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Abstract.   In this paper, we investigated the mechanism of dividing a 2D-
object border into a set of local and global indentation and protrusion segments 
by extending the classic curvature scale-space filtering method.  The resultant 
segments, arranged in hierarchical structures, can represent the object shape.  
Applying this technique, we derived a border irregularity measure for 
pigmented skin lesions.  The measure correlated well with experienced 
dermatologists’ evaluations and may be useful for measuring the malignancy of 
the lesion.  Furthermore, we can use the method to discover all the bays in an 
aerial map. 

1 Introduction 

Shape decomposition is an important technique for computer vision or image 
understanding systems.  Dividing an object into parts forms a logical hierarchical 
structure of the part shapes, which can help us understand the object.   

There are many approaches to partition an object.  Generalized-cylinders [1] and 
superquadrics [2, 3] methods model shape parts by predefined geometric primitives.  
Blum and Nagal [4] proposed to divide an object according to its symmetric axes.  
The high curvature points of an object border, which are considered to possess high 
information content [5], have also been used for shape decomposition.  Hoffman and 
Richards [6, 7] partitioned an object border at the concave tips.  Siddiqi and Kimia’s 
[8] neck-based and limb-based approach to object decomposition also put the 
terminals of part-lines at the concave tips.  However, the above methods cannot 
produce a full set of indentation and protrusion segments. 

In this paper, we present an algorithm, which is an extension of the classic 
curvature scale-space filtering technique, to partition a 2D planar curve into two sets 
of local and global indentation and protrusion segments.  Then we discuss two 
applications for such a boundary decomposition technique.  The first application is to 
measure the border irregularity of a pigment skin lesion, which may indicate the 
malignancy of the lesion.  Another application is to detect a set of bays, arranged in a 
hierarchical structure, from aerial maps.  

The paper is organized as follows: Sect. 2 briefly describes the classic curvature 
scale-space filtering technique.  Sect. 3 defines indentation and protrusion segments.  
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Sect. 4 presents the algorithm of detecting all indentation and protrusion segments.  
Sect. 5 shows the duality between the classic and the extended curvature scale-space 
images.  Sect. 6 discusses the two applications and Sect. 7 concludes the discussion. 

2 Classic Curvature Scale-Space 

The classic curvature scale-space filtering technique extracts curvature zero-crossing 
points from a 2D-object border in a multi-scale environment [9, 10].  The idea begins 
with a smoothing process of the object border L(t), which is parameterized by the path 
length variable t and is in C2. The smoothing process is achieved by a series of 
Gaussian convolutions with a family of kernels g(t, σ) of increasing σ.  The curvature 
function K(t, σ) of the smoothed border L(t, σ) is defined as:1  

 

(1) 

 
During the smoothing process, σ controls the amount of smoothing.  At some large 

σ, all concavities on the border are removed and the process is terminated.  Fig. 1 
demonstrates the smoothing process of a planar closed curve. 

Fig. 1. Gaussian smoothing process for a planar closed curve.  The initial parameterization 
point is marked as ’x’ in each subfigure.  The smoothing σ level is specified at the top of the 
subfigure.  The σterm, the σ level when all concavities are removed, for this example is 129. 

For a smoothed border, the curvature zero-crossings are the points that satisfy the 
following conditions: 

(2) 
 

Zero-crossings of all smoothed borders are computed and a 2D scale-space image is 
employed to record the captured feature points.  Fig. 2a shows the classic curvature 
scale-space image for Fig. 1. 
                                                           
1 With our convention, using counterclockwise tracing along the border and image coordinate 

system (i.e. the origin is in the top-left corner), positive curvature values imply concavity, 
while negative curvature values imply convexity.  

original border sigma = 16 sigma = 40 sigma = 72 sigma = 129
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Fig. 2. The classic (a) and extended (b) curvature scale-space images for the Gaussian 
smoothing process shown in Fig. 1.  (c) The overlay of (a) and (b). 

The classic curvature scale-space image has been used to match 2D objects from a 
database [9, 10] and to detect corners from an image [11].  However, these systems 
are not designed to analyse indentation and protrusion curve segments. 

