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Abstract-This article compares four widely utilized, yet fun- 
damentally different, approaches for registering medical scans 
of the head. Comparisons are made on the basis of method, 
accuracy, robustness, computer requirements, and usability. This 
examination is intended to provide a means for determining an 
appropriate method for any given application. These approaches 
are: 1) an iterative method based on the repeated manual se- 
lection of 1-2 corresponding points, 2) an approach using the 
manual selection of 9-15 corresponding points, 3) an automatic 
surface matching method, and 4) an automatic approach based on 
voxei similarity. The methods are tested bothon simulated data 
to provide a gold standard of accuracy, and on real data. All 
registrations are performed in the same visualization environment 
created for multipurpose image processing. Simulated data tests 
provided mean transformation errors and time requirements for 
the different methods, as well as the displacement errors for a set 
of anatomical landmarks. These results show all of the methods 
provide good accuracy when the data is not highly distorted and 
has a large amount of overlap. From the tests using real data 
both transformations and time requirements are tabulated for 
comparison. All of the techniques successfully aligned the real 
data with the exception of surface matching, which failed on the 
PET-MRI. Each method exhibits strengths and weaknesses that 
should be understood in order to utilize the most appropriate 
technique for a given problem. Based on our examination, the 
voxel-similarity approach proved in general to be the method of 
choice. 

I. INTRODUCTION 

HE registration of medical scans is the process of finding 
correct alignment or the proper spatial relation of one 

medical scan with reference to another. This correlation can 
provide important insights into each of the scans. For example, 
many time series data are registered to be used for clinical 
evaluation of the progress of disease and/or treatment [l], [2];  
other clinical uses arise in functional neuroimaging studies 
[3 J ,  image guided neurosurgery planning [4], and radiotherapy 
treatment planning [SI. 

Although a plethora of different methods for achieving reg- 
istration have been proposed, objective comparisons between 

Manuscript received May 30, 1995; revised June 27, 1996. This work was 
supported by the Natural Science and Engineering Council of Canada under 
Grant 8020. The Associate Editor responsible for coordinating the review 
of this paper and recommending its publication was C. R. Meyer. Asterisk 
indicates corresponding author. 

T. D. Zuk is with the School of Computer Science, Simon Fraser University, 
Burnaby, B.C. V5A 1S6 Canada. He is also with the Multiple Sclerosis 
Research Group at the University of British Columbia Hospital, Vancouver, 
B.C. V6T 124 Canada. 

"M. S .  Atkins is with the School of Computer Science, Simon Fraser 
University, Burnaby, B.C. V5A 1S6 Canada. She is also with the Multiple 
Sclerosis Research Group at the University of British Columbia Hospital, 
Vancouver, B.C. V6T 124 Canada.(e-mail: stella@cs.sfu.ca). 

Publisher Item Identifier S 0278-0062(96)07296-5. 

them are scarce. Most often the comparisons focus on the 
accuracy of the techniques, but do not probe deeply into the 
reasons behind the results. Accuracy is highly dependent on 
the particulars of the data such as dimension, resolution, and 
noise etc., so it is difficult to generalize the accuracy of a 
method for all the different types of scans that are in clinical 
use. For this reason this paper compares several approaches not 
only on the basis of accuracy, but also on method, robustness, 
usability, and computer requirements. 

Four different approaches for retrospective registration are 
examined, viz: an iterative manual method based on the re- 
peated selection of 1-2 corresponding points; a direct method 
using the manual selection of 9-15 corresponding points; 
a fully automatic surface matching approach; and a fully 
automatic voxel-similarity-based method. These four methods 
represent a cross sampling of many available techniques for 
rigid body transformations; other techniques such as multiscale 
matching [6] are less widely used so are not considered here. 

To facilitate this comparison all four different methods are 
implemented in the same visualization environment called 
WiT.' The results obtained on a variety of brain scans are 
analyzed to provide a relative evaluation of their strengths 
and weaknesses. 

The registration procedure can be broken down into three 
separate processes: segmentation, matching, and verification. 
These processes are often three sequential phases, but not 
necessarily disjoint. Numerous ways to perform the different 
processes exist, each of which may be suited to one particular 
type of registration [e.g., positron emission tomography (PET) 
to magnetic resonance imaging (MRI)]. Decomposition of 
the registration process into three components aids in the 
comparison. The segmentation process is the isolation of 
features which can be directly compared.2 The matching 
process takes one set of segmented features from scan A and 
one set from scan B and computes the optimal transformation 
to map B's features (dynamic) onto A's (static). The matching 
is usually formulated as an optimization, expressed as a 
minimization, of the comparison function which measures the 
proximity and differences between the two sets of features. 
The comparison function is dependent on the segmented 
features and may not be monotonic. This complicates the 
matching process by creating local minima which are difficult 

' A  product of Logical Vision Ltd., Suite 265, 4299 Canada Way, Burnaby, 
BC. 

'The spatial (image) domain was chosen for all the registrations, although 
the segmentation itself does not necessarily have to occur in the spatial 
domain. 
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for a computer program to distinguish from the global or 
“true” minimum. Unless a method can be shown to be either 
extremely robust or reliably detect failure the final verification 
process must be achieved through a visual check. 

1)  Transformations: The transformation needed to correctly 
register one scan to another can be arbitrarily complex and 
can be characterized in many ways. The transformation may 
be global and have a domain of the entire volume or locally 
affect sub-regions of the volume differently. Global changes 
are commonly due to different patient positioning, while local 
ones are usually more complex and can be caused by objecl 
deformation, joint movement, or distortions. Local transfor- 
mations may be handled by cutting the data into smallei 
regions, each of which can then be handled individually, 01 

with complex nonlinear transformations that affect each region 
differently. A major difficulty with local transformations is the 
avoidance of discontinuities that may appear on the boundarier 
between local regions. 

