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Segmentation of Multide Sclerosis Lesions 
U I 

in Intensity Corrected Multispectral MRI 
B. Johnston, M. S. Atkins," B. Mackiewich, Member, IEEE, and M. Anderson 

Abstruct- To segment brain tissues in magnetic resonance 
images of the brain, we have implemented a stochastic re- 
laxation method which utilizes partial volume analysis for ev- 
ery brain voxel, and operates on fully three-dimensional (3-D) 
data. However, there are still problems with automatically or 
semi-automatically segmenting thick magnetic resonance (MR) 
slices, particularly when trying to segment the small lesions 
present in MR images of multiple sclerosis patients. To im- 
prove lesion segmentation we have extended our method of 
stochastic relaxation by both pre- and post-processing the MR 
images. The preprocessing step involves image enhancement using 
homomorphic filtering to correct for nonhomogeneities in the 
coil and magnet. Because approximately 95% of all multiple 
sclerosis lesions occur in the white matter of the brain, the post- 
processing step involves application of morphological processing 
and thresholding techniques to the intermediate segmentation in 
order to develop a mask image containing only white matter and 
Multiple Sclerosis (MS) lesion. This whiteAesion masked image 
is then segmented by again applying our stochastic relaxation 
technique. The process has been applied to multispectral MRI 
scans of multiple sclerosis patients and the results compare 
favorably to manual segmentations of the same scans obtained 
independently by radiology health professionals. 

I .  INTRODUCTION 

AGNETIC Resonance Imaging (MFU) is a noninva- 
sive method for imaging internal tissues and organs. 

The problems of image segmentation (the identification and 
quantitation of tissues and organs) of MRI images have been 
described extensively in the literature and many algorithms 
have been developed in an attempt to solve the problems. One 
of the goals of segmentation of MRI images is to determine 
the volumes of organs, tissues and lesions present in a given 
patient. These volumes, and the changes in these volumes 
over time, may aid in the diagnosis, prognosis and treatment 
planning of patients under investigation. 

Manual tracing of structural boundaries is the most basic 
of all segmentation techniques and is still quite commonly 
used in clinical and research settings [ 11-[3]. These techniques 
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suffer from operator bias and the results are rarely reproducible 
between operators. Automatic methods of image segmentation 
have been investigated extensively and include edge detection 
methods [4]-[6], thresholding and clustering [7]-[ 121, and 
region growing based methods 1131, [14]. Extensions to the 
fundamental techniques of image segmentation have appeared 
recently and include techniques which employ mathematical 
morphology [ 151, pyramidal or hierarchical methods J16]-[ 181 
and model based approaches [19]-1221. Edge detection meth- 
ods suffer from heavy computational complexity and sensitiv- 
ity to noise and image artifacts. Thresholding, region growing 
and morphological methods usually require subjective operator 
selection of input parameters. The hierarchical and model 
driven approaches have achieved reasonable success in recent 
years. However, the model based techniques, which incorpo- 
rate extemal knowledge about structure and physiology, are 
limited by the requirement of the often costly and difficult 
development of a tissue model. The hierarchical methods have 
yet to be fully explored in MRI. 

We have developed a hybrid of several approaches to image 
segmentation in order to achieve good segmentations of tissues 
from MRI brain images. In this paper we describe extensions 
to our segmentation method based on a model-based method 
of image segmentation which applies a variation of stochastic 
relaxation in three dimensions 1231. 

One of the major difficulties we encounter when applying 
segmentation techniques to MRI images is the nonuniform 
intensity levels seen in tissues of identical composition. This 
nonuniformity is caused by variations in the sensitivities 
of the instrumentation used in obtaining MRI images. We 
have enhanced our algorithm so that it accounts for the 
nonuniformities in signal and exploits the benefits of several 
different segmentation techniques including automatic thresh- 
olding, mathematical morphology and statistical adys i s .  We 
have applied the algorithm to segment the lesions seen in dual 
echo MRI data sets of Multiple Sclerosis patients. 

Multiple Sclerosis: Multiple Sclerosis (MS) is a disease of 
the central nervous system (CNS), i.e., the brain and spinal 
cord [24]. It is a debilitating and progressive disease which 
may result in a variety of symptoms from blurred vision 
to severe muscle weakness and degradation, depending on 
the area of the CNS which is affected. Multiple Sclerosis is 
caused by a breakdown in the myelin sheath, a soft, white, 
fatty material which insulates the neurons of the CNS and 
provides for the rapid transmission of nerve impulses along 
the nerve fibers of the brain and spinal cord. MS lesions go 
through various hist-pathological stages and are heterogeneous 
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(a) 

Fig. 1. (a) MRI image with (b) MS lesions manually outlined by radiologist. 

in their presentation. Some chronic lesions may contain “scar” 
tissue composed of astrocytic fibers. MRI detects not only 
these chronic astrocytic lesions but also the acute edema- 
tous patches, with varying amounts of demyelination and 
inflammatory cell infiltration, typical of newer lesions. These 
lesional components (referred to as MS plaques) are also 
readily observable post-mortem. The inherent heterogeneity 
of lesions, which is reflected on MR images, causes some 
of the difficulties encountered while attempting to separate 
lesions from healthy brain tissue and cerebro-spinal fluid 
compartments using segmentation approaches based on signal 
intensity characteristics alone. 

