in cpu speed for SPIHT decompression with cpu power, while
the network components remained constant. Both computers had 32 Mbytes RAM.

3.2 SPIHT compression

We measured the sequence of events for retrieving an individual image using SPIHT image compression, shown in Fig 3.
Figure 3. Sequence of HTTP method calls for SPIHT image decompression.
The response to the HTTP GET request is read into a buffer. The decodeSPIHT() method decodes the data, and returns a two
dimensional array of wavelet coefficients. The 2D IDWT is performed on this array to reconstitute the image data. This data
requires some additional processing (such as conversion from floating point to integer values) to be converted into an object
of the java.awt.Image class. The Java environment renders this image object to the screen.

3.3 Progressive SPIHT compression
As shown in Figure 4, the client uses an additional thread of control for each image that it loads. When a specified number of
bytes are read from the embedded stream, the data is passed to the SPIHT decoding thread. The number of bytes is
configured on the server and is chosen to provide enough compressed image data to reconstruct an image with adequate
fidelity (see [5] for details on how we chose the number of bytes).

After processing the data, the thread is suspended. The main thread performs a 2D IDWT on the result from the SPIHT
decoding to produce the image data. Additional data from the embedded stream may be passed to the SPIHT decoding

GET image0

Data for image 0

Client Server

decodeSPIHT()

inverseWaveletTransform()

createImage()

Proc. SPIE Vol. 4319 673

Figure 4. HTTP and intraprocess method call sequence for progressive SPIHT image decompression.

thread, which resumes processing the data from the point when it was suspended. Once it completes processing the
additional data, the thread is suspended and a 2D IWT is performed to produce the updated image.

3.4 Performance Evaluation
We measured several system components, detailed in [5], by instrumenting the web server and the client to report execution
times for 10 iterations of each display of SPIHT-compressed images, with a cache flush between each iteration. We also
tested the Java system with and without garbage collection. For progressive SPIHT reconstruction, we obtained timings for
loading the images initially, and also for expanding 1,2 or 3 focal images. Finally, we measured the memory usage during
execution of the Java decoder.

4. RESULTS AND DISCUSSION

4.1 Pre-compressed SPIHT images
The total time required to retrieve and reconstruct 16 MR images compressed with the SPIHT algorithm is given in Fig 5.
The individual components are itemized. The main points to note are that the client-side garbage collection becomes
increasingly significant as the compressed image stream size increases, and, as expected, SPIHT decoding time increases
linearly with image size.

SPIHT Decoding Image Retrieval HTTP Server

decodeSPIHT()

GET image.spiht

…suspended…

inverseWaveletTransform()

9728 bytes returned

…

GET image.spiht?9728

Additional 7468 bytes
returned

decodeSPIHT()
…resumed

inverseWaveletTransform()

ServerClient

HTTP request/response

Thread-to-thread communication

Proc. SPIE Vol. 4319674

Figure 5. Total time required to retrieve and reconstruct 16 MR images decompressed with the Java SPIHT
algorithm.

4.2 Progressively Transmitted SPIHT images
The detail-in-context algorithm displays MR images scaled down to the viewing area, and expands an image or a set of
images, when requested by the user. We used this property as a vehicle for experimenting with the progressive transmission
capability of the SPIHT algorithm. That is, we use an initial portion of the compressed stream to view the initial scaled-down
image and we retrieve an additional portion of the stream to render an expanded image.

We initially intended to perform this experiment using 16 images. However, the SPIHT algorithm requires that we utilize a
substantial amount of memory in order to use the progressive transmission capability; this is a limitation of this technique.
As a result, the operating system on the client machine frequently swapped memory to secondary storage. We found that the
effects of paging distorted the results substantially and therefore we reduced the memory requirements by performing the
experiment using eight images instead of sixteen.

Surprisingly, we see that by using progressive image compression, we have not saved any time (Table 1). In fact, the total
amount of time is substantially higher. Furthermore, for zero foci the amount of time to load eight images at 1.19 bpp (9728
bytes) using progressive image transmission is almost the same as the amount of time to load eight images at 2.09 bpp (17152
bytes) using SPIHT compression without the progressive transmission capability.

