
98 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 1, FEBRUARY 1998

Fully Automatic Segmentation of the Brain in MRI
M. Stella Atkins* and Blair T. Mackiewich,Member, IEEE

Abstract—A robust fully automatic method for segmenting
the brain from head magnetic resonance (MR) images has been
developed, which works even in the presence of radio frequency
(RF) inhomogeneities. It has been successful in segmenting the
brain in every slice from head images acquired from several
different MRI scanners, using different-resolution images and
different echo sequences.

The method uses an integrated approach which employs image
processing techniques based on anisotropic filters and “snakes”
contouring techniques, anda priori knowledge, which is used to
remove the eyes, which are tricky to remove based on image
intensity alone. It is a multistage process, involving first removal
of the background noise leaving a head mask, then finding a
rough outline of the brain, then refinement of the rough brain
outline to a final mask.

The paper describes the main features of the method, and gives
results for some brain studies.

Index Terms—Anisotropic filter, MRI brain, segmentation,
snakes.

I. INTRODUCTION

M AGNETIC resonance imaging (MRI) provides detailed
images of living tissues, and is used for both brain and

body human studies. Data obtained from MR images is used
for detecting tissue deformities such as cancers and injuries;
MR is also used extensively in studies of brain pathology,
where regions of interest (ROI’s) are often examined in detail,
for example in multiple sclerosis (MS) studies [36], [35].
In order to perform good quantitative studies, ROI’s within
the brain must be well defined. In traditional methods, a
skilled operator manually outlines the ROI’s using a mouse
or cursor. More recently, computer-assisted methods have
been used for specific tasks such as extraction of MS lesions
from MRI brain scans [23], [47], or extraction of the cere-
bral ventricles in schizophrenia studies [15]. Many of these
computer-assisted tasks require segmentation of the whole
brain from the head, either because the whole brainis the
ROI such as in Alzhiemer’s studies [18] or because automatic
ROI extraction using statistical methods is made easier if the
skull and scalp have been removed [23].

We describe our automatic method for segmenting the brain
from the head in MR images. The key to any automatic
method is that it must be robust, so that it produces reliable
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results on every image acquired from any MR scanner using
different relaxation times, slice thicknesses and fields of view.
Our method is so robust, that it successfully was able to
segment the brain in every slice of 40 head images from
five different MRI scanners (all 1.5-T; four from GE, one
from Siemens), using several different spin-echo images with
different echo times, and with two T1-weighted gradient
pulse sequences. Our method works in the presence of typ-
ical radio frequency (RF) inhomogeneity and it addresses
the partial volume effect in a consistent reasonable manner.
The method is partly two-dimensional (2-D)-based and partly
three-dimensional (3-D)-based, and it works best on routine
axially displayed multispectral dual-echo proton density (PD)
and T2 (spin-spin relaxation time) sequences. It also works
well on axial and coronal 3-D T1-weighted SPGR (Spoiled
Gradient) sequences. However, it doesnot work fully automat-
ically on sagitally displayed 3-D T1-weighted images where
accurate localization of cortical convolutions is required, as
parameter tuning is necessary to include the thin dark brain
areas and keep the cerebellum attached to the rest of the brain,
while simultaneously separating the brain from the back of
the neck tissue and the cheeks. For such sagitally displayed
images, other techniques such as those described in [1], [13],
[19], and [24] are available. The computer processing time for
each study for all the stages was less than five minutes on a
SUN SPARC workstation—even for the 120 slice 3-D studies.

For segmentation of the brain, hybrid methods incorporating
both image-processing and model-based techniques are useful
[1], [4], [24]. Our hybrid method is typical in that it involves
some image processing steps first:viz. a thresholding step
followed by a morphological erosion to remove small connec-
tions between the brain and surrounding tissue. A model-based
approach is then used to eliminate the eyes and other nonbrain
features, followed by more image processing consisting of
a morphological dilation to recover some of the eliminated
tissue and a final refinement of the brain contour (in our
case, using Terzopoulos and Kass’s “snakes” active contour
algorithm [25]).

Our method is unique in that it is possible to select the
image processing parameters automatically; in particular, the
thresholding parameter is found by applying an anisotropic
diffusion filter to the image and locating a threshold based on
the characteristics of the resulting voxel intensity histogram.