In comparing the four methods only global rigid bodj 
motion is assumed, as this model has often been utilizec 
for registrations of the head [71-[9]. It is considered best tcl 
independently correct for as many other variations as possible 
When more complex distortions are suspected, as for example 
when registering computed tomography (CT) and magnetic 
resonance (MR) images of the head, where different surface, 
contours may be extracted due to the sensitivity of MR tcl 
the skin and CT to the bone, the rigid body solution should bv 
used as a first approximation, as explained below. Thus during 
gross alignment computation is not wasted adjusting numerour, 
other parameters that may only result in an incorrect solution 
(such as the optimization being trapped in a local minimum) 

Six parameters are required for the rigid body transforma. 
tion: three for translation (labeled 2, y for intraslice dimensions 
and z for interslice) and three for rotation (about these samc 
axis). The spatial separation of voxels is obtained from the 
scanner configuration, and these are not modified by scaling. 
The transformation can be wholly represented by a 4 x 4 
(A~B+.A).  This matrix maps the dynamic scan B onto the static: 
scan A and taking the inverse of the matrix reverses the r o k j  
of the scans (MA-B).  Because the computed solutions arc: 
not exact, the final transformations obtained when optimizing 
the comparison function of f ( B  =$ A)  and f(A 3 B )  
are not necessarily the inverse of each other (A&f(B+A) 7 ;  
Ad;:,,,). This difference in solutions certainly arises when 
registering different modalities and/or spatial resolutions. Be- 
cause the efficiency and accuracy of the algorithms are not 
commutative, the choice of dynamic scan plays an important 
role. However transformations more complex than global rigid 
body motion may be difficult to invert and thereby determinl: 
the dynamic scan. 

2) Rationale for Choosing Rigid Body Transformations: 
Rigid body motion maintains spatial relationships within 
a scan, so the registration process will not corrupt any of 
this information; this is especially important for quantitativ 2 

methods where areas or volumes are calculated. However, 
some quantization error will be introduced by interpolatio I 
(resampling) during the transformation stage. This error can b2 
made negligably small by use of sinc interpolation functions 

[lo]. However, the simpler trilinear interpolation is used here 
for consistency of measurements, as it is difficult to use a sinc 
interpolation function on anisotropic voxels [ 1 I]. 

With simulations, using from four to 50 landmarks pairs 
with added three-dimensional (3-D) Gaussian noise, Timmens 
[I21 compares singular value decomposition (SVD) which cal- 
culates a rigid body transformation only, with the direct linear 
method which calculates an affine transformation, for solving 
strictly rigid body motion problems. In summary, he shows 
that although both methods attain very similar root-mean- 
square (rms) error in matching noisy landmarks pairs, the SVD 
method provides a more accurate registration (as based on 
noise-less landmarks present throughout the data sets). The 
optimization process may find small components of skew and 
scaling due to noise, even when no such components actually 
exist. In this way the accuracy of the registration may be 
significantly reduced. Therefore transformational components 
should only be used when those variations can be shown to 
exist. 

Turkington et al. have performed accuracy comparisons 
[13], [I41 which suggest that voxel spacing should not be 
modified (i.e., scaled) if it is accurately known. When scaling 
is allowed, only 1% scaling has been found necessary for the 
best-fit in matching PET and MR brain images [14]. 

When accurate a priori voxel spacing is known a scaling 
parameter’s deviation from unity may indicate poor segmenta- 
tion and so the data should be resegmented in order to improve 
correspondences [15]. To correct for errors in voxel spacing 
an extremely accurate segmentation must be utilized or it will 
result in a translational “shift” of other interior features. The 
“shift” created by erroneous scaling will be either toward or 
away from the centre of the segmented feature. Segmentation 
of the same features in two modalities with different effective 
point spread functions will result in one feature’s surface 
being slightly larger than the other. With the lower effective 
resolutions of PET and SPECT this difference may create 
significant scaling errors if the voxel sizes are modified in 
the registration process. 

It is important not to forget that what is being registered is 
based only on what has been segmented. This inevitably leads 
to better correspondences or smaller errors at the segmented 
features, and also to the conclusion that the comparison 
function used for the optimization may be a poor indicator 
of the overall registration accuracy. Hemler [16] shows in a 
cadaver study that a surface registrations’ comparison function 
may be a poor indicator of overall accuracy. 

Stereotactic frames (fiducials) may allow very high preci- 
sion registration throughout the scan volume because of the 
following. 

1) The markers can be designed to be segmented consis- 
tently. 

2) In general, by segmenting features spaced further apart 
one can attain more accurate estimates of the rotation 
parameters. 

3 )  The least constrained parameter will tend to dominate 
the error in the solution, and so the markers are con- 
structed to constrain all the rigid body transformation 
parameters. 
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However, the fiducial approach can suffer from the problem 
that the region of interest (e.g., the brain) may not remain 
stable relative to the markers. If similar precision is to be 
attained with retrospective approaches then all these aspects 
must be addressed. 

11. MATERIALS AND METHODS 

A. Iterative Manual Matching of Corresponding Points 

Iterative manual matching can be performed in various 
ways. Using the Interactive Data Language3 (IDL) Pietrzyk 
has created a method 1171 that utilizes the repeated selection 
of two-dimensional (2-D) corresponding points. The points are 
different for each modality and for each scan; in general, for 
both this manual method and the following “direct matching” 
manual method, the points are chosen at the edges and extrema 
of anatomical features such as the bridge of the nose and the 
ends of the interhemispheric fissure. The user chooses one 
slice from each of three orthogonal views (one view along the 
acquired slice planes, the two others generated by resampling 
on perpendicular planes), and the dynamic scan is resampled 
to provide those same spatially located slice planes, resulting 
in three sets of corresponding views. The transformation can 
be adjusted by either selecting corresponding points for one of 
the views, or by manually adjusting a transformation parameter 
directly. All of the views of the dynamic scan are then updated 
and the user can continue the process until satisfied with the 
result. Without formal accuracy analysis Pietrzyk expects the 
results to be better than the half-maximum width of the line 
spread function of the device with lower spatial resolution. 
This expectation is based on a user’s ability to detect variations 
larger than this. 

Kapouleas [ 181 uses another approach for MRI-PET: he first 
identifies the interhemispheric fissure plane in both scans and 
uses them to solve for the two rotation parameters and the 
translation parameter perpendicular to the plane. The user then 
interactively adjusts the two translational parameters lying on 
the interhemispheric plane, and the rotational parameter for 
an axis through the sagittal view. By overlaying the result of 
some form of MRI edge-detection on the PET images the 
user can then more easily see misalignment. Kapouleas does 
mention that when the fissure deviates from a plane it may 
be necessary to go back and resolve €or the fissure plane after 
making other parameter adjustments. A similar approach has 
recently been described by Ge [19]. 

