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ABSTRACT

This paper describes the compression of grayscale medical ultrasound images using a new compression
technique, space-frequency segmentation. This method finds the rate-distortion optimal representation of an
image from a large set of possible space-frequency partitions and quantizer combinations. The method is
especially effective when the images to code are statistically inhomogeneous, which is the case for medical
ultrasound images. We implemented a real compression algorithm based on this method, and applied the
resulting algorithm to representative ultrasound images. The result is an effective technique that performs
significantly better than a current leading wavelet transform coding algorithm, Set Partitioning In
Hierarchical Trees (SPIHT), using the standard objective PSNR distortion measure.

The performance of our space-frequency codec is illustrated, and the space-frequency partitions described.
To obtain a qualitative measure of our method’s performance, we describe an expert viewer study, where
images compressed using both space-frequency compression and SPIHT were presented to ultrasound
radiologists to obtain expert viewer assessment of the differences in quality between images from the two
different methods. The expert viewer study showed the improved quality of space-frequency compressed
images compared to SPIHT compressed images.

Keywords: Ultrasound image compression, wavelet packets, space-frequency segmentation.

1. Introduction

Ultrasound is a popular medical imaging modality because it is non-invasive, versatile, there are no known
side effects, and the equipment used for ultrasonic scanning is small and inexpensive relative to other
options. Reducing storage requirements and making access to data more convenient are two of the
motivations for applying compression to ultrasound images. Retaining diagnostically relevant information
is the most important goal for a lossy medical image compression scheme.
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A distinguishing feature of ultrasound images is the oriented “speckle texture” produced by the physics
underlying the data acquisition. Due to its orientation, which changes somewhat across the image, the
speckle energy is typically concentrated in certain spectral regions. Speckle is caused by scattered
reflections produced by features that are small with respect to the wavelength. These multiple small
reflections result from a rough scattering surface with fine scattering structures. In the frequency domain,
speckle exhibits a low pass characteristic. An example of an organ that produces a particularly speckly
ultrasound image is the liver, as seen in Figure 1.

Depending on the context and application, speckle in medical images used for diagnostic purposes can be
viewed as signal or noise. For example, speckle can be used to characterize tissue [5,10], or speckle can

Figure 1. A typical ultrasound picture of a normal liver (T1).

mask diagnostically relevant features [8,12]. Good performance in a variety of contexts is desirable for a
compression system targeted for medical ultrasound images. When it is not known a priori whether speckle
1s viewed as signal or noise in a specific application, the compression algorithm needs to preserve it. The
presence of speckle in an image is also something which radiologists are accustomed to. The compression
scheme should avoid altering the image in a noticeable way, so for aesthetic reasons speckle should be
preserved even when it does not provide direct diagnostic information. The presence of speckle and the



desire to preserve it are issues that distinguish the ultrasound image compression problem from the
compression of natural images.

Another characteristic of ultrasound images is the spatial variation in statistics across an individual image.
An image typically consists of an ultrasound-scanned area, which is often non-rectangular, against a
passive background, which may contain text and limited graphics (see Figure 1). The resulting spatial
variation in image statistics also presents a challenge to coding methods that use a single partition strategy.

Many modern image compression algorithms, such as zerotree coding [7] using Set Partitioning In
Hierarchical Trees (SPIHT) [9] are generally based on the wavelet transform, which partitions the input
into frequency bands whose size decreases logarithmically from high frequencies to low. This
decomposition strategy works well when the input images are statistically homogeneous; however, when
homogeneity cannot be assumed, more general partitions, or bases, may be called for.

1.1. Space-frequency segmentation

When used to compress ultrasound images, SPIHT produces some distinctive artifacts. Speckle is blurred at
lower bit rates, suggesting that a different decomposition topology is better suited to speckly images.
Because contrast is important in an ultrasound image, bit allocation by coefficient magnitude, as done in
SPIHT, is not the best choice, and the resulting artifacts are particularly visible in areas of low-contrast
detail. We have implemented an image-adaptive scheme that selects the best filter topology for each image.
If we view the decomposition of an image into subbands as the projection onto a choice of basis functions,
the problem is to choose an appropriate basis to represent an individual image. The drawbacks to an
adaptive scheme include the computational cost of finding the best basis, and the need to send a description
of the basis as side information. The algorithm for finding the optimum representation must have a
meaningful criterion for choosing the best basis, and must limit the choice of basis to a useful but finite set
of possibilities.