A. Previous Work

The survey by Clarkeet al. of segmentation methods for
MR images [11] describes many useful image processing
techniques and discusses the important question of validation.
The various image processing techniques used for segmenting
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the brain can be divided into several groups: those required
to perform a crude threshold-based extraction of the brain,
followed by refinement of brain contours; statistical methods
for brain segmentation, and region growing methods.

1) Brain Extraction Using Automatic Thresholding:Suzuki
and Toriwaki use iterative thresholding to distinguish brain
tissues from others in axial MR slices [43]. Starting at set
values, thresholds for the head and the brain are then iteratively
adjusted based on the geometry of resulting masks (i.e., the
head mask includes the brain mask). This method is ineffective
in the presence of RF inhomogeneity and in slices where the
brain is not one homogeneous region closely surrounded by
the skull.

Li et al. use knowledge-based thresholding in multimodal
MRI data to classify voxels into multiple intensity categories
[27]. In each axial slice, they compute the centroid of voxels
categorized as brain. Next, four points defining a quadrangle
are found at the edge of the brain by tracing left, right, up,
and down from the centroid to a transition in tissue categories.
All voxels outside the quadrangle that are not categorized as
brain tissue are then masked to define the intracranial contour.
Obviously, this method works only in slices where the brain
constitutes one fairly homogeneous region.

Brummeret al. use histogram analysis and morphology to
generate a 3-D brain mask [8]. Using a model of background
noise, they first automatically generate a mask of the head
and perform intensity correction on the masked volume. Next
they create an initial brain mask using an automatic threshold
based on a presupposed brain voxel intensity distribution. They
then eliminate regions in the brain mask that are too close to
the edge of the head. Finally, they use novel morphological
operations to clean up the resulting mask. This method misses
brain tissue in extreme slices and includes nonbrain tissues in
others. In some cases it produces errors near the eyes. The
method relies ona priori intensity correction to deal with RF
inhomogeneity, so cannot be used retroactively.

Aboutanos and Dawant [1] use histogram analysis to
determine the threshold selection in 3-D T1-weighted
magnetization-prepared rapid gradient echo (MP-RAGE) data
sets where the grey matter appears darker than the white; they
choose as a lower threshold the peak intensity of the grey
matter, and an upper threshold in the vicinity of the upper
boundary of the white matter, where the brain lobe starts to
flatten. These parameters can be automatically located, but
the resulting brain segmentation may underestimate the grey
matter and may still allow attachment of the dura to the brain
in certain images. Furthermore, their method for evaluating
threshold values is unique to the MP-RAGE acquisition
sequence. However, we have incorporated their thresholds
for 3-D MP-RAGE volumes in our algorithm with some
success, although our results have yet to be validated.

2) Refinement of Brain Contour:Aboutanos and Dawant
[1] describe a geometric deformable model used to refine
an initial brain mask. Their deformable model uses the
pixel intensity along lines which are placed approximately
perpendicular to the initial contour. A five-term cost matrix is
associated with transforming the image to hug the contours;
in addition, a sixth term is required to repel the optimum

curve from image locations such as eye and skin locations in
T1-weighted images. The authors have found values for these
parameters which perform well on sagitally displayed brain
contours of 3-D T1-weighted MP-RAGE volumes on many
volunteers, although the method requires a very good initial
contour and excess fat can affect results. Two iterations are
applied, and the blurred image is used to reduce the effect of
noise. This method looks very promising, but no results are
presented for PD and T2-weighted images.

Chakrabortyet al. combine statistical segmentation and
boundary detection to isolate features in MR images [9]. They
first segment the images using a method similar to the iterated
conditional modes (ICM) algorithm [22]. They then use a
parametrically deformable shape model algorithm to find the
boundary of interesting features in the segmented image [41].
The shape model algorithm modifies the shape of a predefined
closed contour to match the shape of a ROI. This method
requires user interaction to seed the segmentation and provide
an initial shape contour. Further, the segmentation may fail
due to RF inhomogeneity.

Snell et al. use an active surface template to find the
intracranial boundary in MRI volumes of the head [40].
The method is based on the active contour model algorithm,
“Snakes” [25]. Given an initial estimate of an object boundary,
“Snakes” approaches the actual boundary by solving an energy
minimization problem. In Snell’s method, the user identifies
points in the MR image that correspond to points on a
“standard” active surface template of the brain. Based on
these points, the template is registered to the image. The
“Snakes” algorithm is then used to attract the surface template
to the intracranial boundary. Snell’s method appears to work
better than all the other methods discussed herein. However,
Snell used high-resolution isotropic 3-D MRI data to test
his algorithm. Such MRI scans are generally not performed
clinically. Still, the method requires user interaction and may
fail for images that do not contain the entire brain.