Kessler [20], in a presentation of four different methods, 
describes an iterative approach utilizing the manual manipula- 
tion of transformation parameters by keyboard only. In this 
method the user is simultaneously provided with 12 slices 
of the static data set with the segmentation of the dynamic 
scan (contours) overlaid on those slices. The parameters are 
then manipulated to best match up the contours with the static 
scan’s information. Kessler estimates that with CT-MRI an 
accuracy acceptable for radiotherapy treatment planning (* 
2.0 mm) can be obtained. 

3 A  product of Research Systems Inc., 2995 Wilderness Place, Boulder, CO. 

The iterative approach described here, is based on the one 
created by Pietrzyk [17]. This method was chosen as its 
presentation of all three dimensions provides the user with 
more of the information needed to perform the process, and at 
the same time provides flexibility in the choice of correspon- 
dences. Using a commercial programming environment WiT, 
most of the options Pietrzyk provides in his IDL program 
have been duplicated. The implementation provides three 
orthogonal views (axial, sagittal, coronal) of the two datasets to 
the user. Contours can be extracted from the dynamic and static 
scans and overlaid on the opposing scan to visually reveal 
misalignment. The user may then select one of the views to 
manipulate or one of the parameters. If the user chooses a 
view they then select either one or two pairs of corresponding 
points. This provides the translation andlor rotation needed 
to align the scans in the two dimensions shown in any one 
view. The choosing of point pairs will usually have to be 
performed more than once per view as the transformation on 
the two dimensions shown in a single view affect the match 
obtained in the other views. This process should be repeated in 
varying views until the user is satisfied with the overall match. 
The decomposition of a 3-D problem into that of repeatedly 
solving 2-D problems is often performed to reduce problem 
complexity. Thus the user understands the process much more 
easily and the method inherently provides validation as the 
user continues until satisfied with the result. 

B. Direct Matching of Corresponding Points 

With this approach a set of corresponding points are man- 
ually selected in each scan. The manual selection of corre- 
sponding points is a common approach in practical use, some 
examples are Hill [21], Henri [22], Maguire [23], and Schiers 
[24]. Foundational work in this area is reviewed by van den 
Elsen [25] and by Gerlot [26] in their surveys. 

This method is called “direct matching” in that the point 
selection is performed once and then a solution is obtained, 
as opposed to the repeated manual interaction common to the 
approaches discussed in the preceding section. Given the set of 
corresponding points a transformation must then be calculated 
which maps them onto each other. This calculation is based 
on the type of transformation to be utilized and may be either 
an approximation or interpolation of the points. 

For rigid body transformations only three noncollinear cor- 
responding points are necessary to determine the  parameter^,^ 
but it has been found beneficial to greatly overdetermine the 
system to achieve the best approximation. Various methods are 
available to solve for the transformation parameters. Timmens 
[ 121 showed with simulations that when using from four to 50 
pairs of landmarks, with added 3-D Gaussian noise, the errors 
with both SVD and the Direct Linear Approach can be reduced 
by using more point pairs, but after 25 the improvement is 
insignificant. Hill [21] has shown in tests using from four to 

4Except if the points form the vertices of an isosceles triangle, where 
a degenerate case can occur potentially causing misregistration due to a 
“flipping” of the image across any symmetric bisector of the triangle. We 
used matched landmark points in the same order on each image, to prevent 
this degenerate case; furthermore, we always use more than three points. 
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26 points with random error that mean displacement error is 
proportional to & with N being the number of points. 

The implementation here utilizes the Numerical Recipes 
[27] Levenberg-Marquadt method for nonlinear model-fitting 
adapted to 3-D rigid body motion by Menke [28]. This routine 
was utilized for the real-time tracking of patient movement 
during a single scanning session. The well defined nature of the 
rigid body problem makes this specific technique very effective 
for calculating a fast and accurate solution. 

After the solution is found, the misfit on each pair of 
corresponding points can be determined. Then the pair with the 
largest misfit can be excluded if the value of the misfit exceeds 
a specified threshold. The threshold should be large enough to 
only exclude clearly incorrect correspondences (i.e., mistaken 
features), as excluding other outliers will decrease the accuracy 
gained through the averaging of more points. The optimization 
can then be performed again to obtain the best match using 
the remaining points. This may be repeated as many times as 
necessary to exclude all incorrect correspondences. 

C. Sugaces Based 

When surfaces are the most consistent and easily seg- 
mented features across both data sets, one surface can be 
transformed (the dynamic) and compared to the other one 
(the static). This type of matching is based on the idea, as 
Pelizzari [29] describes it, of fitting a “hat” on the “head.” 
Some other surface matching implementations are described 
in [1], [30], and [31]. Collignon [9] compares a number of 
different surface matching methods and reviews the basic 
components of each. He also attempts a quality constrained 
cost analysis, but admits difficulty in finding common ground 
for a good comparison. In summary he finds that surface 
based approaches are a viable alternative to point and voxel- 
similarity-based methods, and expects that a hybrid approach 
will probably yield the best results. An application of surface 
registration with PET-MRI is described by Bidaut [32], [14]; 
Levin [33] also provides case studies with CT-MRI and MRI- 
PET registrations. 

The surface registration technique used in this analysis uses 
a threshold value calculated as the maximum mean voxel 
intensity of all the slices plus a fraction of the standard 
deviation of that same slice. What fraction of the standard 
deviation is to be added must be interactively determined 
for a given data type. Everything above this threshold is 
outlined, and this provides the contours that form the surfaces 
This segmentation technique has provided results usable fot 
registration [34]. 

The comparison function for two segmented surfaces is 
often the root-mean-square distance from a set of points or 
one surface to the closest points on the other. To provide 
this type of comparison function, a distance transform [35] 
[36] is used here. It is well suited for registering multiple 
scans in a time series back to a baseline. The precomputatior 
of the comparison function is performed once based on the 
static baseline surface, and then can be used for all subsequenl 
scans. Generating an accurate segmentation is the critical par 
of this approach. If the surfaces are not highly corresponden 

the optimization may be lead astray unless other constraints 
are added. 