3 Definition of Indentation and Protrusion Segments 

To define indentation and protrusion curve segments, we exploit the characteristics of 
the curvature function K(t) of a curve function L(t).  The curvature function portrays 
the curve in two ways.  The sign of K(t) indicates the type of bending (concavity or 
convexity) at the point t and the magnitude denotes the amount of bending.  Local 
curvature extrema, located by the zero-crossings of the first derivative of K(t) with 
respect to t (K'(t)=0, K"(t) ≠ 0), mark the tip points of the curve segment, whose type 
is determined by the corresponding sign of K(t).  Therefore, we define an 
indentation/protrusion segment as a curve segment composed of three consecutive 
local curvature extrema [t1, t2, t3].  The middle curvature extremum t2 determines the 
segment tip point and the segment type.   For example, when t2 is a concave curvature 
extremum, K(t2) > 0, the corresponding segment is an indentation segment.  The local 
curvature extrema t1 and t3 delimit the extent of the segment.  K(t1) and K(t3) have the 
same sign, which are different from K(t2). 
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4 Algorithm for Detecting Indentation and Protrusion Segments 

The details of the algorithm for detecting all indentation and protrusion segments 
have been published elsewhere [12]; therefore, only an overview is presented here.  

To analyse indentation/protrusion segments, local curvature extrema are chosen to 
be the investigated feature of our extended curvature scale-space image.  These 
curvature extrema are defined as the zero-crossings of the partial derivative of K(t,σ) 
with respect to t, i.e. 

 
 

(3) 
 

Also, the scale-space image is extended from a binary image to a three-valued 
image to encode the concavity or convexity property of the curvature extrema.  Such 
an extended scale-space image for the smoothing process of Fig. 1 is depicted in Fig. 
2b, where concave curvature extrema are denoted by shaded thick points (red in the 
online version) and convex curvature extrema are denoted by solid thin black points.  

From our extended curvature scale-space image, we can capture all 
indentation/protrusion segments as defined in Sect. 3 for the entire smoothing process.  
Furthermore, our scale-space image also reveals the evolution of the 
indentation/protrusion segments.  Because of the causality property of Gaussian 
smoothing [13, 14], segments are smoothed out in a 'proper' order: small ones 
disappear before larger ones.  When some smaller segments are smoothed out, they 
may merge into some larger segments.  The larger segments are considered as the 
global segments to the smaller local ones.  Hence, indentation/protrusion segments 
can be grouped into hierarchical structures.  In addition, the true location of an 
indentation/protrusion segment can be pinpointed by coarse-to-fine tracking of the 
segment to the zeroth-scale, the original non-smoothed curve. 

5 Classic and Extended Curvature Scale-Space Images 

The classic and the extended curvature scale-space images form a dual space because 
these two images are constructed by different feature points of the smoothed borders.  
Fig. 2c depicts the overlay of Fig. 2a and 2b.  In this section, we present the parallel 
properties and the differences for these two images. 
Property 1a: In classic curvature scale-space images, the apex of a contour arc is the 
point (τ,ξ) such that K(τ,ξ)=0 and ∂ K(τ,ξ)/∂ t=0.2  

For any σ in the internal of [0, ξ) in the classic curvature scale-space image, let the 
points t1 and t2 be the curvature zero-crossings at the two sides of the contour arc.  
Since K(t1, σ) = K(t2, σ) = 0 and K is a continuous function, according to Rolle's 
Theorem, there exists a point t3 such that t1 < t3 < t2 and ∂K(t3, σ)/∂t = 0 in K-t space.  
                                                           
2 Note that the apex point (τ,ξ) of a contour arc is not selected in the classic curvature scale-

space process due to the definition of the process as expressed in Eqn 2.  However, the 
property of the point can be derived. 
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At the smoothing level ξ, the points t1, t2 and t3 merge together to the point τ.   
Because K is continuous, K(τ,ξ)=0 and ∂K(τ,ξ)/∂t=0.   
Property 1b: In extended curvature scale-space images, the apex of a contour arc is 
the point (τ, ζ) such that ∂K(τ,ξ)/∂t=0 and ∂2K(τ,ξ)/∂t2=0.3 

For any σ in the internal of [0, ξ) in the extended curvature scale-space image, let 
the points t1 and t2 be the curvature extrema at the two sides of the contour arc.  Since 
∂K(t1, σ)/∂t = ∂K(t2, σ)/∂t = 0 and ∂K/∂t is a continuous function, according to Rolle's 
Theorem, there exists a point t3 such that t1 < t3 < t2 and ∂2K(t3, σ)/∂t2 = 0 in ∂K/∂t-t 
space.  At the smoothing level ξ, the points t1, t2 and t3 merge together to the point τ.   
Because ∂K/∂t is continuous, ∂K(τ,ξ)/∂t=0 and ∂2K(τ,ξ)/∂t2=0.   
Property 2a: In classic curvature scale-space images, excluding the apex point, one 
side of a contour arc has the property ∂K/∂t > 0 and the other side of the contour arc 
has the property ∂K/∂t < 0. 