Snakes have been used successfully to extract the contours
from cardiac MRI studies [38] by propogating the snake from
one image to another, with an intermediate processing step
to provide a better starting contour, which prevents the snake
contour from becoming trapped in incorrect local minima. This
study highlights the need to provide a good initial contour for
subsequent snake contour refinement; a lesson which we learnt
early in our research too.

Davatzikos and Prince propose the use of a new active
contour algorithm for ribbons (ACAR), which is specifically
designed for mapping the human cortex [14]. Their initial
results are promising, but the examples given are not visually
superior to our results using snakes, although their method may
prove better than snakes at tracking into cortical convolutions.

Lobregt and Viergever [30] propose a different dynamic
contour model based on deformation of a set of vertices
connected by edges. The deformation is caused by acceleration
forces acting on the vertices; the forces are internal (derived
from the shape of the contour model) and external (derived
from some image feature energy distribution). At each defor-
mation step, the new position of each vertex is calculated; after
a number of steps, a stable end situation is reached when both
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velocity and acceleration are zero for each vertex. Preliminary
results applying this technique show its promise in tracking
edges in 2-D medical images, although it is very sensitive to
the initial contours provided.

Thedenset al. [44] proposed another method to search
for borders in MR images, based on graph searching for
minimum cost edge detection applied to a temporal or spatial
sequence of images. This method has been shown to work on
cardiac MR images, but it cannot be used on a single image
volume—a sequence of several images is required—and it is
computationally very expensive.

Lundervold and Storvik proposed a segmentation method
for brain parenchyma in the central slices of multispectral MR
images [31] which uses a model-based segmentation method
and also uses a new Bayesian dynamic contour (BDC) model
to detect the boundaries. The advantage of this approach over
the snakes active contour is that the energy functions used to
find the boundary can be more generally based on information
about the whole region, rather than just the local boundary
characteristics. The results are promising for the central slices
of multispectral images presented, but have yet to be developed
for isolating the whole brain, or for working with just a single
echo sequence.

Li et al. [28] have developed a knowledge-based seg-
mentation technique called “edgementation” which allows
identification of the brain contours in computed tomography
(CT) images, upon which they use a boundary refinement
algorithm to improve the brain boundary. This algorithm max-
imizes an optimization function of the gradient, the orientation
change of the gradient and the local curvature. The results are
given for fairly smooth contours of the brain in axial CT slices,
and it is not known if the algorithm is able to track the cortex
in MR images.

Automatic skull boundary detection for the purposes of
automatic registration of CT and MR head images has been
developed by Van den Elsenet al. [16], based on the fact that
the MRI signal forms a trough at the skull. In certain MRI
slices the skull boundary is close to the brain boundary, but
this cannot be used in general to segment the brain.

3) Statistical Methods for Brain Segmentation:The review
by Bezdeket al. of statistical techniques [24] describes many
supervised and unsupervised statistical methods for MR seg-
mentation in general, and discusses their possibilities and
limitations.

Kapuret al. [24] combine Well’s statistical classification of
MR images [46] with image processing methods, to segment
the brain in 3-D gradient-echo MR images. They use a single-
channel, nonparametric, multiclass implementation of Well’s
classifier based on tissue type training points to classify
brain tissues. The resulting segmented brain requires further
morphological processing to remove connected nonbrain com-
ponents. The established brain contours are refined using a
snake-based algorithm. The combination of statistical classi-
fication of brain tissue, followed by morphological operators,
does well in segmenting brain from orbits etc. in a semiau-
tomated fashion. Furthermore, Well’s statistical classification
method also reduces the effect of RF inhomogeneity. However,
Kapur’s method requires some interaction to provide tissue

training pixels and in 10% of volumes studied interaction is
needed to remove nonconnected brain tissue. The method is
also computationally expensive, and has only been used on
3-D T1 gradient-echo data with slice thickness of 1.5 mm. It
is not clear whether the technique will provide satisfactory
segmentation of PD-T2 images with slice thickness of 5
mm.