The implementation of surface matching is most similar to 
that of Jiang’s [37]. An earlier version of this approach is 
described in [34], but to increase efficiency the optimization 
algorithm of Powell’s direction set [38] taken from “Numerical 
Recipes in C” [27] is used. To provide matching at multiple 
scales, hierarchical subsampling at different rates is used. 
To exclude outliers included by the automatic segmentation, 
thresholds limit the maximum distance any single point can 
contribute to the comparison function value. To detect lo- 
cal minima multiple starting points have been added to the 
minimization process. 

D. Voxel Similarity Bused 

The implementation is based on Woods’ method [8], [39]. 
With this method each intensity value (0-255 for 8-b data) 
is assumed to represent a different group or “segmentation” 
of tissues. For any transformation a single intensity (e.g., 
120) in one scan is mapped onto a distribution of inten- 
sities (e.g., 100-135) in the other. The matching process 
is based on maximizing the uniformity, or minimizing the 
standard deviation of these distributions. Hill and Studholme 
[lo], [40] have proposed a variation using the 3rd order 
moment over a restricted range of intensities; this is done 
with the aim of registering PET-MRI without masking out 
everything in the MRI but the brain, as required by Woods’ 
approach. From their study of how intensities of one scan 
get mapped to another across different modalities, they de- 
termined that by maximizing the skew (any odd moment 
about the mean] they can achieve registration. They also 
introduce better interpolation, based on the 3-D sinc function, 
with the goal of extremely high accuracy. Gerlot-Chiron 
[26] has formalized the voxel-similarity comparison criteria 
with his multimodality work. Collignon [41] takes the voxel- 
comparison process even further by segmenting all voxels 
during the registration process in order to more accurately 
compare voxels of the same tissue type. He also presents a 
summary [42] of the various voxel-similarity- and correlation- 
based methods and introduces another comparison function 
based on entropy. 

In the implementation here, the second-order moments 
(squared standard deviations) of the previously described in- 
tensity distributions are minimized. This is done symmetrically 
for A’s intensities mapping onto B’s and B’s mapping onto 
A’s. These deviations are based only on the intensity distri- 
butions and are not normalized as Woods, but are similarly 
weighted by the number of voxels contributing to each. This 
comparison function is minimized using Powell’s Direction 
Set algorithm, so that each intensity is mapped as closely as 
possible to a single intensity in the other. This assumes that 
each intensity represents only a single tissue type, and the 
degree to which this holds determines the robustness of our 
comparison function. The minimization can operate using a 
subset of the original intensity ranges, possibly one over which 
the aforementioned assumption holds. With hierarchical levels 
an increasing fraction of all the voxels are used as well as 
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different intensity ranges. As with the surface based method, 
multiple starting points are utilized to deal with local minima. 

111. RESULTS 

The results of the different methods are provided for various 
problem types, both simulated and real. Visual verification is 
not included in the tabulated time requirements for each of 
the methods because it requires highly variable amounts of 
time. An appropriate amount of user time could be added 
to each of the method’s shown time requirements, with the 
exception of the iterative manual method which inherently 
provides a form of verification. While this is not relevant to 
the simulations it may have significant implications for the real 
cases in which the exact solution cannot be determined. For 
all the studies described in this paper, z refers to the patient 
right-left direction, y refers to the anterior-posterior direction, 
and z refers to the axial direction in the scanner (inferior to 
posterior). 

A. Simulations 

Through the use of simulations very precise values of accu- 
racy for the different methods can be calculated. By resampling 
an arbitrary scan after a given rigid body transformation, 
represented by the matrix M,,,, a simulated scan is obtained 
for which the registering transformation back to the original 
is known, i.e., Ms;,:. If Msim is multiplied with the solution 
found by one of the methods MI,g, the error transformation 
Me,, is obtained. 

The rotational errors about each axis and the translational 
errors can be seen directly by decoupling the rotational and 
translational components of MsTA and Mreg about the same 
rotational origin. Note that the translational errors are only 
for the rotational origin, as the actual displacement errors vary 
throughout the volume. In order to see how the actual displace- 
ment error varies over the scan the error transformation Me,, 
can be used to transform a user selected set of 3-D landmarks. 
From this the exact positional errors for any given set of points 
in the scan can be obtained, as is shown later for an MRI 
simulation. 

Current “automatic” methods often require manual interven- 
tion during the segmentation and/or matching processes. They 
may then go on to require great lengths of time to perform 
a global search for the transformation parameters. From a 
practical point of view, these two processes are somewhat 
contradictory in nature. If manual intervention is required then 
simple interaction may also be used to calculate good initial 
approximations of the registration Parameters, thus eliminating 
the large time costs of a global search. The two automatic 
implementations described here required no user interaction 
at all. 

If an approach is to be completely automatic then a global 
search strategy must be used, but no methods to date have been 
shown to be robust enough to be completely automatic over 
a large variety of transformations and data. Notwithstanding, 
when the problem is constrained we make the claim that 
completely automatic methods are feasible. This occurs in 
many cases when the patient can be positioned in the scanner 

TABLE I 
PET SIMULATION TRANSFORMATIONS 

4 

in a “standard” position and a large amount of overlap be- 
tween scans can be obtained. When this occurs the range of 
rotations and translations that may be required for registration 
is substantially reduced, and it is in these cases that the use 
of a fully automatic approach is most promising. This issue is 
also addressed later in the discussion section on “Robustness.” 

The range of rigid body transformations over which to test 
an automatic method is subject to the ideas of local and global 
search. When more than one rotation angle becomes large 
(> 10 degrees) the complexity of the search usually increases 
dramatically. This is because the comparison function’s para- 
metric gradients may lead away from the global minimum, 
and also results from the function’s nonlinear dependence 
on the rotation parameters. Therefore a local optimization 
method should be tested thoroughly to determine the “capture 
range” over which it converges to the correct solution with a 
high probability of success. This parameter range can then 
be exploited to determine an efficient global optimization 
strategy. With this in mind the simulation tests described here 
fall into the two categories; where local search is sufficient, 
and where global search is needed. 