Total Time

0

5000

10000

15000

20000

25000

30000

0

20
48

40
96

61
44

81
92

10
24

0

12
28

8

14
33

6

16
38

4

18
43

2

Compressed image size (bytes)

T
o

ta
l t

im
e

(m
ill

is
ec

o
n

d
s)

Client GC

Other Image Preparation

Inverse Wavelet Transform

SPIHT Decoding

Communication

Server GC

Server Processing

Proc. SPIE Vol. 4319 675

 Table 1. Comparison of times in milliseconds progressive and non-progressive SPIHT
compression using 8 images and between 0 and 3 f����

Number of Foci SPIHT Compression ���������	�
���

������
������

 Mean Standard Deviation Mean Standard Deviation

0 12250 520 (4.2% of Mean)

1 13170 350 (2.7% of Mean)

2 15340 170 (1.1% of Mean)

3

12870

1590

(12.3% of Mean)

17170 670 (3.9% of Mean)

Figure 6 shows the amount of time required for each step of the image reconstruction process. Note, client-side garbage
collection accounts for the largest proportion of the total time for zero, one, two, or three foci. For each image, we must
retain a large amount of data to maintain the state of the SPIHT algorithm between each successive progressive
decompression call. In contrast, this memory may be disposed of when we do not need to support progressive
decompression.

Progressive Image Transmission Using SPIHT

0

1000

2000

3000

4000

5000

6000

7000

No Foci 1 Focus 2 Foci 3 Foci

Number of Foci

T
im

e
(m

ill
is

ec
o

n
d

s) Communication

SPIHT

Inverse Wavelet Transform

Other Image Preparation

Client GC

Server Processing

Server GC

Figure 6. Comparison of factors affecting total time to retrieve and reconstruct 8 images using the
SPIHT compression algorithm. We use progressive image transmission to improve the quality of an
image when one, two, or three foci are expanded by the user.

Proc. SPIE Vol. 4319676

4.3 Comparison with other techniques
We compare the performance of this Java SPIHT algorithm against the full-resolution, scaled, and native SPIHT technique
results detailed in [15]. The timings are directly comparable because identical hardware configurations were used.
Table 2 compares [15] against the SPIHT image compression technique without making use of progressive image
transmission. The table shows the total time required to retrieve and reconstruct sixteen MR images, and also the total time
required to expand between one and three foci. Only the values in the “Scaled” column vary depending on the number of
foci as it is the only technique in this table which requires additional communication with the server. Not surprisingly, this
Java SPIHT algorithm underperforms all of these techniques from [15]; the Java version is almost twice as slow as the native
(C++) implementation. Also note that the native implementation includes an additional arithmetic compression step which is
not performed with the Java implementation. This figure is consistent with the 57% speed-up found by Bolin [Bolin97] when
comparing the performance between C++ and Java programs. However, the convenience of running a Java decompressor in a
web browser may mean that this option is still viable, especially with the huge increase in processor speeds (10 times) likely
cheaply available.

Table 2. Comparison of image transmission times in milliseconds for SPIHT image compression
against three techniques from [15].

of Foci Full-Resolution
Uncompressed

Scaled Native SPIHT
(0.5 bpp)

Java SPIHT
(0.5 bpp)

 Avg. Std. Avg. Std. Avg. Std. Avg. Std.

0 4418 264
1 5260 238
2 5441 296
3

9355

803

5894 246

6994

82

13110

433

4.4 Progressively Transmitted SPIHT images
We compare the Progressive SPIHT image compression technique against [15] in Table 3. Since we reduced the total number
of images in a film to eight for the Progressive SPIHT technique, we have recalculated the totals from [15] to only include
the timings for the same eight images.

Table 3. Comparison of image transmission times in milliseconds for Progressive SPIHT image
compression against two techniques from [15���

of Foci Full-Resolution
Uncompressed

����
�� Progressive SPIHT
1.19 bpp for 0 foci

2.09 bpp for expanded
foci

 Avg. Std. Avg. Std. Avg. Std.
0 2180 250 12249 519
1 3022 318 13171 351

2 3203 258 15339 172
3

4509

630

3656 259 17167 674

Proc. SPIE Vol. 4319 677

4.5 Memory Usage
Using the progressive SPIHT decoding technique with 8 initial images and expanding 3 images, we obtain memory usage
results in Figure 7. When we use automatic garbage collection, our data shows that the total memory used decreases after
loading the 8th image. We attribute this to a garbage collection phase that reclaimed some memory.
With forced garbage collection, the 8 initial images each require an average of 1,260,000 bytes. Loading the first image
appears to result in a noticeably larger allocation of memory, which may be due to startup costs. Disregarding the first
image, the average memory requirement of loading one image is 1,210,000 bytes.

