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ABSTRACT

This paper presents an automatic computer system for analysing the structural shape of cutaneous melanocytic lesion borders.
The computer system consists of two steps: pre-preprocessing the skin lesion images and lesion border shape analysis. In the
preprocessing step, the lesion border is extracted from the skin images after the dark thick hairs are removed by a program
called DullRazor. The second step analyses the structural shape of the lesion border using a new measure called sigma-ratio.
The new measure is derived from scale-space filtering technique with an extended scale-space image. When comparing the
new measure with other common shape descriptors, such as compactness index and fractal dimensional, sigma-ratio is more
sensitive to the structural protrusions and indentations. In addition, the extended scale-space image can be used to pinpoint
the locations of the structural indentations and protrusions, the potential problem areas of the lesion.
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1. INTRODUCTION
Cutaneous malignant melanoma incidence has increased rapidly in the last three decades.' Early detection is important for
the treatment process because the survival rate is inversely proportional to the thickness of the lesion.2 To detect melanomas
as early as possible, many countries promote self-screening programs using the guidelines such as the ABCD rule or the
Seven-point checklist.36 These guidelines are based on the clinical differences between benign melanocytic nevi and
malignant melanomas: melanocytic nevi are often described as small oval lesions with uniform colour, while melanomas are
large asymmetrical lesions with a jagged and scalloped border and different shades of colours.7'8

Among these features, the irregular shape of the lesion border, referred to as border irregularity, has been suggested as the
most important factor for clinical diagnosis.9 When examining the lesion border carefully, we discover two types of
irregularities: the fine variation along the border and the global variation with structural protrusions and indentations. The
latter type of irregularity is more significant in the diagnosis of melanomas.'° The structural protrusions may suggest
abnormal and excessive growth of cells along one direction, and structural indentations may suggest regression. Examining
the structural border irregularity may reveal important histologic information about the lesion.

Recently, there have been studies analysing the lesion shape.'°'7 These studies applied the common shape descriptors
such as compactness index'8 and fractal dimension'9 to measure the overall roughness of the lesion border. However, there
are shortcomings with these two shape descriptors. They do not measure the structural protrusions and indentations directly
and may produce unsatisfactory results. Cross et al.' reported a poor correlation between melanomas and fractal dimension
and other Euclidean geometric parameters. We have been studying digitized skin images with the aim of developing a
computer system to differentiate shapes of malignant melanomas from melanocytic nevi. This paper presents an automatic
computer system with a new shape descriptor that is sensitive to structural irregularities. Furthermore the new system can
also pinpoint the structural indentations and protrusions. The analysis consists of two major steps: preprocessing the images
to obtain the lesion borders, then analysing the borders for a "malignancy factor".

2. MATERIAL
The skin images used in the paper were collected from the patients referred to the Pigmented Lesion Clinics in Vancouver,
BC, Canada. Each colour skin image contains the R, G, and B components and has 486 x 5 12 pixels with spatial resolution
of 25im x 33im. These images are captured by a hand-held CCD video microscopy camera with a 20 times magnification
lens. The camera connects to a shoebox-sized main unit, which is further connected to the frame grabber in a personal
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computer. The main unit provides a white light source back to the camera using an optic fiber cable. The light source forms
a ring within a hollow cylinder attached to the front of the camera. During the imaging session, the cylinder is in direct
contact with the patient's body. Besides acting as a stabilizer for the camera against excessive lateral or vertical movement,
the cylinder also provides a standard lighting environment and focal length. Because the hand-held camera is both small and
light in weight, it can be moved around the patient's body easily to capture skin images.

3. STEP 1: PREPROCESSING
Before the images can be used for shape analysis, they are processed by two automatic programs. First, a program called
DuliRazor performs dark thick hair removal and then an automatic segmentation program extracts the lesion border.

3.1. DullRazor
Many skin images contain hairs. These hairs, especially the dark thick ones with a similar colour hue to the lesion, cause
problems for the segmentation program because they occlude the lesion and, therefore, mislead the segmentation program.
Of course, we could shave the hairs before the imaging session. However, shaving is uncomfortable and time consuming,
particularly when we want to digitize multiple lesions from the same patient. Hence, we designed a computer program called
DullRazor2° to remove the dark hairs from the skin images prior to the segmentation program.