The results of the four described methods are presented for 
a set of simulation transformations on a PET scan and a MRI 
scan. In order to “ground’ these simulations, fiducial based 
registration has been mimicked by artificially introducing eight 
fiducial markers into the scans. These fiducials are created 
as two sets of four coplanar blobs located just outside the 
epidermis. The markers provide a variation of the direct 
manual method in which a few truly corresponding points 
can be easily segmented. This adds a fifth registration method 
for these simulations. The simulations are intended only to 
illustrate the different problem scopes. They are not meant 
to indicate the relative accuracy of the different methods, as 
that is highly dependent on implementation details and the 
specifics of the data. 

B. PET Simulations 
For the following simulations an “FDG PET scan with 

31 axial slices having 128 x 128 voxels is used. The voxel 
separation is 2.0 mm in z and y (intraslice) and 3.375 mm in z 
(interslice). No interpolation is utilized to create cubic voxels 
and so the data remains anisotropic throughout the process. 
The transformation values used for the PET simulations are 
presented in Table 1. After resampling the 8-b data with 
trilinear interpolation the intensity range of the scan was com- 
pressed from the original range 0-255 down to 0-200. Another 
complicating factor was that the simulated scan was resampled 
into a scan volume the identical size to the original; this 
effectively clipped everything that was transformed outside the 
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Fig. 1. PET simulation. From the top to bottom row: Consecutive slices of the static scan; results of registration using the direct manual approach, and 
the same slices in the simulated scan. Note that the four fiducials in colunm 3 of the first row are all visible in the registered slice (in the second TOW). 
Residual error, due to interpolation and misregistration, is visible in the suIrounding columns of row 2. The fiducials in row 3 (the artificially rotated and 
translated scan) appear in different slices due to the simulation rotation and translation. 

TABLE I1 
PET SIMULATION MEAN RIGI~: BODY TRANSFORMATION ERRORS 

Dir. Man. 
Fid. Mark. 
Surface 
Voxel Simil. 
Voxel spacin is 2.00" in x & y and 3.37:" in z 

original bounding volume. The intensity range compression, 
resampling errors, and truncation allowed the creation of more 
realistic or phantom-like problems. 

For the direct manual approach 15 points were selected 
and the two worst outliers excluded. Due to the low reso- 
lution of the scans there was difficulty locating corresponding 
landmarks. As specified in the previous section, points were 
generally chosen at the extrema of edges in the images. Fig. 1 
shows some of the data and the results of the direct manual 
approach on simulation number 4. The markers provide a 
clearly visible indicator of the error, but they were only utilized 
when performing the fiducial based registrations. Two of the 
fiducial registrations were performed with seven corresponding 
fiducial points and the other two with all eight. The two cases 
that used only seven fiducial points were a result of one 
fiducial marker being clipped in the process of creating the 
simulated scan (i.e., it was outside the bounds of the neh 
resampled volume). The global search strategy of multiple 
starting points was utilized for the surface matching method 
This was necessary as with a single starting point the algorithm 
may get stuck in an obviously incorrect local minimum 
However, the voxel-similarity comparison function was robusi 
enough that a single starting point sufficed. 

Table I1 shows the mean parameter error and the standarc 
deviations of the errors over the four simulations for each of 
the different methods. 

The standard deviations of the errors are sufficiently smal 
that four simulations were considered to give an adequate 

4.00 I 

Method 

Fig. 2. 
for each method is shown above the total time for each method. 

PET simulation mean registration times. Note that the standard error 

indication of the algorithms' general performance. The mean 
time required for each method is illustrated in Fig. 2, broken 
down into user interaction and computer time. 

C. MRI Simulations 

Proton density (PD) and TZweighted MRI scans obtained 
simultaneously in a double-echo sequence provide a regis- 
tered pair of scans with variations typical to certain different 
modalities where resolution is comparable, such as for CT 
to MRI registration which is used for surgical and radiation 
therapy planning. By resampling one of the two scans after a 
transformation, a situation which has many of the difficulties 
of the true multimodality registration problem is obtained, and 
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TABLE I11 
MRI SIMULATION TRANSFORMATIONS 

-5.0 17.0 -18.0 -6.0 8.0 8.0 
20.0 -3.0 15.0 7.0 -7.0 -9.0 

4 20.0 20.0 20.0 -7.0 -7.0 -12.0 

yet the exact transformation between them is known. The MRI 
simulations were performed using a double-echo PD and T2 
scan of 22 slices with 256 x 256 voxels per slice. The voxel 
separation is 0.820 mm in (L: and y and 5.00 mm in z (with 

The transformation values used for the MRI simulations are 
listed in Table 111. As with the PET simulations the manual 
direct method utilized 15 corresponding point pairs and the 
two worst outliers were excluded one at a time. For the fiducial 
registration three simulations utilized six corresponding points 
and the other seven. The larger rotational values with the MRI 
simulations necessitated the use of a global search strategy for 
both of the automatic methods. This, along with the increased 
amount of data, increased the time required for automatic 
registration. 

Table IV illustrates the mean parameter error and the stan- 
dard deviation of the errors over the four simulations for each 
of the different methods. These errors are discussed in detail 
under the Accuracy heading in Section IV. 

The mean time required for each method is graphically 
illustrated in Fig. 3. 

Table V shows the actual displacement errors for a selected 
set of anatomical landmarks based on simulation number 4. 
These points are chosen just to illustrate typical displacement 
errors over a range of positions. These data should not be 
used to measure the accuracy of the registration methods as 
the different methods will match different regions of the brain 
more accurately. Rather, these data should be used to see 
how the different methods do achieve different accuracies for 
selected points; for example, the surface fitting method has 
the smallest error of all the methods for a voxel located at the 
aqueduct and at the red nucleus, but not for all the points. 

Fig. 4 illustrates some of the data and the results using the 
voxel-similarity-based method on the same simulation. 

no gap). 

D. Case Studies 

The uses for registration may be broadly grouped into two 

Subtractive: The aim is to reveal subtle variations or 
differences more accurately. These studies 
are usually uni-modal. 
In which complementary information is com- 
bined to form a better understanding of the 
whole. These studies are usually multimodal. 

Examples of subtractive applications are the registration 
and subtraction of Pre- and Post-contrast scans, and the 
cine of a single slice through time after registering a time 
series. Common additive uses are the matching of structure to 

categories. 

