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ABSTRACT
The generation of magnitude magnetic resonance images comprises a sequence of data encodings or transformations,
from detection of an analog electrical signal to a digital phase/frequency k-space to a complex image space via an
inverse Fourier transform and finally to a magnitude image space via a magnitude transformation and rescaling.
Noise present in the original signal is transformed at each step of this sequence. Denoising MR images from low field
strength scanners is important because such images exhibit low signal to noise ratio.

Algorithms that perform denoising of magnetic resonance images may be usefully classified according to the
data domain on which they operate (ie at which step of the sequence of transformations they are applied) and the
underlying statistical distribution of the noise they assume. This latter dimension is important because the noise
distribution for low SNR images may be decidedly non-Gaussian.

Examples of denoising algorithms include 2D wavelet thresholding (operates on the wavelet transform of the
magnitude image; assumes Gaussian noise), Nowak's 2D wavelet filter (operates on the squared wavelet transform of
the magnitude image; assumes Rician noise), Alexander et. al's complex 2D filters (operates on the wavelet transform
of the complex image space; assumes Gaussian noise) , wavelet packet denoising (wavelet packet transformation of
magnitude image; assumes Rician noise) and anistropic diffusion filtering (operates directly on magnitude image; no
assumptions on noise distribution).

Effective denoising of MR images must take into account both the availability of the underlying data, and the
distribution of the noise to be removed. We classify a number of recently published denoising algorithms and compare
their performance on images from a O.35T permanent magnet MR scanner.
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1. INTRODUCTION
Removal of noise is an important part of magnetic resonance (MR) imaging, especially in low- and mid-field systems
which exhibit relatively low signal to noise ratios. Wavelet-based denoising methods have proven useful in signal
processing in general and in MR imaging in particular. However, the production of MR images involves several
transformations of the originally sampled data, and it is not clear at which transformational stage the data should
be denoised.

1.1. k-space Data Acquisition
For a single slice MR image the raw data consists of an N x NF array of complex (k-space) entries, where N and
NF denote the number of phase-encoding and frequency-encoding steps, respectively. The observed (noisy) k-space
data Ymay be written as Y = S + E, where S and E denote the true signal and the noise respectively. Elements of
E are assumed to be complex Gaussian random variables with mean 0 + Oi. Specifically

= ER,ZJ + iEj,

where ERL, and Ej are independent identically distributed N(0, a) variables.
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The Np X NF matrix of K-space data is zero padded to form an N x N complex array (N = 256). The distribution
of the zero padded data matrix (which we still call Y) is now given by

N—N N+NYqii N(S,o-2) 2
<

2 Ov<N
N—N N+NYL/ _ 0 O<Ø<, 2 <q<N,O<v<N

1.2. Inverse Fourier Transform
The inverse Fourier transform of the zero padded N x N matrix is computed. In our particular implementation the
transform is not scaled, so that

N N
— y —2iri(rn-f-iin)/NYmn —

,=o L1=O

= : Se—2iri(m+vri)/N + :Eue2m+n)/N
,=oz)=o q:=Ov=O

= Smn + emn

Because the Fourier transform is orthogonal, the e are complex Gaussian variates with mean 0 + Oi, and
common variance NPNFU2 (the zero padding entries in Y do not contribute to the variance of e . Hence y
N(Smn , NpNFcr2).

1.3. Magnitude Transformation
Next the magnitude of the Fourier transformed data is taken

Xmn lYmni = fYRmn + Ymn•

The nonlinear magnitude transformation changes the distribution of the noise from Gaussian to Rician. In particular,
the distribution of Xmn 5 given by

2 Xrfln +sI2 SrnfllXmnpx(xmn; Smn, NpNFU ) = —e 2NPNF ( 22R-NPNFO- \NpNFT
where Jo denotes the modified zero-order Bessel function of the first kind.3

Typically, an affine transformation
Zmn UXmn + V

for some appropriately chosen constants U and V which scales the magnitude data to lie in an appropriaterange
for display. The distribution for the scaled pixel data is

— V [(mnV)/u}2±Ismn2 / / — V2 Zmn 2 1 Smn Zmnpz(zmn;smn,NpNpa =
2NPNFU2U2e

2NPNF '0 NPNFa2 (1)

2. DENOISING METHODS
The objective of wavelet based denoising methods is to remove whatever noise ispresent in an image, and leave the
underlying signal unaffected, regardless of the frequency content of the signal. Typically such algorithms are based
on the following outline:

1. transformation of the original noisy image to a wavelet domain

2. nonlinear processing of the wavelet transform coefficients
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3. inversion of the processed wavelet transform coefficients

Wavelet shrinkage denoising refers to a broad class of algorithms that follow this approach. In wavelet shrinkage,
wavelet coefficients whose absolute magnitude is below a prescribed threshold T are set to zero. Coefficients whose
absolute value are greater that 'r may be left untouched ( "hard thresholding" ) or may be shrunk towards zero by
'1 ("soft-thresholding" ) . Methods for automatic selection of a suitable threshold_parameter r have been the subject
of considerable research. One commonly used approach is to use = a /2 log(n) where n is the number of image
pixels, and a is the standard deviation of the underlying Gaussian noise. This "universal threshold" is the basis
of Dononho and Johnstone's VisuShrink algorithm, which attempts to visual image quality by removing all of the
wavelet coefficients that could statistically be attributed solely to noise.1

2.1. k-space Denoising
As described in Section 1 .1 , data in k-space is complex valued with assumed complex Gaussian noise. To apply
wavelet shrinkage denoising to this data, we split the data into real and imaginary components and apply shrinkage
denoising independently to each component. The real and imaginary denoised transforms are inverted, reassembled
to form a single complex matrix which is then inverse Fourier transformed and used to compute the (k space denoised)
magnitude image.