A summary of DuliRazor is presented here as it has been discussed in detail elsewhere20. In the skin images, dark thick
hairs appear as long and narrow structures with low intensity values compared to the nearby skin. DuliRazor detects these
low intensity structures by applying grayscale morphological closing operations in several directions. The maximum
response from all directions is obtained to create a hair mask that identifies the location of hairs. Each possible pixel within
the mask is further verified to ensure the mask is noise free. 'Then the corresponding hair pixels are replaced by the nearby
non-hair pixels using binary interpolation. Finally, a 5 x 5 adaptive median filter smoothes all replaced pixels and the nearby
pixels. DullRazor modifies only the hair pixels and their nearby pixels to reduce the alternation to a minimum. Fig. la
shows a skin image covered by dark thick hairs, and Fig. lb shows the hair mask computed by DullRazor and Fig. ic shows
the modified skin image with the hairs removed.

3.2. Automatic Segmentation
The removal of the dark thick hairs simplifies the segmentation process. The skin image now contains a lesion surrounded
by normal skin. The normal skin has a uniform colour tone, while the lesion may contain different shades of colours. The
segmentation process has been described in Ref. 2 1 and a brief summary is presented here.

The first step of the segmentation process is to smooth the R, G, and B component of image with a set of specially
designed weighted median filters. These median filters remove the outliners and impulse noise. Then a coarse threshold
range is determined for each component by analysing the component's histogram. For every intensity value within the
threshold range, the distribution of the corresponding pixels is examined. These pixels are aggregated into two groups: lesion
group and normal skin group. The normal skin group pixels are scattered around the entire image and appear as noise, while
the lesion group concentrates together. We select the final threshold value that contains the largest lesion area with the
acceptable amount of noise (normal skin). After a threshold value is selected for all components, a rule-based system is used
to combine the segmentation results from the R, G, and B component and to clean up the noise pixels, i.e. , the normal skin
pixels. Because the melanocytic lesion has a high absorption for the short wavelength light spectrum, the lesion will have a
very low intensity value in the B component and it is more stable for the segmentation process. Therefore, more weight is
put on the B component. Fig. 2 shows the final segmentation results for Fig. la.

4. STEP 2: BORDER SHAPE ANALYSIS
Once the segmentation process is completed, we analyse the lesion border with a new border irregularity measure that is
sensitive to structural protrusions and indentations. Furthermore, the new measure can pinpoint the location of the
protrusions and indentations.

4.1. Curvature
The curvature of a curve provides much information. The magnitude is proportional to the amount of bending and the sign
indicates concavity or convexity of the curve segment. For example, Fig. 3a displays a simple curve line with two
protrusions and one overlapping indentation. Fig. 3b plots the corresponding curvature function. The local curvature
extrema, labelled as A, B, C, D, and E, can be located by checking the zero-crossings of the first derivative of the curvature
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function. (See Fig. 3c.) The local extrema correspond to the tips of the protrusions and indentations. For this paper, a
protrusion is defined precisely as a curve segment that begins with a concave curvature extreme, following by a convex
curvature extreme and ending with a concave extreme. Similarly, an indentation is defined as a curve segment that begins
with a convex curvature extreme, following by a concave curvature extreme and ending with a convex curvature extreme.
For instance, the two protrusions shown in Fig. 3a are delimited as the curve segment [A, B, Ci and [C, D, E], while the
indentation is delimited as [B, C, Dl. We can apply the curvature operations described above to a lesion border, if the border
is abstracted as a closed planar curve. Further simplification can be made by parameterization of the x and y coordinates into
two linear functions x(t) and y(t), where t is the path length variable along the planar curve.22 However, the curvature
operation is a local operation that computes local curvature values.