Expanding the three foci requires an average of 709,000 bytes per focus. The total memory used when we expand the last
focus is approaching 14 megabytes, which is the maximum size of the heap that we allowed for our experiments. This limit
was chosen because larger heap sizes resulted in substantial hard drive activity due to memory swapping.

We see the progressive SPIHT decoding algorithm consumed a substantial amount of memory. In an environment where
garbage collection is used for memory management, this can decrease overall performance due to additional processing by
the collector. Even in an environment where this is not the case, an implementation of the algorithm must deal with the
memory consumption issue. Some explanations for these results are given in [5]. It may be possible to optimize the data
structures in ways that can reduce memory usage.

Alternatively, we believe that instead of saving the state, we may be able to reconstruct the state from the decompressed
image. We could perform a forward wavelet transform on an image and execute the SPIHT encoding algorithm to
reconstruct the state of the decoding algorithm at the point when decompression was halted. This would require that we
remember the number of bits that were used to decompress the initial image and that we use a wavelet transform that does not
suffer from round off errors such as the integer wavelet transform.

5. CONCLUSIONS AND FUTURE WORK
We implemented the SPIHT image compression algorithm in the Java programming language for a client/server MR image
viewing application. We performed experiments and found a number of factors that affect the performance of the system. In
order to take advantage of progressive image decompression, we needed to maintain intermediate state information about the
algorithm. This state information consumed a substantial amount of memory, leading us to modify one of our experiments to
use fewer images. Software developers should be aware of this when considering the progressive SPIHT algorithm in their
design, unless huge amounts of local memory is available.

In an environment that uses garbage collection, the large amount of memory that is required to maintain state also results in
longer garbage collection phases. In our progressive image compression experiments, garbage collection was the largest

Progressive SPIHT - Automatic GC: Total Memory

-3000000

0

3000000

6000000

9000000

12000000

15000000

0 1 2 3 4 5 6 7 8

O
ne

 F
oc

us

T
w

o
F

oc
i

T
hr

ee
 F

oc
i

Images Loaded or Expanded

B
yt

es
Progressive SPIHT - Forced GC: Total Memory

-3000000

0

3000000

6000000

9000000

12000000

15000000

0 1 2 3 4 5 6 7 8

O
ne

 F
oc

us

T
w

o
F

oc
i

T
hr

ee
 F

oc
i

Images Loaded or Expanded

B
yt

es

Figure 7. Average total memory usage and change in memory usage per image. Eight images were initially
loaded at 1.19 bpp (9728 bytes) and then three images were expanded to a bitrate of 2.09 bpp (17152 bytes).

We used automatic garbage collection (left) and forced garbage collection (right).

Proc. SPIE Vol. 4319678

factor in the overall time required to reconstitute an image. Since there are a variety of garbage collection algorithms,
performance will differ depending on the environment.

The SPIHT algorithm is computationally intensive. Although we found that system performance was poor under our
experiment’s conditions when compared to the performance of the application when using uncompressed images, we note
that if the underlying communication network is slower (as is common in teleradiology applications) and/or computation
power is increased, then the SPIHT algorithm should perform better relative to using uncompressed images.

Future Work

Some of the garbage collection and memory usage problems with progressive image compression may be alleviated by
reconstructing the state of the SPIHT algorithm when needed instead of maintaining it in memory. It would be useful to
examine this further.

Another possible technique for improving system performance is to make use of the communication link while it would
otherwise be idle. For example, after the Image Viewer application has loaded and rendered the initial images using the
Progressive SPIHT technique, the communication link is not used until the user expands an image. During this idle time, the
Image Viewer could preload and/or decompress additional image data from the server in advance of the user’s selection and
expansion of images. Other teleradiology applications could employ a similar technique, depending on their user interface, if
they use the Progressive SPIHT algorithm.

With respect to the general applicability of progressive image compression to teleradiology, we have examined the
performance of the SPIHT algorithm and by examining its limitations, we suggest a constraint which we might apply to
determine how suitable other algorithms are for this application. In particular, the image compression algorithm should allow
progressive decompression without excessive memory requirements and should maintain a minimal amount of state between
successive reconstruction of images. Future work can be done to examine other progressive image compression techniques
with the goal of determining criteria for teleradiology applications. These criteria could form the basis for the design of
future image compression algorithms.