Space-frequency segmentation (SFS) finds the optimum basis to represent an image from a large family of
possible bases [4]. As the name suggests, space-frequency segmentation involves the decomposition of an
image using a hierarchy of space and frequency partitions. Space partition refers to the division of an image
into four spatial quadrants, and frequency partition refers to the division of an image into four frequency
subbands. The subimages produced by space or frequency partitioning can also be successively partitioned
in space or frequency, so that a decomposition tree of space and frequency partitions is built, up to some
maximum depth. The algorithm is symmetric in terms of space and frequency partitions — decomposition in
either space or frequency is allowed at each branch of the decomposition hierarchy.

Allowing both space or frequency partitions on any subimage permits more basis choices than previous
related methods, such as single-tree wavelet packets [2], which is limited to the same filter topology over
the entire image, and double-tree wavelet packets, which is limited to different filter topologies over spatial
regions of the original image only [6]. SFS chooses the optimal combination of space and frequency
partitions, and the best quantizer for each subimage, according to a rate-distortion criterion. For a fixed
target rate, the algorithm finds the combination of partitions and quantizers that produces the minimum
distortion representation. The optimization incorporates a fast tree-pruning algorithm for efficient
computation.

In a recent study, Erickson et al. [3] compressed MRI and ultrasound images using both SPIHT and JPEG;
they concluded that wavelet-based methods such as SPIHT are subjectively superior to JPEG and we thus
use SPIHT as the basis for our comparisons.

The purpose of this paper is to describe the algorithm we used to compress ultrasound images based on the
new technique of SFS, and to show how this algorithm is superior to SPIHT both in PSNR and objective
image quality measures.
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2.Methods

2.1. Subband decomposition and image content

To determine the best approach for space-frequency partition for ultrasound images, single-stage subband
decomposition is applied to an ultrasound-only section of a medical ultrasound image that can be
considered typical, as shown in Figure 2a (original) and 2b (the subband image). The ultrasound-only
image 1s labelled Ub, cropped from the image of a liver in Figure 1. Orthogonal filters, the Daubechies
filters of length eight, are used in order to compare the energy in the different subbands precisely.

Figure 2a) Ultrasound-only image Ub Figure 2b) Subband image of Ub.

For most ultrasound images, over 70% of the energy is concentrated in the LL band (1], as is seen in the
upper left quadrant of Fig 2b. The distribution of the remaining energy in the high pass bands shows that
the high pass energy distribution of Ub is not uniform. Note there are few edges in the ultrasound-only
image, which is dominated by speckle. After subband decomposition of the ultrasound image, no features
are visible in the HL or HH bands. The speckle is concentrated in the LH band (lower left quadrant in Fig
2b). Compared to the energy distribution of natural images, speckle results in more energy in certain high
pass subbands, as can be seen in Figure 2.

The concentration of high pass energy is explained by the shape of a speckle spot. Speckle spots in
ultrasound images are generally elongated, due to the different transducer resolution in the lateral and axial
directions. Often the image is oriented such that the direction of insonification is vertical, so that the
speckle spot is elongated in the horizontal direction.

2.2. Implementation of a SFS codec

We implemented a SFS codec for ultrasound image compression, using 16 different uniform quantizers for
a subimage, each with 64 output levels. Many experiments were performed to determine appropriate
choices of quantizers; details are reported in [1].

A typical ultrasound image of size 640 x 480 pixels, called T1 (see Fig. 1), was chosen for testing the SFS
codec. The image consists of an ultrasound-scanned area against a dark background, with some light



colored text in the background area describing the exam conditions. A bar of gray-shades provides a visual
indication of the grayscale range. The ultrasound area of the image is wedge shaped, implying that curved
lincar-array transducers have been used to capture it. Abdominal exams are a common application for
diagnostic ultrasound, and the test image is of the liver. The image is quite speckly, which is typical for
liver 1mages. but 1t 1s not clear whether or not the speckle is diagnostically significant. The text portion
contains a small section of inverse video (e.g. dark text on a light background). The test image was chosen
to represent an average case for compression, while still being typical: it shows high contrast and
significant fine detail. There is also low-resolution detail present in the low contrast dark areas across the
center of the image. The ultrasound area of T1 is typical.

2.3. Comparison of Space-Frequency Segmentation vs. SPIHT.

The “best” version of the SFS codec and quantizer set developed for compressing T1, was then used to
compress several more ultrasound test images. These were compressed at different rates using both SFS
and SPIHT. Two of the images used, T2 and T3, are shown in Figure 3. The goal was to see if SFS
performed better than SPIHT using the standard distortion measure of power signal to noise (PSNR). We
also needed to determine a suitable compression rate for subsequent objective assessments.