Additive: 

30.00 

25.00 1 

Method 

Fig. 3. 
for each method is shown above the total time for each method. 

MRI Simulation mean registration times. Note that the standard error 

function, or radiotherapy treatment planning using registered 
MRI-CT. A typical case study of each type is detailed in the 
following two sections. 

1)  MRI Time Series: Using the four methods, a time series 
of two TI-weighted MRI scans taken four years apart was 
used and the second scan was registered to the first (baseline) 
scan. Each slice is 256 x 256 with spacing of 0.937 mm. 
There are 2.50-mm gaps between the eighteen 5.00 mm thick 
slices, creating a voxel spacing of 7.50 mm in z .  The methods 
were utilized as previously described for the MRI simulations. 
Transformations found by each of the methods and the time 
required are presented in Table VI. 

A subset of the slices and one set of results are given in 
Fig. 5. Even with perfect registration, variations between the 
baseline and resampled data would be present due to physical 
changes over time, volume averaging, different regions in the 
gaps, and interpolation errors. Taking all of these factors into 
account the results still provide comparable slices. 

2) MRI-PET: Registration of a T1-weighted MRI scan to 
a PET Fluorodopa scan was performed. The MRI scan’s 
256 x 256 voxels have intraslice spacing of 0.780 mm, and 
22 slices 7.00 mm thick. The PET scan represented a mean 
scan calculated by averaging five immediately consecutive 
PET scans after being registered with Woods’ software [39]. 
This was done to provide a much higher signal to noise ratio, 
and was performed before we obtained the data.5 The 3 1 slices 
are separated by 3.375 mm in z ,  and the 128 x 128 intraslice 
voxels have a separation of 2.608 mm in (L: and y. The results 
of the different registration methods are shown in Table VII. 

The iterative manual approach proceeded in the standard 
fashion with the exception of the visual testing of the user. 
Because the functional data does not necessarily correspond 
with the structural, it was important that the PET data not 
protrude beyond the overlaid MRI boundaries, while variations 
within them were acceptable. With the direct manual approach 
only nine corresponding points could be selected and, due to 
this low number, no outliers were excluded.6 For the surface 
matching technique, the PET surface that was segmented was 
a poor approximation of the edge between epidermis and 

This is standard procedure for dynamic PET scans, although the scans are 
sometimes not registered because patient motion is minimized through use of 
a head mask. 

6Again, points were chosen from edges and extrema. 
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3D Displacement (mm) 
aaueduct Red Globus toD of lateral 

TAENLE IV 
MRI SIMULATION MEAN RIGID BODY TRANSFORMATION ERRORS 

Voxel spacing is 0.820" in x & y and 5.00" in z 

Direct Manual 
Fiducial Markers 

Surface 
Voxel Similarity 

air surrounding the head. This led to the clearly incorrect 
solution found by this automatic approach. Without a PET 
transmission scan to yield a cleaner segmentation there was 
little to no chance of a good surface-based solution. In order to 
keep the voxel-similarity method fully automatic no masking 
was performed on either scan. The assumption of a single 
intensity representing a single tissue type is violated by the 
values present outside the brain with the same values as those 
within. This reduces the effectiveness of the voxel-similarity 
comparison function, but with functional to anatomical reg- 
istration the assumption has already been violated to a large 
extent. Automatic segmentation methods such as Ardekani's 
intradural space detection [43] should in the future replace 
the manual masking that is commonly utilized to improve 
registration results. The data is exemplified with the results 
of the manual iterative method in Fig. 6. 

0.90 0.67 0.61 0.29 
0.76 0.76 0.82 0.69 
0.52 0.54 0.65 0.46 
0.80 0.72 0.59 0.77 

IV. DISCUSSION 
The variety of results that may be obtained when using 

the different registration techniques has been demonstrated. 
Recently Strother [44] has quantitatively compared registra- 
tions based on Talairach space, surfaces, direct point matching, 
and voxel similarity, and states the voxel-similarity method 
provided the most accurate results on MRI-MRI, PET-PET. 
and MRI-PET registrations. Nevertheless, under the proper 
conditions each of the four methods examined can attain sub- 
voxel accuracy. With multiple options available to the use1 
the determination of the most applicable approach for a given 
problem should be based on the specifics of the data and the 
purpose for which the results are to be utilized. Based on these 
results the major characteristics that can be used to make this 
decision are described in detail below. 

A. Comparative Analysis 
1 )  Computer Requirements: Time and memory require- 

ments of each of the different methods can vary dramaticall] 
with specific implementation details, but they are bounded 
by certain factors. Computer times were measured on a SUh 
SPARCstation 2 to provide a commonly attainable processing, 
speed. Tables VI and VI1 provide the time requirements for 
each method for the particular case study, but with thc: 
automatic methods the time required for the optimization 
process can be highly variable. Thus the mean required time!; 
in Figs. 2 and 3 are more representative of typical registration 
times, and the breakdown between user and computer timt: 
enables a prediction of future results. With the ever increasing 
speed of computers, the computer component of the graphs 

TABLE V 
LANDMARK DISPLACEMENT ERRORS FOR MRI SIMULATION No. 4 

nucleus palidus ventricle 
2.34 Iterative Manual I 1.62 1.57 1.36 

will shrink. Although direct manual point matching is the only 
method that is extremely dominated by user interaction time, 
its time requirements could possibly be greatly reduced when 
new interactive point selection methods become feasible with 
faster computers. 

The test cases were chosen to be within the overall capture 
range of the automatic methods, and so are somewhat biased. 
If the rotational components of the transformations were much 
larger than 25 degrees, these approaches would have been 
more likely to fail (although so would the manual direct 
approach). Adding more starting points can provide a solution 
to this, but at the cost of a large increase in time requirements. 
This demonstrates that the robustness of the automatic methods 
can often be increased at the cost of increased computer 
time. Therefore the time required is dependent on the level 
of robustness desired. 

All of the methods have very similar computer memory 
requirements. Basically they work most efficiently when there 
is enough computer memory to hold both scan volumes at 
once. The direct manual method can cope with limited memory 
the most easily as only memory for two image slices is 
essential. The iterative approach only has to work on one 
scan at a time, and so can make do with half the memory 
requirements of that needed for the voxel-similarity method. 
Usually surface-based approaches require little more than the 
amount needed to hold one scan, but our implementation 
utilized a floating point distance transform, and so required 
four times the memory needed for an 8-b (0-255) scan. 
This illustrates another tradeoff that is often possible, that 
of increased memory usage for decreased time requirements. 
With current computer memory management, physical mem- 
ory requirements can often be relaxed through the use of disk 
space (virtual memory), but at the cost of increased execution 
time. 