Assume the contour apex is the point (τ,ξ) in the classic curvature scale-space 
image.  For any σ in the internal of [0, ξ ) of the smoothing axis, let the points t1 and 
t2 be the curvature zero-crossings at the two sides of the contour arc.  By definition, 
K(t1, σ) = 0 and ∂K(t1, σ)/∂t  ≠ 0.  Without loss of generality, we assume ∂K(t1, σ)/∂t 
> 0.  In other words, K crosses the zero from below at t1 in the K-t space.  Because K 
is continuous, for K to cross the next zero at t2, K must crosses the zero from above, 
∂K(t2, σ)/∂t < 0.  Otherwise, there exists a curvature zero-crossing in between t1 and 
t2, which contradicts the classic curvature scale-space process.  Therefore, the partial 
derivatives of ∂K(t1, σ)/∂t and ∂K(t2, σ)/∂t must have different sign. 

To complete our argument for the property, we have to show that if ∂K(t1, σ)/∂t > 
0, all curvature zero-crossings in the same side of the contour arc must have the 
property ∂K/∂t > 0.  Since ∂K(t1, σ)/∂t > 0 and ∂K/∂t = 0 only at the contour apex 
(τ,ξ), moving along the contour arc from (t1, σ) to (τ,ξ) in the ∂K/∂t surface cannot go 
to negative because ∂K/∂t is continuous.  Therefore, the curvature zero-crossings 
along the same side as t1 have the property ∂K/∂t > 0. 
Property 2b: In extended curvature scale-space images, excluding the apex point, 
one side of a contour arc has the property ∂2K/∂t2 > 0 and the other side of the 
contour arc has the property ∂2K/∂t2 < 0. 

The argument is parallel to property 2a if we can show ∂2K/∂t2 is a continuous 
function.  Since the border L0 is C2, the smoothed border L(t, σ) and curvature K are 
C3 and ∂2K/∂t2 is C1.  Therefore, ∂2K/∂t2 is a continuous function. 

Assume the contour apex is the point (τ,ζ) in the extended curvature scale-space 
image.  For any σ in the internal of [0, ζ) of the smoothing axis, let the points t1 and t2 
be the curvature extrema at the two sides of the contour arc.  By definition, ∂K(t1, 
σ)/∂t = 0, ∂2K(t1, σ)/∂t2 ≠ 0.  Without loss of generality, we assume ∂2K(t1, σ)/∂t2 > 0.  
In other words, ∂K crosses the zero from below at t1 in the ∂K/∂t-t space.  Because 
∂K/∂t is continuous, for ∂K/∂t to cross the next zero at t2, ∂K/∂t must cross the zero 
from above, i.e., ∂2K(t2, σ)/∂t2 < 0.  Otherwise, there exists a curvature extrema in 

                                                           
3 Note that the apex point (τ,ξ) of a contour arc is not selected in the extended curvature scale-

space process due to the definition of the process as expressed in Eqn 3.  However, the 
property of the point can be derived. 
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between t1 and t2, which contradicts the extended curvature scale-space process.  
Therefore, ∂2K(t1, σ)/∂t2 and ∂2K(t2, σ)/∂t2 must have different sign. 

To complete our argument for the property, we have to show that if ∂2K(t1, σ)/ct2 > 
0, all curvature extrema in the same side of the contour arc must have the property 
∂2K/∂t2 > 0.  Since ∂2K(t1, σ)/∂t2 > 0 and ∂2K/∂t2 = 0 only at the contour apex (τ,ζ), 
moving along the contour arc from (t1, σ) to (τ,ξ) in the ∂2K/∂t2 surface cannot go to 
negative because ∂2K/∂t2 is continuous.  Therefore, the curvature extrema along the 
same side as t1 have the property ∂2K/∂t2 > 0. 
Property 3: In the contours of an extended curvature scale-space image, the points 
where the concave extrema and convex extrema meet are the zero curvature points. 