Figure 3a) Original uncompressed image, T2. Figure 3a) Original uncompressed image, T3

2.4. Expert viewer assessment of compressed images

We did not have the resources to perform a valid formal study of compressed medical image quality, which
i1s a large and demanding task. The expert viewer assessment task that we attempted was a limited study of
subjective quality. The goal of the study was to compare the subjective quality with respect to medically
relevant features of ultrasound images compressed with SFS and SPIHT, at a single bit rate.

The study was conducted with the Radiology Department at Vancouver Hospital and Health Sciences
Centre (VHHSC), and all images used in the expert viewer assessment study were obtained from the
Radiology Department at VHHSC. The images in the test set were chosen with the help of a radiologist to
cover a selection that is representative of what radiologists encounter normally, and which includes
diagnostically interesting features in the images. Because the VHHSC Radiology Department conducts a
large number of abdominal exams, the images in the test set were dominated by abdominal images,
including images of the liver, kidney, gall bladder, and pancreas. Non-abdominal images in the test-set
consisted of two thyroid images. Most of the abdominal images were captured at 4 MHz using harmonic
imaging, in which signal processing using the second harmonic produces a slightly sharper image. The rest
of the abdominal images were captured at 3.5 MHz. Curved linear-array and phased-array transducers were
used for the abdominal images. The thyroid images were quite different from the other images because they
were captured at 8 MHz using linear array transducers, and consequently the ultrasound portion of the
thyroid images was rectangular in shape.
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All images in the test set were grayscale with a resolution of 8 bits. The PSNR of all the compressed test
images ranged from 35.1 dB to 41.0. All the images were compressed at a rate of 0.4 bpp, chosen based on
non-expert assessment of subjective quality, so that some compression artifacts were visible but overall
image quality was still high. Two of the test images are shown in Figure 3.

The test methodology was the two alternative forced-choice technique. Subjects were shown a pair of
images, and are asked to choose the image with the best subjective quality in terms of medically relevant
features. Each pair had a common original image, and no pair of images was exactly identical. The subjects
were not told whether or not the images were compressed, nor which compression methods were used on
the images. Unlike other subjective tests a quality rating scale was not used, since there was not enough
variation in quality at a single bit rate to justify the use of a quality rating, however subjects were
encouraged to record any relevant comments about image quality.

Uncompressed images were included in the test set as a control, so that there were three possible
permutations for a pair of images: space-frequency vs. SPIHT, uncompressed vs. space-frequency, and
uncompressed vs. SPIHT. Twelve pairs of images were used, and since the goal of the test was to compare
space-frequency segmentation against SPIHT, six of the twelve pairs were space-frequency vs. SPIHT,
while three pairs compared uncompressed vs. space-frequency, and three pairs compared uncompressed vs.
SPIHT. Within the three possible permutations there is a mix of image quality (as measured by PSNR), to
minimize the bias towards either space-frequency or SPIHT. To limit learning effects, when the images
were presented to the subjects permutations were interleaved in the order: space-frequency vs. SPIHT,
uncompressed vs. SPIHT, space-frequency vs. SPIHT, uncompressed vs. space-frequency. Images were
presented side-by-side, but the higher quality image in terms of PSNR was randomly distributed to the left
or right hand side.

Two radiologists were involved in the study. The study was conducted in the radiology viewing room using

monitors that are normally used for ultrasound images, under typical lighting conditions for viewing
images.

3.Results and Discussion

3.1. Space Frequency Partitions

The subband images for the space-frequency decomposition of T1(shown in Fig. 1) and T2 (shown in Fig.
3a) at 0.5bpp are shown in Figure 4. A space partition is denoted by a pair of intersecting white lines, and
frequency partition is denoted by a pair of intersecting black lines.

Figure 4a) Space-Frequency Segmentation of T1. Figure 4a) Space-Frequency Segmentation of T2

For both images, space partitions dominate the early decomposition levels. Up to depth two, all partitions
for both images are space partitions, except the depth two frequency partition of the lower left quadrants of



both images. The shape of the ultrasound-scanned region drives the early partitions, since the optimum
representation of the background area and text is to quantize and code it without any frequency
decompositions. Since space partitions are limited to binary divisions of the width and height, it is difficult
to fit the wedge shaped ultrasound area well. Multiple space partitions early in the decomposition hierarchy
limit the depth of subsequent frequency partitions on the ultrasound-scanned area, and produce small
subbands that limit coding efficiency after only a few frequency partitions.