REFERENCES

[1] American College of Radiology, “ACR Standard for Teleradiology”, http://www.acr.org, 1998.

[2] Chiu, E., Vaisey, J., Atkins, S., “Joint Space-Frequency Segmentation, Entropy Coding and the Compression of
Ultrasound Images”, Proceedings of ICIP 2000, Vancouver Sept. 2000, to appear.

[3] Erickson, B.J., Manduca, A., Palisson, P., Persons, K.R., Earnest IV, F., Savcenko, V., Hangiandreou, N.J., “Wavelet
Compression of Medical Images,” Radiology, 1998, pp. 599-607.

[4] Hercus, J.F., Hawick, K.A., “Compression of Image Data and Performance Tradeoffs for Client/Server Systems”,
Technical Report DHPC-029, Department of Computer Science, University of Adelaide, Australia.

[5] Hwang, R. “An analysis of the SPIHT image compression algorithm for real-time teleradiology”, M.Sc. Thesis, Simon
Fraser University, 2000. http://www.cs.sfu.ca/~stella/papers/RobertHwangMSc.ps

[6] Kim, N.H., Yoo, S.K., Kim, K.M., Kang, Y.T., Bae, S.H., Kim, S.R., “Development of a Medical Record and
Radiographic Image Transmission System Using a High-Speed Communication Network”, MEDINFO: Proceedings of the
World Conference on Medical Informatics, Volume 9 part 1, 1998, pp. 282-285.

[7] Kuederle, O., Atkins, M.S., Inkpen, K.M., Carpendale, M.S.T., “Evaluation of Viewing Methods for Magnetic Resonance
Images”, to appear in SPIE Medical Imaging, Volume 4319-64, February 2001.

[8] Lepley, M.A. and Forkert, R.D., “AWIC: Adaptive Wavelet Image Compression”, MITRE Technical Report, MTR
97B0000040, The MITRE Corporation, 1997.

Proc. SPIE Vol. 4319 679

[9] Maldjian, J.A., Liu, W.C., Hirschorn, D., Murthy, R., Semanczuk, W., “Wavelet Transform-Based Image Compression
for Transmission of MR Data”, American Journal of Roentgenology, 169(1), pp. 23-26.

[10] Manduca, A., Said, A., “Wavelet Compression of Medical Images with Set Partitioning in Hierarchical Trees”,
Proceedings of Medical Imaging 1996: Image Display, SPIE Volume 2702, pp. 192-200.

[11] Nagata, H. and Mizushima, H., “A remote collaboration system for telemedicine using the Internet”, Journal of
Telemedicine and Telecare, 4(2) 1998, pp. 89-94.

[12] Png, M.A., Kaw, G.J.L., Tan, K.P., Koh, B.H., Ang, L., Filut, J., “Remote consultation for computerized tomography
and magnetic resonance studies by means of teleradiology – experience at the Singapore General Hospital”, Journal of
Telemedicine and Telecare, 3 Supp 1 1997, pp. 54-55.

[13] Reponen, J., Ilkko, E., Jyrkinen, L., Karhula, V., Tervonen, O., Taitinen, J., Leisti, E-L., Koivula, A., Suramo, I.,
“Digital wireless radiology consultations with a portable computer”, Journal of Telemedicine and Telecare, 4(4) 1998, pp.
201-205.

[14] Said, A., Pearlman, W., “A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees”, IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 6, June 1996.

[15] Tang, S., “Towards Real-Time Magnetic Resonance Teleradiology over the Internet”, M.Sc. Thesis, Simon Fraser
University, 1999. ftp://fas.sfu.ca/pub/cs/theses/1999/SimonTangMSc.pdf

[16] van der Heyden, J., Atkins, M.S., Inkpen, K., and Carpendale, M.S.T., “MR image viewing and the screen real estate
problem”, Proceedings of the SPIE-Medical Imaging 1999, 3658: 370-381, Feb. 1999.

[17] Wu, X., Memon, N., Sayood, K., “A context-based, adaptive, lossless/nearly-lossless coding scheme for continuous-tone
images”, ISO/IEC JTC 1/SC 29/WC 1 document No. 202, July 1995.

[18] Wu, T-C., Lee, S-K., Peng, C-H., Wen, C-H., Huang, S-K., “An Economical, Personal Computer-based Picture
Archiving and Communication System;, Radiographics 1999, 19, pp. 525-530.

Proc. SPIE Vol. 4319680