4.2. Extended Scale-space Image
Convolution with a Gaussian filter is a well-known smoothing technique in computer vision to extract global structure. The
scale-space theory showed that a Gaussian filter is the only convolution kernel that satisfies causality property of filtering.23
In other words, no new irregularities are generated as artifacts during a continuous smoothing process and irregularities are
smoothed out gradually in a 'proper' order. Small protrusions and indentations disappear before larger ones. (See Fig. 4 for a
demonstration of the Gaussian smoothing process. A lesion border is smoothed by an increasing .) Unfortunately,
Gaussian smoothing also distorts the shape of the curve and the locations of any feature, such as the locations of the local
curvature extrema. Scale-space theory solves the distortion problem by proposing a 2-D scale-space image.22'24 The feature
locations are recorded in the scale-space image as the curve is smoothed continuously. For the current application, the scale-
space image needs to be extended from a binary image to a three-valued image to encode the local concavity or convexity of
the curve segment. Such an extended scale-space image for the smoothing process illustrated in Fig. 4 is constructed and
showed in Fig. 5. The y-axis of the image represents the smoothing scale that is denoted by Gaussian , and the x-axis
represents the spatial position of the investigated feature, the local extreme positions of the curvature function. At any
smoothing scale c, the curvature function of the smoothed curve is computed and the zero-crossings of the first derivative of
the curvature function are recorded as points on the image along with the concavity or convexity of the local curve segment.
For example, at = 30, point A on the border of Fig. 4 corresponds to point A on Fig. 5. The lines formed by these points
depict the evolution of the local curvature extrema as they are smoothed by an increasing r. With the help of these lines,
indentations and protrusions, as defined previously in this paper, can be detected for all smoothing scales. For instance, in
Fig. 5, one of the indentations begins from the convex curvature extreme line marked with B, to the concave curvature
extreme line C, and ends at the convex curvature extreme line D. This indentation emerges at =37 when all nested smaller
irregularities have been smoothed out, and it ends at =93 when the concave curvature extreme line C converts to a convex
extreme.

There is another interesting difference in our extended 3-value scale-space image from the ordinary scale-space images:
some of the lines in the image may not close off at the top. During the smoothing process, the concave extrema disappear in
two fashions. Some of them disappear with a neighbouring convex extreme and hence produce a closed line such as the one
marked as E in Fig. 5. Other concave extrema may convert to a convex extreme and produce a line extending out of the
image, such as line F in Fig. 5. When all concave extrema disappear, i.e., the smoothed curve becomes an oval shape, the
smoothing process can be terminated.

4.3. A New Shape Descriptor, Sigma-ratio
The final cy value required in the above smoothing process is a good measurement for the overall ruggedness of the lesion
curve. For example, the smoothing process shown in Fig. 4 and 5has a final value of 93. However, this measurement
depends on the length of the lesion border and the lengths of the irregularities along the border. When the lesion is enlarged,
the absolute final value is increased accordingly. We should normalize the measurement to make it scale invariant so that
it can be used for lesion borders with different lengths. Hence, a sigma-ratio is defined as a ratio of the final value over the
border length. The normalization yields a relative final r level value that is independent of the length of the border.

4.4. Compare Sigma-ratio with Compactness Index and Fractal Dimension
In order to experiment with the new measure, sigma-ratio, we preprocessed ten typical lesion images from our database and
computed the compactness index, fractal dimension and sigma-ratio for each lesion border. The ten lesion borders are shown
in Fig. 6. The compactness index is the ratio of the area of the circle with the same circumference as the lesion over the area

Because the final level is a linear function of the I -D Gaussian kernel length, the current implementation divides the kernel length by
the entire border length.
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of the lesion18 and the box-counting method is used to compute the fractal dimension.'3 The process to compute sigma-ratio
is described in section 4.1 to 4.3. All results are tabulated in Table 1.

Comparing the rankings of a lesion border in the three measurements helps to analyze the results in Table 1 . The ten
lesion borders are sorted by the corresponding measurements and are re-plotted in Fig. 7 to Fig. 9. It is interesting to note
that the compactness index and fractal dimension have a similar ranking; three of ten test borders are ranked in the same
positions. These borders are obj6, obj4, and obj 1 and their corresponding rankings are 3rd 6th and 10th• Furthermore, the
Spearman's rank correlation coefficient for these two measurements is 0.939. (See Table 2.) The correlation coefficient of 1
implies a perfect positive correlation, and a coefficient of 0 implies that the measurements are not correlated. A coefficient of
0.939 confirms a high correlation between the ranking of the compactness index and fractal dimension. On the other hand,
the ranking for sigma-ratio looks different from the other two measurements. The Spearman's rank correlation coefficient
achieves the same low value of 0.697 for sigma-ratio and other two measurements. (See Table 2.)