When the space partitions isolate an ultrasound-scanned area, frequency decompositions dominate, and
since the depth is limited by the early space partitions, the frequency partitions proceed to the maximum
depth in order to accomplish energy compaction. Note that after the first frequency partition, the LH
subband is often further partitioned in frequency, but the HL and HH bands are not. As shown in Fig. 2b,
the high pass speckle energy is concentrated in the LH band when the image is oriented such that speckle
spots are elongated in the horizontal direction, which is the case here, which explains why additional
decomposition of the LH band will produce additional energy compaction.

The optimum decompositions show that the best way to compress ultrasound images is to treat the
background and ultrasound scanned areas differently. However, this is not a simple task because of the
variety of different objects that can appear in the background (text, reverse video text, graphic objects), and
the unusual shape of the ultrasound scanned region. Space-frequency segmentation has limitations in
dealing efficiently with both background and ultrasound areas simultaneously, but because it finds the
optimal representation without making any assumptions about the underlying image, and because it
incorporates space partitions that allow it to deal with different regions with different characteristics, space-
frequency segmentation performs relatively well for compressing ultrasound images.

3.2. Space-Frequency vs. SPIHT
Results of compressing images T1 and T2 at different bit rates using SFS and SPIHT are given in Figure 5.

T T2
44 T T T T T 44 T T T
: : : . .”*_..--)( X ! l -/_*___.jlt—
Bl i e et o R L e U e e |
1 . ' +*" | X | | !
AAO-—-——‘---—'—‘——'————"‘,"’,‘"“ 404 ---+-;72 - 1- - PP,
@ [ x 1 N i & 4 | P 1
g 7 L. ’é“ 1 % | | ‘+ ! 1
Z38-"——’-x——'l—"‘ﬁ}‘"—‘t"——l“" ﬂ:38--—/——,————?r’—-~|-—-—|——-—|————
o Rl +,- I l | g X | " | | |
BF---L--- . p— i S S ' .
: ) : — Y- - space-frequency ST T T T T = % - space-frequency ||
aa b oA -SPHT - I s -sPHT
',—' | ' T T T 34 ~—_| [ — T T 3
- t I t ! ! 1 I
32 T 32 T L : ’
0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate(bpp)

Rate(bpp)

Figure 5: PSNR for compressing T1 and T2 at different bit rates, using SFS and SPIHT

The improvement of space-frequency segmentation over SPIHT is about 2.8 dB in the case of T1, and 3.3
dB in the case of T2.

One of the problems in using SPIHT to compress ultrasound images is that degradation of subjective
quality is quite noticeable even at high PSNR values. Because SPIHT allocates more bits to large
magnitude coefficients in low frequency bands, SPIHT seems to have trouble with the speckle and other
fine details in ultrasound images. The subjective quality of the space-frequency compressed versions is
superior to the SPIHT compressed versions for both these test images, and the overall subjective quality of
the space-frequency compressed images is quite high when compared against the original versions.
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3.3. Results of Expert Viewer Assessments

The winners (e.g. the image of the pair with the best quality in terms of medically relevant features) in the
twenty four decisions from the two radiologists are shown in Table 1. Due to unclear instructions to one of
the radiologists, there are three “no-decision” results, where the radiologist cannot choose a winner from
the pair of images.

Table 1: Winners from the study

Comparison Winners
Space-Frequency Space-Frequency 11

Vs SPIHT 1
SPIHT No decision 0
Uncompressed Uncompressed 3

Vs Space-Frequency 1
Space-frequency No decision 2
Uncompressed Uncompressed 5

Vs SPIHT 0
SPIHT No decision 1

The twelve comparisons between compressed images showed a clear preference for space-frequency
compressed images over SPIHT compressed images. The space-frequency compressed image was chosen
as the best quality image of the pair eleven times out of twelve, while the SPIHT compressed image was
chosen only once. In the one case where SPIHT was chosen over space-frequency, a thyroid image, the
quality of both compressed images was quite high — 39.7 dB for space-frequency and 38.8 dB for SPIHT.
The radiologist who chose the SPIHT compressed image preferred it because it appeared to have more
contrast and sharpness. At high quality levels where objectionable artifacts are minimal, the low pass
filtering effect of the wavelet transform can sharpen features by reducing high frequency noise, so that the
effects of compression can produce an image that is preferred over the original.