Cline et al. segment the brain from MR images of the
head using statistical classification [12]. To segment the brain,
samples of brain voxels and nonbrain voxels are interactively
identified. Bivariate normal distributions, corresponding to the
different tissue types in the PD-weighted and T2-weighted
MR images, are fitted to the sampled intensities. All the
image voxels are then classified according to where their
intensities lie in the distributions. Finally, the results are
smoothed to remove discontinuities in classified regions. This
method requires user interaction, fails in the presence of RF
inhomogeneity, and falsely classifies nonbrain regions, such
as the eyes, as brain.

Lachmann and Barillot isolate brain tissues in MRI slices
using several texture analysis methods [26]. They use texture
information to create an initial voxel classification. Cluster
analysis and Bayesian relaxation is then used to refine the
classification. Lachmann and Barillot do not show results for
slices containing the eyes or the mouth. Bayesian relaxation-
based techniques confuse these features with brain tissue [23].

Stringham et al. use a statistical relaxation method that
incorporates gradient magnitude as well as voxel intensity for
brain segmentation [42]. This segmentation algorithm is robust
in the presence of RF inhomogeneity, but confuses tissues,
such as the eyes, with brain tissue. Further, user interaction is
required to seed the relaxation process.

Vinkin et al. use probabilistic hyperstacks for 2-D im-
age segmentation [45]. A hierarchical stack of decreasing-
resolution images is produced by progressively low pass
filtering the original. Pixels in high-reslution images (children)
are probabilistically linked to voxels in low-reslution images
(parents) according to an objective criterion. Features of in-
terest are identified in a low-reslution image and propagated
to all siblings, weighted by the linked probabilities. Thus, a
statistical segmentation is produced. Identifying the features
of interest and thresholding the final segmentation must be
performed manually in this method.

4) Region Growing and Boundary Detection:Pannizzo et
al. detect the intracranial boundary in axial MRI slices by
tracing a horizontal line outwards from the center of the
image [34]. The point, in each direction, at which the voxel
intensity under the line drops below a reference threshold
is considered to be a point in the intracranial boundary. A
running average of voxel intensities under the line is then
computed. The intracranial boundary points are relocated to
the first voxels with an intensity too far below the average.
The running-average procedure is repeated for rows in the
image. The entire process is then repeated for all columns.
The result is a sequence of points defining the intracranial
contour. This method can only detect the contour in slices
where the brain is one homogeneous region and may not cope
well with RF inhomogeneity.
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Fig. 1. A simplified data flow diagram representing automatic intracranial
boundary detection.

Lim and Pfefferbaum [29] and Attwoodet al. [6] trace lines
radially outward from the approximate center of the head in an
approach similar to that proposed by Pannizzoet al. Attwood
et al impose a smoothness criterion on the resulting contour to
refine the location of the intracranial boundary. Zijdenboset al.
fit a surface to the voxel intensities under the contour produced
by [29] in order to produce a local threshold [47]. The radial
line tracing algorithm is then repeated using the threshold
to choose the voxels at the intracranial boundary. Zijdenbos’
method is more robust than the others in the presence of RF
inhomogeneity and partial volume effects. However, none of
these methods works for slices where the brain is separated
into two or more disjoint regions.

The remainder of the paper describes the method we use,
and gives some results. We then provide a summary with an
outline of future work.

II. M ETHOD

A. Overview

We use a three-stage method to segment images as shown
in Fig. 1. First we remove the background noise, then we
generate an initial mask for the region(s) of interest, then
we refine the mask for the final segmentation. Each stage
(bubble) in the diagram has been implemented using the WiT
visual programming environment [3], which aids prototype
development and enables experimentation [5].

The first stage,Segment Head, uses intensity histogram
analysis to remove background noise and provide a head mask
defining the head.

The second stage,Generate Initial Brain Mask, produces a
mask that approximately identifies the intracranial boundary.
A head image is filtered using a nonlinear anisotropic diffusion
filter, to identify regions corresponding to the brain. The T2-
weighted image is used if it is available, else the PD-weighted
or T1-weighted image may be used. The nonlinear anisotropic

diffusion effectively counters RF inhomogeneity by smoothing
the brain regions and by reducing the intensity of the narrow
nonbrain regions such as the scalp.

With the initial brain mask as a seed, the third step,Generate
Final Brain Mask, locates the intracranial boundary using an
active contour model algorithm. The active contour model
algorithm consistently tracks the edge of the brain, even in
the presence of partial volume effects.