Carefully examining the results in Fig. 6 to Fig. 9, we notice that the compactness index and fractal dimension are
sensitive to local irregularities and they fail to recognize the existence of the structural protrusions and indentations. For
example, the test borders obj2, obj4 and obj7 have distinct shapes. The test border obj2 has a relatively smooth border with a
structural protrusion at the top. The test border obj4 has many local irregularities with no structural protrusion and
indentation, and the test border obj7 has a prominent structural protrusion and indentation at the bottom. These borders are
ranked in a similar order by the compactness index and fractal dimension. For compactness index, these three borders are
ranked as 1st 6th and 5th, respectively, with the actual values 2.521, 4.810 and 4.159. The rankings for the fractal dimension
are 2nd 6th and 4' with the values as 1.075, 1.151 and 1.115, respectively. In spite oflacking any structural irregularity, obj4
achieves the highest ranking (6th) among these three borders for the compactness index and fractal dimension. Furthermore,
the structural irregularities in obj2 and obj7 are ignored by these two measurements. Another way to view the problem is that
the compactness index and fractal dimension calculate an 'average' value that can be skewed easily if the variance of the
border ruggedness is large. The smoothed portion of the lesion border may dampen the final measurement for obj2 and obj7.
On the contrary, the sigma-ratios for these three borders are 0.534, 0.445, and 0.708, respectively. The border obj4 has the
lowest value and it ranks 4th• The border obj7 with prominent irregularities obtains the highest ranking of 7. Sigma-ratio
assigns a proper order for these three borders based on the structural irregularities.

4.5. Discussion
We performed sensitive tests on the new measure using phantom images. Fig. 10 shows one of the images and its smoothing
process. It is a circle with a very narrow and long indentation in the right side of the circle. Since dark thick hairs are
presented in many skin images, any long hair missed by the pre-processing step may mimic a long and narrow indentation.
However, this kind of structure has a very high sigma-ratio of 0.966. Fortunately, only hairs longer than the largest
protrusion or indentation will have a severe impact on the sigma-ratio. The shorter hairs will have a minimal effect. In any
situation, this phantom exposes the importance of hair removal in the preprocessing step.

Another concern of the sigma-ratio is the non-linearity of the smoothing process. As demonstrated by Fig. 4 and Fig. 10,
there is more smoothing power when a is small. The normalization will not be able to correct the non-linearity problem.

An advantage of using this method to generate a new measure for the structural shape is that we can identify the location
of protrusions and indentations. Especially, the last protrusion or indentation to be smoothed out is usually the most
prominent irregularity and represents the potential problem area. This irregularity can be tracked by the extended scale-space
image such as the one showed in Fig. 5. The lines formed by the curvature extrema depict the evolution of the irregularities
as they are smoothed by an increasing scale. Tracking these lines from coarse-to-fine can map the irregularity back to the
original non-smoothed curve. For example, the last indentation to be smoothed out in Fig. 5 is marked by the lines B, C and
D. Following these lines, the location of the most prominent indentation is pinpointed and is shown in Fig. 1 1 . The
capability of locating the potential problem areas will make the new descriptor an attractive tool for physicians.

5. CONCLUSION
We have presented a computer system that processes a skin image and analyses the structural irregularity along the
melanocytic lesion border. A new measure, called the sigma-ratio, is introduced. Based on an extended scale-space image,
the sigma-ratio shows promising results as a structural shape descriptor. Unlike the common shape descriptors such as
compactness index and fractal dimension, sigma-ratio is sensitive to the structural protrusions and indentations. Furthermore,
the method to estimate the sigma-ratio can be extended to locate the irregularities along the lesion border. This feature may
be useful to indicate potential problem areas. Further studies are underway to make the new measure a useful shape
descriptor for border irregularity.
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Figure 1. (a) A inelanocytic lesion image covered by dark thick hairs. (h) The hair mask determined by the program
DuliRazor. (c) the lesion image with hairs removed.