2)Accurucy: From the results shown in the tables, all the 
methods provide near sub-voxel accuracy. Table IV shows that 
the largest voxel dimension ( z  in this case) dominates the 
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Direct Manual 
Surface 

Voxel Similarity 

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 15, NO. 5, OCTOBER 1996 

14.72 -0.80 0.68 -8.24 -3.50 -1.62 15 
15.58 -1.28 0.32 -8.48 -2.26 -0.92 20 
15.77 -1.38 0.26 -8.44 -2.13 -1.26 12 

Fig. 4. MRI simulation. The top row illustrates slices of the static scan, the middle shows results of registration using the voxel-similarity method, and 
the bottom row the same slices in the simulated scan. Note that the four fiducials in the second column of the base scan have been faithfully registered 
in the second column of the second row 

TABLE VI 
MRI TIME SERIES TRANSFORMATION RESULTS 

Method I Rotation (degrees) 11 Translation (mm) 1 Time 1 
I X Y z l l  X Y  z 1 (min) 

IterativeManual I 15.54 -0.67 0.18 11 -8.77 -2.83 0.20 I 8 

translation error, and that the rotation error arises around the 
axes which lie in the plane of the largest voxel dimension 
(x and y in this case). Note that the test cases were also 
reasonably constrained in order for the automatic methods to 
work with a high probability of success. These results are 
confirmed by other researchers such as Pelizzari [15], who 
compares a surface-based approach with the direct matching 
of corresponding points when registering a PET "FDG, H?j50, 
and transmission scan to MRI. Their comparison found that the 
two automatic approaches gave comparable and accurate re- 
sults as far as could be determined by identifying homologous 
points across modalities. 

Tables I1 and IV illustrate that when specific landmarks 
cannot be segmented with a high degree of accuracy, then 
by using a greater number of points (iterative manual < 
direct manual < surface < voxel similarity) more accurate 

results can be ~ b t a i n e d . ~  However, the variation in results was 
small enough that modifications on each method or different 
data could change the relative accuracies. When consistent 
features cannot be segmented, as with surfaces in the MRI-PET 
example, the number of points has very little impact. 

Specific errors vary throughout the image volume, as shown 
in Table V, but the results in Table IV indicate that the 
principle components of this error are z translation and z and 
y rotation. This is certainly due to the lower axial resolution 
(thick slices), and so this area of the scanner protocol must 
be addressed if highly accurate results are required. Thicker 
slices may also increase the difficulty in manually selecting 
corresponding points because the volume averaging will blur 
structure boundaries. The automatic methods do not make 
the difficult decisions about single point correspondences and 
so will not suffer to the same degree from the decreased 
resolution. 

The surface-based approach's accuracy is largely deter- 
mined by the accuracy of the segmentation and the degree 
to which the segmented region reflects the transformation on 
the region of interest. A voxel-similarity method's implicit 
segmentation avoids the first limitation, but cannot exclude 
distorted regions as easily as the surface technique. Both com- 

7This statement must not be confused with a registration method such as 
the principal axis technique discussed in [45] which uses many points to 
compute the principal axes, but which then discards much of the information 
by computing an average for registration. 
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Fig. 5. MRI time series. From top to bottom the rows contain: the baseline scan, results of the surface-based registration, and original slices in the dynamic 
scan. Although the brain tissues have changed between the baseline scan md the dynamic scan, there is sufficient stability for an adequate registration. 
However, note the interpolation errors in the scalp in the last image in IOW 2. 

TABLE VI1 
MRI-PET fluorodop i transformation results 

Method I Rotation (degrees: 1 1  Translation (mm) I Time 1 
x Y Z I I  x Y Z I  (min) 

Iterative Manual I -17.80 -1.99 -3.51 11 -66.63 -77.38 17.74 I 28 
-68.62 -81.83 19.56 

Surface -64.02 -81.65 -2.54 
I Voxel Similarity I -16.64 -0.18 0.06 1 1  -66.67 -78.84 19.71 I 7 

Voxel spacing for PET/MRI is 2.608/(1.780mm in x & y and 3.375/7.00mm in z 

parison functions for our automatic methods were based on 
nearest neighbor interpolation in-slice, and linear interpolation 
between the slices. Trilinear interpolation was used whenever 
resampling the data for viewing. The use of better interpolation 
functions for both the manual and automatic methods would 
provide more accurate solutions, with increased time require- 
ments. For quantitative use of the automatically registered 
scans the increased time requirements of trilinear interpolation 
would certainly be justified. Whether a resampling filter based 
on the sinc function is worth the time is probably dependent on 
the application requirements (Cepstral filtering could provide 
further increases in accuracy when using the complex data 
from MRI [46]). The correction of other, more complex. 
distortions has not been addressed in this article, but these 
aspects are crucial in obtaining higher accuracy. 

3) Robustness: Robustness refers to the probability of a 
method succeeding given new data and/or greater misalign- 

ment. The iterative manual approach is the most robust of 
the methods. The ability to interactively guide the registration 
process throughout allows the user's knowledge to be fully 
exploited. The direct manual method is quite robust with small 
rotations, but breaks down as the out of plane (z and y axis) 
rotations become larger. This is especially true with PET and 
SPECT images due to the lower resolution and lack of well- 
defined features, and so the user must face the more difficult 
problem of mental 3-D rotation for landmark identification 
(mental 3-D rotation requires cognitive processing while trans- 
lation and in-plane rotation are visual cortex processes and thus 
relatively much simpler). The interactive method's provision 
to gradually align the scans allows the user to transcend this 
visualization problem. 

The automatic methods can provide a high degree of robust- 
ness under well-constrained problems, such as in a time series 
study, where the patient is immobilised in a mask and every 
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Fig. 6. 
those same slice planes, after registration with the manual iterative method. 