Stages 1 and 3 require noa priori information about the
organ to be segmented. Knowledge about the organ of interest
is used only in the second stage, in which the initial brain
mask is generated. We use two expert pieces of information.
One allows us to eliminate nonbrain tissues such as the eyes,
using morphology, by exploiting the simple fact that the brain
centroid must be near the centroid of the slice. The other item
of knowledge is that the brain tissues appear in MR images
with relatively high intensity and when the T2 (or PD) image
is filtered with a special anisotropic diffusion filter, most of the
nonbrain tissues can be darkened, and hence the brain tissues
can be segmented using a simple threshold. The methodology
is described in more detail below, and in full detail in [32].
Although seemingly complex, the method has proven so robust
that it works even in the presence of RF inhomogeneity, which
would not be the case if a simple threshold technique were
used to identify brain tissue from nonbrain tissue.

B. Segment Head

The head mask is generated using the method suggested
by Brummeret al. to determine the “best” threshold level for
removing background noise in PD-weighted MR images [8].
The method is based on the fact that MR scanners produce
normally distributed white noise [17]. Henkelman [21] showed
that background noise in reconstructed MR volumes has a
Rayleigh distribution

(1)

where is the noise intensity and is the standard deviation
of the white noise. Fig. 2 shows that this distribution is easily
visible in the low intensity range of the uncorrected MRI
histogram.

The subtraction of the best-fit Rayleigh curve, , from
the volume histogram, , produces a bimodal distribution

(2)

A minimum error threshold can be determined from
by minimizing an error term

(3)

Fig. 3 shows the results of automatically thresholding an
MR volume using this method. The binary image in Fig. 3(b)
produced by thresholding the volume at, contains speckle
outside the head region and has misclassified regions within
the head. This “noise” is easily removed using standard
morphological operations—we used a 55 kernel, detailed
in [32].
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Fig. 2. A truncated histogram of a PD-weighted MR volume. The back-
ground noise at the low end of the histogram is characterized by a Rayleigh
distribution.

(a) (b) (c)

Fig. 3. A head mask produced using automatic thresholding and morphol-
ogy. (a) Original image. (b) Initial head mask. (c) Final head mask after
morphology.

C. Generate Initial Brain Mask

This is a three step process which first uses 2-D nonlinear
anisotropic diffusion to smooth the brain and attenuate narrow
nonbrain regions such as the scalp in each MRI slice. Next, it
automatically thresholds the diffused MR volume to produce
a binary mask. Finally, misclassified, nonbrain regions are
removed from the binary mask using morphology and spatial
information provided by the head mask.

1) Nonlinear Anisotropic Diffusion:These are iterative,
“tunable” filters introduced by Perona and Malik [37]. Gerig
et al. used such filters to enhance MR images [20]. Sapiro
and Tannenbaum used a similar technique to perform edge
preserving smoothing of MR images [39]. Others have shown
that diffusion filters can be used to enhance and detect object
edges within images [33], [37], [2].

Perona and Malik formulate the anisotropic diffusion filter
as diffusion process that encourages intraregion smoothing
while inhibiting interregion smoothing

(4)

In our case, is the MR image. refers to the image
axes (i.e., ) and refers to the iteration step. is
called thediffusion functionand is a monotonically decreasing
function of the image gradient magnitude. It allows for locally
adaptive diffusion strengths: edges are selectively smoothed
or enhanced based on the evaluation of the diffusion function.

We use the following diffusion function in our algorithm [37]:

(5)

is referred to as thediffusion constantor the flow
constant, and the behavior of the filter depends on. For
all our images we used the same value of with
25 iterations and a time step value of just under 0.2, as
these values consistently produced a sufficiently blurred image
for thresholding. Although the filtering is fairly sensitive to
these three parameters, we found that forall the PD-, T2-,
and T1-weighted data sets axially or coronally displayed, the
above setting for the parameters allowed for a reasonable
initial brain segmentation. Details for the sensitivity of the
filtering to the parameter values are given in [32]. The discrete
diffusion process consists of updating each pixel in the image
by an amount equal to the flow contributed by its four nearest
neighbors. (Note that eight nearest neighbors can be used if the
flow contribution of the diagonal neighbors is scaled according
to their relative distance from the pixel of interest [20] and
Anisotropic data can be handled similarly.)

We use 2-D nonlinear anisotropic diffusion to attenuate
(darken) the skull and some other nonbrain regions in each
MRI slice.1 Using a simple low threshold, this allows the brain
(and, inevitably, the eyes) to be segmented, as illustrated in
Fig. 4. Without such filtering, a simple single-threshold-based
segmentation would be difficult, if not impossible.