Figure 2. The segmentation result of the melanocytic lesion image showed in Fig. Ia.
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Figure 3. (a) A curve line running from top to bottom with two protrusions and one overlapping indentation: the protrusions

are denoted by the curve segment [A B Cl and IC D El, and the indentation is denoted by the curve segment [B C
DI. (h) The curvature function of the curve line showed in a. The local extrema A, B. C, D, and E correspond to the
tips of the protrusions and indentations. (c) The zero-crossing of the first derivative of the curvature function: these
zero-crossing points mark the locations of the local extrema of the curvature function. The zero-crossing locations
and signs are the feature points of the extended scale-space image.
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original border sigma=1O sigma=30 sigma=60 sigma=90

Figure 4. A melanocytic lesion border is continuously smoothed by a Gaussian filter with an increasing sigma (o. The first
plot is the original border. The other plots show the smoothed border with the corresponding denoted on the top
of the plot. The beginning point of the parameterization is marked by '*' and the parameterization is done in the
counterclockwise direction. For =30, the point A corresponds to the point A in Fig. 5.
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zero-crossing of the local curvature extrema
Figure 5. The extended scale-space image of the Gaussian smoothing process showed in Fig. 4. The point A corresponds to

the point A in Fig. 4. The lines B, C, and D depict the evolution of an indentation during the smoothing process.



obj6 obj7 ojb8
Figure 6. The 10 test melanocytic lesion borders.
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Table 1. Compactness index, fractal dimensionand si ma-ratiofor thetest objects
Compactness

index
Fractal

dimension
Sigma-ratio

obli 9.292 1&.4. 0.871

obj2 2.521 0.534
obj3 3.251 1 .120 0.398
obj4 4.810 1.151 0.445
obj5 2.549 1 71 0.254
obj6 3.250 0.357
obj7 4.159 1.115 0.708
ob8 5.589 1.180 0.480
obL9 6.562 1.172 0.605
objl0 5.758 1 .189 0.815

obj2(2.521) obj5(2.549) obj6(3.250)

parentheses.

obj3(3.251) obj7(4.159)

1 177

obji obj2

00
obj3

obj4(4.8 10) obj8(5.589) obj 10(5.758) obj9(6.562) obj 1(9.292)
Figure 7. The ten test borders sorted by compactness index. The corresponding compactness indexes are showed inside the



obj5(1.071) obj2(1.075) obj6(1.084) obj7(1.1 15) obj3(1.120)

obj4(1.151) obj9(1.172) obj8(1.180) objlO(1.189) objl(1.264)
Figure 8. The test borders sorted by fractal dimension. The corresponding fractal dimensions are showed inside the

parentheses.

OQOOQ
obj5(O.254) obj6(O.357) obj3(O.398) obj4(O.445) obj8(O.480)

obj2(0.534) obj9(0.605) obj7(0.708) obj 10(0.815) obj 1(0.871)
Figure 9. The tested borders sorted by sigma-ratio. The corresponding sigma-ratios are showed inside the parentheses.

Table 2. The Spearman's rank correlation coefficients for compactness index, fractal dimension and sigma-ratio of the test
lesion borders.

Compactness index Fractal dimension Sigma-ratio
Compactness index 1.0 0.939 0.697
Fractal dimension 0.939 1.0 0.697

Sigma-ratio 0.697 0.697 1.0
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original border sigma = 10 sigma = 60 sigma = 110 sigma = 16000000
Figure 10. The Gaussian smoothing process for a phantom image. It is a circle with a long and narrow indentation in the

right hand side.

Figure 11. The most prominent indentation on the malnaocytic lesion border, showed in Fig. 4, is highlighted. The
indentation is located by a coarse-to-fine tracking of the extended scale-space image. This indentation is also the
last irregularity to be smoothed out during the Gaussian smoothing process showed in Fig. 5.
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