Fig. 1 shows MS plaques in a typical slice from a proton 
density (PD) weighted MRI image. Fig. l(a) shows the image 
itself while Fig. 1 (b) has been overlaid with hand-drawn 
regions of interest (ROI’s) indicating the presence of MS 
lesions. Note how the lesions are detected almost invariably 
in the white matter of the brain. 

Observation of the characteristic plaques over time in MS 
patients shows how the demyelination of nerves is a reversible 
and recurrent process in these patients. In a majority of 
patients, over time with and without treatment, MS lesions 
grow and shrink and some lesions may show confluence with 
others. It is important to be able to quantitatively assess 
the numbers and sizes of MS lesions in patients undergoing 
therapy for the disease, and several large scale clinical trials are 
under way to determine which quantitative measures obtained 
from the MR images are most useful for assessing the impact 
of drugs on the disease. 

The hand-drawn outlines of Fig. l(b) are representative of 
the typical manner in which lesions are quantified in many 
centres. Much recent research in MS using MRI has been 
directed toward automating the quantitation of MS lesions 
in the brain [12], [20], [23], [25]-[29]. One of the goals 
of our research is to provide physicians with the ability to 

accurately track the progress of MS patients undergoing drug 
therapy [30]. The following discussion presents the approach 
we have taken and compares the results we obtained with that 
of manually segmented data. 

11. METHODS 

A. Overview 

Fig. 2 illustrates the system we developed to segment MS 
lesions from MRI volumes of part of a patient’s brain, typically 
acquired in a single double-echo sequence (PD and T2- 
weighted). Following acquisition of the multispectral MRI 
dcata, the images are scaled, the nonbrain tissue is masked 
oiut and the data is corrected for radio frequency (RF) inho- 
mogeneities. Each spectral image volume is then segmented 
independently using a modified iterated conditional modes 
(ICM) algorithm in 3-D [23], [31]. The result is a partial 
volume solution indicating for each voxel a percentage com- 
position of each of several tissue types. Following this step 
the segmentations of each spectrum are then combined and 
normalized. The white matter and lesion segmentations are 
then extracted and summed, and morphological processing and 
automatic thresholding are applied in order to obtain a white 
miatterAesion mask. This mask is then applied to each of the 
RF-corrected data sets, yielding images containing only white 
matter and lesion. The ICM algorithm is then re-applied to the 
masked images, and the results are combined and normalized 
once again. As a final step in the segmentation small lesions 
are filtered out and the result is then ready for comparison 
with manual segmentations of the same data. 

B. Acquisition 

Five MRI volumes have been acquired according to the 
specifications found in Table I. We used a single dual echo 
MRI sequence (PD-weighted and TZweighted), each consist- 
ing of between 21 and 27 256 x 256 slices acquired in the 
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xl2-bit raw image da 

2x27x8-bit scaled, corrected, madred image data 

1 
27 binary lesion images 

Fig. 2. Overview of segmentation process. N is the number of tissues, including lesion, deemed to be present in the volume 

TABLE I 
MRI DATA ACQUIS~TION SPECETCATIONS FROM A SINGLE DOUBLE-ECHO SCAN 

Field of View 200mm' 

2000ms 

Echo Time 

Pixel size 0.78"' 0.78"' 

Axial 

axial plane on a General Electric 1.5 Tesla MRI scanner. The 
slices are contiguous. The echo times were chosen so that 
the cerebrospinal fluid (CSF) was low intensity (dark) on the 
first echo (the PD scan) and high intensity (bright) on the 

second echo. These sequences were chosen to maximize lesion 
detection and facilitate manual lesion tracing. In MRI data set 
1 each voxel measures 0.78 mm x 0.78 mm x 5.0 mm in the 
LC, y, and z planes, respectively; in MRI data sets 2 to 5, each 
voxel measures 0.82 mm x 0.82 mm x 5.00 mm. 

C. Preprocessing 
I )  Scaling: The images first have to be scaled and the 

nonbrain tissue masked out. The original 12-b data has been 
scaled to 8 b according to the maximum intensity M ,  obtained 
in the entire volume. For any original voxel intensity z, the 
scaled value i' is given by 

i' = i / M  * 255.0 + 0.5. 

2) Masking: The tissues surrounding the brain, e.g., 
meninges, skin, fat, bone, share intensity profiles with all 
the tissues of interest that we are attempting to extract. 
The task of automatically or semiautomatically masking or 
otherwise extracting the noninteresting brain tissues has been 
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Fig. 3. PD-weighted image data of slice 16 of MRI data set 2 (a) before and (b) after (c) RF-correction. (b) shows the detected RF inhomogeneity, ( U ) / ( . ) .  

investigated by other authors [20], [26], [32]-[34]. We have 
developed a novel method of automatically masking the brain 
which works on all our data sets without any user interaction 
[ W .  