2) Automatic Threshold:Once each MRI slice has been
diffused we segment the brain using a single automatically
found threshold. We observed that the regularization of brain
voxels achieved by diffusion filtering results in a brain voxel
distribution that is close to normal for T2-weighted and
even PD images. Thus the threshold level is determined by
fitting a Gaussian curve to the histogram of the diffused
volume. For PD and T2-weighted slices, the threshold is
chosen at 2 standard deviations below the mean [8]. For T1-
weighted axially displayed images, the threshold is chosen at
the intensity at the minimum value in the brain histogram plot,
which corresponds to about 0.5 standard deviations below the
mean of the fitted Gaussian.2 Fig. 5 shows the voxel-intensity
histogram of a diffused T2-weighted volume with the best-fit
Gaussian curve and threshold level overlaid. Fig. 6 shows a
slice of the binary mask produced by the threshold.

3) Mask Refinement:The binary mask produced by auto-
matic thresholding contains misclassified regions, such as the
eyes [see Fig. 6(b)]. These regions are removed from each
slice using morphology and spatial information provided by
the head mask. First, holes are filled within each region
of the mask. Next, binary erosion is performed to separate
weakly connected regions. In all cases, the kernel used by the

1We also experimented with a 3-D nonlinear anisotropic diffusion filter
over the entire MRI volume. 3-D diffusion, however, increased the partial
volume effect, blurring the edges of the brain [32].

2The normal fit is not too good on diffused 3-D T1-weighted images and
RF inhomogeneity may influence the choice of threshold on these thin slices,
so we divide the 3-D volume data into sets of slices corresponding to about
8 cm, and segment each set separately with the appropriate threshold. The
thresholds differ from each other by less than 2% of the maximum intensity
in the whole volume.
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(a)

(b)

Fig. 4. Intracranial boundary detection using 2-D nonlinear anisotropic dif-
fusion filtering. (a) Original T2-weighted image. (b) 2-D diffused image.
Diffusion reduces nonbrain tissues, enabling a simple threshold to segment
the brain.

Fig. 5. A histogram of the diffused T2-weighted MR scan with the best-fit
Gaussian curve and threshold levels overlaid.

(a) (b)

Fig. 6. A binary mask produced by automatic thresholding. (a) The diffused
image slice. (b) The corresponding binary mask.

Fig. 7. Spatial information from the head mask is used to eliminate regions
that are unlikely to correspond to brain tissue. Features whose centroids fall
outside thebrain region bounding boxare discarded.

erosion is a 10 10 2-D binary matrix of ones except for the
four corners which have six zeros symmetrically located. The
resulting kernel is hexagonally symmetric, four-pixels wide
at each edge. This kernel is wide enough to separate the
eyes from the brain on the filtered thresholded volume in all
axial slices we studied, with fields of view between 200 and
260 mm. After erosion, regions whose centroids fall outside a
bounding box defined by the head mask are eliminated. This
bounding box for axial slices with the eyes up is illustrated
in Fig. 7. The given dimensions of the brain region bounding
box were chosen experimentally to produce good results for
all data sets with the eyes up, the same values being valid for
several fields of view. A different set of parameters is required
for images with the eyes down, and another for coronally
and sagitally displayed images.3 Finally, binary dilation, using
the same 10 10 2-D kernel as for erosion, is performed on
the remaining regions to return them close to their original
size—this is necessary because the threshold already has
eliminated the darkest pixels at the brain edge, and the final

3Sagitally displayed images require two bounding boxes because of the
lack of symmetry in the images.



104 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 1, FEBRUARY 1998

(a) (b) (c)

(d) (e) (f)

Fig. 8. Elimination of misclassified regions from the initial brain mask. The
mask: (a) produced by thresholding, (b) after regions have been filled, (c) after
binary erosion, (d) after elimination of nonbrain regions, and (e) after binary
dilation. (f) Shows the initial brain mask overlaid on the PD-weighed slice.

step works best when the starting value is close to the required
edge. The results of these steps are shown in Fig. 8.