The curvature of a convex curvature extremum is less than 0 and the curvature of a 
concave curvature extremum is greater than 0; hence, the meeting point has the 
property of zero curvature.  The Points AC and A4 in Fig. 2b are the examples of such 
points.  

Even though the extended curvature scale-space process computes the locations of 
curvature extrema, some curvature zero-crossings can be easily identified using the 
three-valued scale-space image.  However, there is no corresponding property for the 
classic curvature scale-space image. 
Property 4a: In classic curvature scale-space images, all curvature zero-crossings 
disappear at σterm. 

When a Gaussian smoothing process terminates at σterm, the object border is 
transformed into an oval shape with convex curvature for the entire border (i.e. K(t, 
σterm) < 0 for all t); therefore, all curvature zero-crossings disappear. 
Property 4b: In extended curvature scale-space images, all curvature extrema may 
disappear (a special case of a circle) or at least 4 curvature extrema remain at σterm. 

When a Gaussian smoothing process terminates at σterm, the object border is 
transformed into an oval shape with convex curvature for the entire border (i.e. K(t, 
σterm) < 0 for all t).  In a special case, K(t, σterm) is a negative constant (i.e. a circle) 
and there will be no curvature extremum.  Otherwise, curvature extrema must exist.  
Since an ellipse has 4 curvature extrema, there must be at least 4 curvature remains at 
σterm for the oval shaped border. 

6 Applications 

6.1 Differentiating Malignant Melanomas from Benign Nevi 

The indentation and protrusion segments obtained from an object border can be used 
to describe the object shape.  One of the applications for the technique is to analyse 
the border irregularity of the 2D projection of an object.  In particular, this technique 
has been used to measure the border irregularity of skin pigmented lesions, commonly 
known as moles, which may indicate the malignancy of the lesion [12, 15, 16]. 

Moles are mostly benign; however, some of them are malignant melanomas, the 
most fatal form of skin cancer.  Benign moles usually have a round or oval shape with 
regular contour and uniform colour.  Fig. 3a shows a typical benign nevus.  On the 
other hand, malignant melanomas are usually described as enlarged lesions with 
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multiple shades of colours.  Furthermore, their borders tend to be irregular and 
asymmetric with protrusions and indentations [17, 18].  Fig. 3b shows a malignant 
melanoma. 

 

Fig. 3.  Pigmented skin lesion  (a) Benign nevus  (b) Malignant melanoma. 

Among the clinical characteristics (size, colour and irregular border shape) of skin 
pigmented lesions, border irregularity is one of the important clinical features 
differentiating benign nevi from malignant melanomas.  There are two types of border 
irregularity: texture and structure irregularities. Texture irregularities are the small 
variations along the border, while structure irregularities are the global indentations 
and protrusions that may suggest either the unstable growth in a lesion or regression 
of a melanoma.  An accurate measurement of structure irregularities is essential to 
detect the malignancy of melanoma [19]. 

Fig. 4.  The largest indentation (a) and protrusion (b) for a lesion border. 

Our extended curvature scale-space filtering technique can be used to measure the 
structure border irregularity of a pigmented skin lesion by locating a set of global 
indentation/protrusion segments along the border. An area-based index, called 
irregularity index, is generated to measure the severity of irregularity for each 
segment.  We compare the area difference between the smoothed segment at the 
smooth-out sigma level and the original non-smoothed segment.  The ratio of the 
affected area difference over the area of the smoothed object is used to define the 
irregularity index of a segment [12].  For example, Fig. 4 shows the affected area 
difference (shaded) of a segment in the smoothing process, between the lesion border 
(shown by the solid line) and a smoothed border (shown by the dashed line) at the 
smooth-out level for the largest indentation (a) or protrusion (b). The overall 
irregularity index is computed by summing all individual irregularity indices.  
Because all global irregular segments are analysed, the measure is sensitive to 

                   (a)                (b) 

(a) (b)
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structure irregularities.  A user study showed that the overall irregularity index 
correlated well with experienced dermatologists' evaluations of the malignancy of a 
lesion.  The preliminary results of the user study have been reported in [16]. 