Despite the clear preference for space-frequency compressed images over SPIHT compressed images the
distinction in quality between the two compression methods with respect to medically relevant features was
not large at the PSNRs tested. The radiologist’s comments indicated that the winner was often chosen based
on better sharpness and higher resolution, particularly in speckly texture regions of an image. In a few
cases, the SPIHT compressed image was chosen as the loser because visible artifacts degraded medically
significant features. At 0.4 bpp, most of the compressed images in the test set had some loss of detail and
exhibited some compression artifacts, but the utility of most of the images for diagnostic purposes was not
significantly degraded. When the radiologists focussed on compression artifacts, both were always able to
identify the image in a pair with lower PSNR, but both radiologists concentrated on using medically
significant features as the basis of their winner choice, rather than simply choosing the image with the least
visible artifacts.

Both radiologists commented that with the exception of a single image, all the images that they were shown
were suitable for diagnostic use. The one image that was judged unsuitable was a SPIHT compressed image
in which severe artifacts and blurring were visible. The unsuitable image was a low contrast image of a
kidney. The bit allocation scheme used in SPIHT, which allocated more bits to larger magnitude
coefficients, appeared to have trouble with low contrast images, because there was less distinction by
magnitude between coefficients.

The decisions from comparisons between compressed and uncompressed images showed that for this set of
test images, 0.4 bpp was a suitable level of compression for the assessment of compressed image quality.
At 0.4 bpp, the quality of space-frequency compressed images was quite high, and it was difficult to choose
between space-frequency compressed and uncompressed images, whereas the quality of SPIHT
compressed images was degraded, so that the distinction between SPIHT compressed and uncompressed
images was generally clear. In the six comparisons between space-frequency compressed and




uncompressed images, the space-frequency compressed image was the winner once, the uncompressed
image was the winner three times, and there were two *“no-decisions”. In the six comparisons between
SPIHT compressed and uncompressed images, the uncompressed image was the winner five times, and
there was one “no-decision”. Thyroid images appeared easier to compress than abdominal images, and the
“no-decision” case for the SPIHT versus uncompressed comparison involved a thyroid image where the
PSNR of the SPIHT compressed image was quite high (41.0 dB).

4. Conclusions

4.1. Summary

Space-frequency segmentation finds the rate-distortion optimal representation of an image, choosing from a
set of bases where the possibilities for space or frequency partition are symmetric. The choice of quantizer
used to quantize subband coefficients is included in the rate-distortion optimization. Because it adapts the
representation to suit the image, space-frequency segmentation is a good choice for images with unusual
features, such as the speckle texture and unique shape of the scanned region in ultrasound images..
Experiments coding ultrasound images with a space-frequency codec produce good results, showing
improvement in terms of both PSNR and subjective quality when compared with wavelet transform
zerotree coding using SPIHT. The improvement in subjective quality is particularly noticeable in regions of
fine speckle texture. Space-frequency segmentation does a better job of preserving both fine detail and low
contrast detail.

The optimum partition for the space-frequency representation indicates that the best way to compress
medical ultrasound images is to treat the background and ultrasound scanned areas differently. Assessment
of compressed ultrasound images by radiologists confirms that, in terms of medically relevant features, the
subjective quality of space-frequency compressed images is superior to SPIHT compressed images.

Though the compression speed is significantly lower than that of SPIHT, the quality of the recovered
images from the fast space-frequency codec is higher than that of SPIHT in terms of both subjective and
objective measures.

4.2. Future work

There are many parameters that can be varied in the space-frequency codec, such as the choice of
quantizers, the entropy-coding scheme, and the filters used. Full optimization of the quantizer set , step-
size, alphabet-size and granular range requires more experiments to characterize subimage statistics, and
should result in improved performance. Choosing different entropy-coding and filtering schemes based on
subimage size is another idea to improve the codec.

The high computational cost (encoding time of several seconds) remains the primary drawback in using
space-frequency segmentation to code ultrasound images. One area of future research is to improve the
speed of the optimal basis search. Because the target images are from a single medical imaging modality
and share some common characteristics, searching the entire set of possible space-frequency bases may not
be necessary. Investigating ways to limit the search will require a better understanding of the nature of
ultrasound images. Calculation of the cost function is the critical path in the space-frequency algorithm.
Finding a cost metric that is simple to calculate but results in an efficient basis choice will also improve the
speed without sacrificing quality.

An interesting problem in coding ultrasound images is the need to preserve detail in regions of low
contrast. Zerotree methods, which allocate more bits to coefficients with larger magnitude, seem
particularly poor at addressing this problem. Space-frequency segmentation appears better at preserving
low-contrast detail, but because the optimality criterion is minimum overall rate-distortion cost, no
particular distinction is made between areas of low or high contrast. A bit allocation scheme that takes
into account the local contrast level of is an interesting idea for future investigation.
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