D. Generate Final Brain Mask

Given the initial brain mask as a seed, we use an active
contour model algorithm, extended from the “Snakes” algo-
rithm introduced by Kasset al. [25], to locate the boundary
between the brain and the intracranial cavity. The algorithm
deforms the contours defined by the perimeter of the initial
brain mask to lock onto the edge of the brain. Each active
contour is defined as an ordered collection ofpoints in the
image plane

(6)

The points in the contour iteratively approach the intracra-
nial boundary through the solution of an energy minimization
problem. For each point , an energy matrix is com-
puted

(7)

where is a “continuity” energy function that influ-
ences the contour to take the shape of a circle, is
an adaptive “balloon” force that pushes the contour outward
until it reaches a strong gradient [10], is an “inten-
sity” energy function, computed from the PD-weighted MRI
volume, that influences the contour to move toward low in-
tensity regions, and is a “gradient” energy function,
computed from the diffused MRI volume, that influences the
contour to move toward regions of strong gradient., , ,
and are scalar constants providing relative weightings of the
energy terms. Each is then iteratively moved to the point
of minimum energy in its neighborhood, which corresponds
to the smallest element in .

(a) (b)

Fig. 9. Refinement of the intracranial contour. (a) The contour defined by
the perimeter of the initial brain mask. (b) The intracranial contour detected
using the active contour model algorithm.

The combination of energy functions described above en-
ables the active contour model algorithm to detect the intracra-
nial boundary in all image slices using the same relative energy
weightings. The diffusion process ensures that the initial brain
mask falls completely inside the brain. Therefore, the adaptive
balloon force aides in cases where the initial brain mask
is poor. The intensity energy term helps the active contour
algorithm produce consistent results where partial volume
effects are particularly severe. Finally, computing the gradient
energy term from the diffused volume greatly stabilizes the
active contour algorithm because the gradient derivatives are
small in the diffused volume [32].

Fig. 9 illustrates the result of applying our active contour
model algorithm to the MR slice shown in Fig. 8. It was found
experimentally that a single setting of these parameters, ,

, , and produced good results on all data
sets.4

III. RESULTS

A. Brain Studies

Fig. 10 shows the intracranial contour detected automati-
cally by our algorithm overlaid on selected slices of a PD-
weighted MRI data set. The PD and T2 data sets were acquired
axially on a GE 1.5 Tesla MRI scanner, with repetition time

2000 ms, and echo times of 35 ms and 70 ms
respectively. The data consists of 22 slices with 256256
pixels per slice, scaled linearly from the original 12-bit data
to 8 bits. The pixel size is 0.781 mm, and the slice thickness
is 5 mm.

The intracranial boundary shown in Fig. 10 is accurate in
all slices, except for the inclusion of the pituitary gland and
basilar artery in slices 6 and 7, and insufficient exclusion of
the petrous temporal bone in slice 5. However, the inclusion of
pituitary gland and the petrous temporal bone is not a problem
for subsequent analysis of the brain data.

Careful examination shows that the partial volume effect,
particularly in the high slices, is dealt with in a consistent way.

Our algorithm produced comparable results for more than
30 other data sets from four other scanners with field-of-
view varying from 200 to 260 mm, and also it worked on
six images acquired on a GE scanner with a SPRG sequence,
with 39 ms and 8 ms, pixel size 1.0156 mm

4Details on the selection of these parameters are given in [32].
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Slice 1 slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

slice 9 slice 10 slice 12 slice 14

slice 16 slice 18 slice 20 slice 22

Fig. 10. An automatically detected intracranial contour overlaid on selected slices of a PD-weighed MRI scan.

and slice thickness 2.5 mm. In all cases, our algorithm
successfully detected the intracranial boundary without user
interaction and without parameter modification.

B. Validation

The brain contours on seven complete scans were validated
visually by a radiologist, and deemed to be sufficiently ac-
curate for the purposes of MS lesion segmentation, and for
multimodal image regsitration of photon emission tomography
(PET)-MRI volumes.

Quantitative Validation Studies:Three volumes were cho-
sen for quantitative validation by a radiologist; each volume
was acquired using a different PD/T2-weighted echo sequence,
and a different field of view size. For each volume, some axial
slices were selected, such that the entire range of the image
volume from “low” to “high” slices was covered. For each of
these slices a radiologist traced the brain contour manually, and
the manual brain contour was compared with the automatically
drawn contour.