6.2 Detecting Bays from Aerial Maps 

To analyse aerial maps, one may represent a bay of the landmass by an indentation 
segment of the coastline.  When all local and global indentation segments of the 
coastline are computed and organized in a hierarchical structure, the hierarchical 
structure of the bays can be detected.4  For example, the British coastline, shown in 
Fig. 5a, can be divided into 7 global bay areas, according to the algorithm discussed 
in Sect. 4.  As we move down the hierarchical structure of one of the global bays in 
the west side of the British coastline as shown in Fig. 5b, smaller bays are discovered. 

Fig. 5.  (a) British coastline.  (b) Hierarchical structure of bays (highlighted) at the west side of 
the British coastline. 

7 Conclusions 

We presented an extended curvature scale-space filtering technique to partition a 2D 
planar-closed curve into a set of indentation and protrusion segments, which can be 
used to describe the shape of the object.  The extended and classic techniques form a 
dual space and their similarities and differences have been compared. Two 
applications for the extended technique have been discussed. A stable border 
irregularity index for skin pigmented lesion can be derived.  Preliminary results 
showed that the index correlated well with experienced dermatologists’ evaluations of 

                                                           
4 A set of peninsulas can also be detected if the protrusion segments are analysed. 

(a) (b)
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the malignancy of a lesion.  Also, we can discover the bays of a coastline by 
computing all indentation segments and organized them into a hierarchical structure. 

References 

1. Nevaita, R., Binford, T.O.: Description and recognition of curved objects. Artificial 
Intelligence 8 (1977) 77-98. 

2. Pentland, A.P.: Recognition by parts. In: IEEE International Conference on Computer 
Vision (1987) 612-620. 

3. Lou, S.L., Chang, C.L., Lin, K.P., Chen, T.S.: Object-based deformation technique for 3D 
CT lung nodule detection. In: SPIE Medical Imaging, San Diego (1999) 1544-1552. 

4. Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern 
Recognition 10 (1978) 167-180. 

5. Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61 (1954) 
183-193. 

6. Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18 (1985) 65-96. 
7. Richards, W., Hoffman, D.D.: Condon Constraints on Closed 2D Shapes. Computer Vision, 

Graphics, and Image Processing 31 (1985) 265-281. 
8. Siddiqi, K., Kimia, B.B.: Parts of visual form: computational aspects. IEEE Transactions on 

Pattern Analysis and Machine Intelligence 17 (1995) 239-251. 
9. Mokhtarian, F., Mackworth, A.: Scale-based description and recognition of planar curves 

and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 8 (1986) 34-43. 

10. Mokhtarian, F.: Silhouette-based object recognition through curvature scale space. IEEE 
Transactions on Pattern Analysis and Machine Intelligence 17 (1995) 539-544. 

11. Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. 
IEEE Transactions Pattern Analysis and Machine Intelligence 20 (1998) 1376-1381. 

12. Lee, T.K., Atkins, M.S.: A new approach to measure border irregularity for melanocytic 
lesions. In: SPIE Medical Imaging 2000, San Diego (2000) 668-675. 

13. Mokhtarian, F., Mackworth, A.K.: A theory of multiscale, curvature-based shape 
representation for planar curves. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 14 (1992) 789-805. 

14. Lindeberg, T.: Scale-space Theory in Computer Vision Kluwer Academic Publishers, 
Boston (1994). 

15. Lee, T., Atkins, S., Gallagher, R., MacAulay, C., Coldman, A., McLean, D.: Describing the 
structural shape of melanocytic lesions. In: SPIE Medical Imaging 1999, San Diego (1999) 
1170-1179. 

16. Lee, T.K., Atkins, M.S.: A new shape measure for melanocytic lesions. In: Medical Image 
Understanding and Analysis 2000, London, England (2000) 25-28. 

17. Maize, J.C., Ackerman, A.B.: Pigmented Lesions of the Skin Lea & Febiger, Philadelphia 
(1987). 

18. Rivers, J.K.: Melanoma. Lancet 347 (1996) 803-807. 
19. Claridge, E., Hall, P.N., Keefe, M., Allen, J.P.: Shape analysis for classification of  

malignant melanoma. Journal Biomed. Eng. 14 (1992) 229-234. 


	1 Introduction
	2 Classic and Curvature Scale-Space
	3 Definition of Indentation and Protrusion Segments 
	4 Algorithm for Detecting Indentation and Protrusion Segments
	5 Classic and Extended Curvature Scale-Space Images
	6 Applications
	6.1 Differentiating Malignant Melanomas form Benign Nevi
	6.2 Detecting Bays from Aerial Maps

	7 Conclusions
	References