MRI-PET registration. The top row displays consecutive slices of the MRI scan, and the bottom row shows the PET resampled to lie along 

effort is made to re-position the patient in a standard way. 
When facing new types of problems the automatic methods 
must be specially adapted or they will often find erroneous 
solutions. The surface-based approaches, by performing data 
reduction before the matching process, lead to a more efficient 
representation than the voxel-similarity approach. In doing so 
they run the risk of eliminating too much information, but 
may regain robustness by exploring more possible solutions in 
the same time period. The robustness is tightly linked to the 
consistency of the dynamic and static surface segmentations. If 
a specific structure’s surfaces are believed to be the most con- 
sistent feature present, then the surface-based approach may 
lead to greater robustness. Once the segmentation is performed 
the robustness will depend on the surface’s complexity and 
symmetry, as this determines the presence and number of local 
extrema in the parameter space. 

When registering PET and MRI brain images Turkington 
[ 141 has shown surface matching to be robust even when using 
partial surfaces. The voxel-similarity methods appear to add 
robustness by moving the segmentation problem into the heart 
of the matching process. At the same time segmentation issues 
must inevitably be faced, but it is hoped that higher robustness 
can be attained by using more of the information present in 
the scan. A limitation of the voxel-similarity method is that 
it is based on an overlap criterion, and these criterion (e.g., 
stochastic sign change, sum of absolute differences) are usually 
used as a correlation function over the entire image or volume 
space. This is because a correlation will result in numerous 
local extrema, and so the entire domain should be traversed in 
order to find the global extremum. This is most clear when the 
two objects being registered do not overlap at all and so the 

overlap-based comparison function provides no information 
on which direction to move. In comparison, a distance metric 
can extend over an infinite domain and so will generally point 
the algorithm in the right direction. However, when the two 
objects initially overlap to any great extent, as is the case 
with most scans of the head, the overlap criterion’s gradient 
is likely to point toward the global extremum. The presence 
of multiple extrema with the overlap-based comparisons can 
often be managed through the use of multiresolution matching. 
At the lowest resolution the features are smoothed so that there 
are very few extrema. Then the largest extrema can more easily 
be found, and provide the starting point for the next higher 
resolution optimization. 

All of the methods proved to be robust over the simulated 
test cases. However, with the diverse range of clinically 
acquired scans there is often little consideration for the regis- 
tration process. This is most evident when there is very little 
physical overlap between the scans, and so automatic methods 
will have great difficulty coping with the increased number of 
local minima. By using a large number of starting points, it 
is sometimes still possible to obtain an accurate automatic 
registration. With the larger time factors involved in these 
multiple searches, it may not be worth waiting, especially 
when the results may still be incorrect. 

4)  Usability: The iterative manual approach is very simple 
in nature, and after the method has been used once, the user 
basically understands it completely. Because visual verifica- 
tion is part of the process, the user will almost always be 
satisfied with the solution. The direct approach is conceptually 
even simpler, but suffers from the mental rotation problem. 
Without an interactive way to transform the data the user 
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must make tough decisions (i.e., difficult to reverse) about 
correspondences. The results must then be verified separately, 
albeit the user should be satisfied with the solution if they 
had high confidence when selecting corresponding points. The 
simple process behind the manual methods would indicate high 
usability, but this rating does not reflect the expert knowledge 
needed to select corresponding points. Both manual methods 
require the user to complete a lengthy and tedious task, thus 
resulting in a major drop in usability when registrations must 
be performed frequently. These factors, along with the possibly 
larger ones of repeatability, interoperator variability, and the 
operator’s time, justify the research toward automatic methods. 

Conversely, the automatic methods falsely provide the ap- 
pearance of high usability because the user does not have to 
perform as many actions (this may not be true with most 
other groups’ automatic registration methods which require 
semi-automatic segmentation or masking, taking up to 30 
minutes per scan [8]). Because the user should understand all 
the variables controlling the automatic method the usability 
drops substantially. These controls become more complex as 
the programs utilize more knowledge of the problem. For 
an automatic method to be robust it must usually be highly 
configured to the specific problem (e.g., lsFDG PET-MRI of 
the head) and so when the problem deviates slightly from 
the norm the configuration must be modified, and it now 
requires expert knowledge of not only the scans themselves but 
also of the complex registration program. The voxel-similarity 
method usually requires no separate segmentation, and so it 
is more usable than the surface-based approach. The results 
of both automatic methods must be verified separately as the 
comparison function does not provide a sound means to judge 
the accuracy of the solution. When the automatic methods fail 
the user must decide whether to adjust the parameters to try 
again or to utilize some other method. 

V. CONCLUSION 
This paper agrees and expands on many of the aspects 

of Kessler’s [20] presentation of point, line, surface, and 
interactive registration methods. The results do not indicate 
that one single method is clearly superior for all registrations 
of the head. Rather, all of the methods should be provided 
to allow flexibility in solving the different types of registra- 
tion problems. When scans with a large amount of overlap 
frequently need to be registered we feel the voxel-similarity 
approach should be used. In “hiding” the segmentation process 
it gains usability, robustness, and has the potential for in- 
creased accuracy, while at the same time not having large 
computer requirements. 

To attain the best results from each of the different methods 
not only their strengths, but their limitations must be well 
understood. To meet this end, when presenting new methods 
the focus should be on where the methods fail as well as 
succeed. Completely automatic methods have been shown tc 
be feasible for some constrained problems. This is often true 
when a large number of scans are performed for a study, and 
so the proper protocol can be devised to aid in the registration 
process. 

~ 
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Recent work has often progressed toward hybrid approaches 
that combine the strengths of the different approaches. Col- 
lignon has described a method [30] that uses corresponding 
points to constrain the transformation parameters search and 
surfaces to minimize total error, resulting in greater robustness. 
With a similar goal, Hill constrains the parameters through the 
combination of surfaces and a form of knowledge represen- 
tation [21]. These types of specialized solutions can provide 
accurate results when other methods fail, but they also become 
more dependent on assumptions which may only hold under 
certain circumstances. Another feasible hybrid approach would 
utilize interactive manual alignment to get a quick initial 
estimate and then automatically perform exhaustive matching 
over a greatly restricted range of parameters. Improved under- 
standing of the problems and faster computers will certainly 
provide a means for increased accuracy and robustness in the 
near future. 
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