To quantify these results, we use thesimilarity index de-
scribed by Zijdenbos [47], derived from a reliability measure
known as the kappa statistic. Consider a binary segmentation
as a set containing the pixels considered to belong to the
classification. The similarity of two segmentations and
is given by a real number defined by

Because the similarity index is the ratio of twice the common
area of the segmentations to the sum of the sizes of the
individual areas, it is sensitive to both size and location.
Therefore, two equally sized regions that overlap each other
with half of their area results in and a region
completely overlapping a smaller one of half its size yields

. This reflects the intuitive feeling that two regions, of
which one fully encompasses the other, are more similar than
two partially overlapping regions. Now Zijdenbos states that
although indicates excellent agreement, the absolute
value of is difficult to interpret; however, as an example,
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(a) (b)

Fig. 11. Comparison of manual contour with automatic contour. (a) The
intracranial contour manually drawn by a radiologist. (b) The intracranial
contour detected using the active contour model algorithm. The similarity
index of these two contours is 0.942.

TABLE I
COMPARISON OFMANUAL AND AUTOMATIC BRAIN SEGMENTATION

Dataset Slice
number

Manual area
(pixels)

Auto area
(pixels)

Similarity
index

1 4 8912 10269 0.925
1 7 20264 22472 0.929
1 8 22035 23918 0.954
1 23 20109 20341 0.980
1 24 15909 17201 0.958
1 25 12122 13194 0.952

2 2 15386 16549 0.942
2 6 25935 26072 0.986
2 12 27402 27346 0.9

3 7 14705 15639 0.961
3 8 17648 18645 0.967
3 17 17552 18027 0.984

the similarity index of the two images in Fig. 11(a) and (b)
is 0.942.

Results are given in Table I, which shows the number of
pixels included inside the manually drawn and automatically
calculated brain contours, together with the similarity index.

In axial slices containing the eyes, the automatic method
usually included the pituitary gland and basilar artery, and
sometimes the internal carotid artery, whereas the radiologist
excluded these (see Fig. 10 slice 6 and 7). Also, the petrous
temporal bone was often included in the automatic method
[see Fig. 9(b)], whereas the radiologist drew carefully around
it. One of these eye slices (Dataset 2, slice 2) is shown in
Fig. 11, where the radiologist’s manually drawn contour is
shown in Fig. 11(a) and the automatically defined contour is
shown in Fig. 11(b).

In the high slices, the manually drawn outlines were compa-
rable to the automatically drawn outlines except in the extreme
case of the top slice of the 5-mm-thick datasets where the
partial volume effect was noticeable. Also, the sagittal sinus
was always excluded by the radiologist, whereas the automatic
routine usually included it (see Fig. 10 slices 18, 20, and 22).

The similarity between the automatic brain contour and the
manual brain contour was very high—always above 0.925,
best at 0.99 on middle slices, and dropping to 0.95 on the
highest slices. These results compare very favorably with those
reported by other researchers [1], [24] as the brain volumes
are within 4% in most cases.

To measure the intra-observer accuracy, the radiologist
performed two independent tracings of the brain contours. The
enclosed brain pixels were within 96%–97% of each other with
a similarity of around 0.98 between tracings. Hence the method
is not expected to be more than 96% accurate as a measure of
brain volume; however, the brain edge discrepencies do not
have a significant impact on subsequent processing (e.g., MS
lesions do not occur in the pituitary gland, and bone can be
removed by simple thresholding).

IV. CONCLUSION

We have introduced a novel, fully automatic intracranial
boundary detection algorithm that has proven effective on
clinical and research MRI data sets acquired from several
different scanners. The algorithm consists of three incremental
steps. The first step uses histogram analysis to localize the
head, providing a region which must completely surround the
brain. The second step uses nonlinear anisotropic diffusion and
automatic thresholding to create a mask that isolates the brain
within the detected head region. Using this mask as a seed, the
final step employs an active contour model algorithm to detect
the intracranial boundary. This algorithm has proven robust in
the presence of RF inhomogeneity and partial volume effects.

Our MRI brain segmentation algorithm is in regular use
for studies of Multiple Sclerosis lesions, for studies of MRI-
PET registration, and for studies involving image compression,
where the nonbrain region is automatically given a higher
compression ratio than the brain region in the images.

A. Future Work

We plan to work with the research 3-D sagittal MP-RAGE
volumes, to determine good diffusion filter parameters so that
a single threshold can be found for the brain, as our algorithm
currently fails to include all the cortical regions of the brain
for these images.

We also plan to extend the principles generated for auto-
matic brain segmentation to the problem of lung segmentation
for use in studies of lung diseases such as cystic fibrosis
and emphysema, where the volume of the lungs is needed. A
reliable consistent method for outlining the lungs is required
for MR chest images. Early results with MR images are
promising, and will be continued.
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