2.2. Post Fourier Transform Denoising
After the Fourier transform is performed, the data remain complex with complex Gaussian noise. Wavelet denoising
is again applied separately to the real and imaginary components, which are then combined to form a single complex
matrix and the magnitude image.

2.3. Magnitude Image Denoising
Although wavelet shrinkage denoising enjoys several asymptotic properties when removing additive Gaussian noise
from an image, the noise distribution in low SNR magnetic resonance images is Rician. Nonetheless, we can apply
wavelet shrinkage denoising to the magnitude image, although we expect the results to be suboptimal.

2.4. Nowak's Algorithm
In order to account for signal-dependent Rician noise, Nowak has proposed an alternative to wavelet shrinkage
denoising.2 Nowak's method multiplies each wavelet coefficient w by

) ()I W — 3cr-jwf\ W
where Ix ifx>O(X)+< —

.
1. 0 otherwise

It is straightforward to derive a a maximum likelihood estimator for a using the magnitude image data only, using
Equation (1) and the observation that for background image pixels, the true signal magnitude s,, is zero.3

3. RESULTS
In order to identify the transformational stage at which wavelet based denoising is most useful, we applied a variety
of algorithms to a set of 32 spin echo MR images. The test images were comprised of 16 axial T2 weighted slices and
16 sagittal proton-density weighted slices from a single patient. Images were acquired on Millennium Technology's
0.35 Tesla scanner, using Np 160 phase encoding steps and Np 256 frequency encoding steps. The wavelet
shrinkage denoising algorithms and Nowak's algorithm were applied to each image using a periodized orthogonal
wavelet transformation, varying the choice of wavelet (Haar, Daubechies order 4 and order 10, Symmlet order 4) and
the index of the coarsest scale (2,3,6) . In addition the wavelet shrinkage denoising methods were performed using
both hard and soft thresholding. Gaussian noise variance was estimated using median filtering; Rician noise variance
was estimated from the magnitude images using the maximum likelihood estimator described above. Magnitude
image SNR was estimated using the formula

SNR = O.655
cTB
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Original image k-space Post FT

Figure 1. An original axial 12 weighted image, and the results of applying wavelet slirinkagi ileiioisiiig to the
k—space data, to the Fourier transformed data and t,o the magnitude image data. 'Ihie final ifliage shows the results
of using Nowaks data-adaptive wavelet filter.

where 6 is an estimate of the standard deviation of a hackgrouiid region. aiid o;. is au tstiuiialc of the staiidar('l
devitation of a homogeneous foreground region. 1 l'lie estimated 5\ ILi t the rigiuial test luilages were all iii the
range 3 to 9 dh.

All of the denoising methods increased the estimated SNRs. 'I determine the effect, oh choice >f denousing
parameters on SNR we performed four separate analyses of variance using as response variable the relative increase
in SNR (separate ANOVAs were performed for kspace denotsirig, post lourier transform denoisi ng, magnitude image
denoising and Nowak's algorithm). Independent main effects were iicluded LII each model for type of thiresholding
(soft or hard), coarsest scale of analysis and type of wavelet. The ANOVA niodel for Nowak's algorithm of course
had no term for threshold type. For each wavelet. shrinkage nietliod, changes iii mean relative SN I( were statistically
significantly associated with type of threshold and type of wavelet. Soft tliresholduig was associated with larger nican
relative SNR. Symmlets of order 4 were associated with the largest increase in SNR, followed in ordr by 1)aubecluies
order 10, order 4 and order 2 (Ilaar). The choice of coarsest scale for analysis was not statistically associated with
any change in mean relative SNR.

However, SNR is lacking as a measure of iniage quality. It. is always possible to iiicrease the csti mated image
SNR simply by increasing the image smnoothiig. SNH cannot distniguish'i bet ween images corrupted by noise and
images corrupted by artifact . Finally. SNH does not correlate well wit ii hiuiuian percept asu d inagc (iliality We
are ultiniatelv left with a subjective evaluation of image qualify, and lieiucc of t lie denoisnig approaches we have
exari iined

Figure 1 presents the results of denoising in eacl'i of the different MRI data domains for a typical image. Figure 2
show the same images, but at a much smaller window width so as to highlight the (lenoisnig effects on the background
noise. Figure 3 presents the absolute value of the difference between each denoised iniage aiid t.hie original.

l)enoising the k—space data is not recommended. Small errors in the wavelet reconstruct ion are niagnihed when
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Figure 2. The same images as in Figure 1, but displayed with only 16 gray levels.

the data is Fourier transformed, occasionally resulting in image ghosting. This phenomenon is visible in Figure 2.The
k-space data may be inherently too "spiky" to denoise effectively.

Denoising the complex data after it has been Fourier transformed shows promise, and was the approach that
demonstrated the largest increase in relative SNR. However, this method often produces results very similar to
simple intensity thresholding of the magnitude image, with the attendent loss of image detail and contrast. Figure 4
presents the cumulative distribution of pixel intensities (scaled to 8 bits for display) for a typical original image, and
the same image subject to post-Fourier transform denoising. This phenomenon was not observed when denoising in
the other data domains.

Direct wavelet shrinkage denoising of the magnitude image proved unsatisfactory: too much detail was lost in the
process. Nowak's data-adaptive wavelet filtering provided the best overall performance. However, Nowak's method
often does create small reconstruction artifacts, similar to those observed in JPEG compressed images. In our own
informal user assessment studies, professional radiologists found these artifacts annoying, but admitted they were
unlikely to result in any misdiagnosis. It may be possible to use further post-processing techniques to reduce these
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