3) RF-Correction: The nonuniformities in MRI signal over 
tissues of similar composition present a major deterrent to the 
solution of the segmentation problem [201, [281, [331, [341. 
Both inter-planar and intra-planar variations in tissue intensity 
occur. These variations have a pronounced effect on algorithms 
which use histogram or cluster analysis, especially where the 
algorithms are trained by obtaining sample regions of interest 
(ROI’s) from a limited number of sites. 

Axel et al. use MRI “phantoms” for intensity correction 
[36]. A phantom is the MR image produced by scanning a 
homogeneous object, such as cylinder of a silicon solution. 
The phantom profiles the unwanted intensity variation and 
can therefore be used to reduce that variation. Because we do 
not have access to the scanners from which our MR images 
were scanned, we cannot use phantoms for correction. For 
situations when phantom data is not available, in the same 
paper, Axel et al. suggest low pass filtering the original MR 
image to approximate the phantom. Others have implemented 
similar approaches [29], [37]-[41]. We have found that this 
approach undesirably reduces contrast between brain tissues 
and produces artifacts in the “corrected” volumes. 

Wells et al. combine statistical segmentation and intensity 
correction in a two-step iterative approach called expectation 
maximization (EM) [28]. Although apparently effective in the 
presence of RF inhomogeneity, the EM algorithm does not 
account for partial volumes. Our algorithm, therefore, poten- 
tially offers superior segmentation once RF inhomogeneities 
have been reduced. 

Dawant et al. correct intra-planar variations by fitting a 
surface to interactively defined points [42]. Since all of these 
points must correspond to similar tissues, the user must possess 
some anatomical knowledge, or have access to a segmented 
image. The inter-slice intensity variation is estimated by 
comparing the intensities of similar tissue voxels in adjacent 
slices. Although proven effective, this method is not automatic 
and requires a priori knowledge of tissue types. 

We apply a method of RF-correction based on an equivalent 
of homomorphic filtering which is fast, simple, and effective 
[35], [43]. In our method, the average intensity of brain voxels, 

defined by the automatically generated brain mask, is first 
assigned to all voxels outside the brain. This masking operation 
eliminates strong edges such as the intracranial cavity. Next, 
the following nonlinear filter is applied to the masked volume 
[441 

I’(z,  Y, 2) = exp{ln(I(z, Y, - Ipf[ln(I(z, Y, .))I> (1) 

where I ( z , y , z )  is the masked volume and “lpf” denote 
a low-pass filter operation. Because I ( z ,  y, z )  contains no 
strong edges, exp{lpf[ln(I(z, y, z ) ) ] }  approximates the inten- 
sity variation due to RF inhomogeneity. Finally, I’(z,  y, z )  is 
normalized (to the range, [0, 2551, in this case) producing the 
c’orrected volume, Ic (z ,  Y, z )  

Fig. 3 illustrates the effect of RF-correction on PD-weighted 
MRI data. Note the subtle darkening in the lower right 
quadrant and the bright interior region of the raw data in 
Fig. 3(a). The result of applying RF-correction to Fig. 3(a) 
is given in Fig. 3(c). Fig. 3(b) contains the correction factor, 
given in (1), by which the raw image is divided. The grad- 
ual darkening of the image seen in Fig. 3(a) is noticeably 
reduced in Fig. 3(c). We have quantitatively examined this 
inhomogeneity by measuring the variation in mean brain tissue 
intensities in each dimension. Fig. 4 shows how the gradual 
intensity variation due to RF inhomogeneity is reduced by 
alpplication of RF-correction using a 32-sample correction. 
In all cases studied, the brain tissue intensity variance was 
reduced by at least 33%, as seen in Table 11. For both PD and 
T2-weighted images, the y-axis correction has the largest effect 
(60%-70%). However, high frequency variations, representing 
contrast between brain tissue types, remain intact, as can be 
seen in Fig. 4. 

D. Segmentation 

Following scaling, masking, and correction the data is 
n’ow ready to be segmented using our variation of ICM first 
used by Besag [45] to restore noisy and corrupted images. 
Using this method an image is assumed to represent a locally 
dlependent Markov random field, exploiting the assumption 
that voxels in a given local neighborhood of the image have 
similar intensity. For a detailed description of our modified 
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TABLE I1 
RF-CORRECTION-EACH Row SHOWS THE BRAIN TISSUE INTENSITY 

VARIANCES FOR RAW (UNCORRECTED) DATA AND RF-CORRECTED DATA 

Reduction (%) Profile 

~ 

Raw Data 

39.3 

44.8 

31.8 

28.8 

64.9 

6.05 

26.0 

17.5 

13.9 

15.2 

18.9 

3.78 

33.8 

60.9 

56.4 

47.3 

70.8 

37.6 

ICM algorithm see [23], [31], and [46]. The problem is 
to maximize the probability of a candidate segmentation, 
given the observed data, a neighbor interaction model, and 
some a priori knowledge about the various tissues under 
consideration. This prior knowledge comes from selecting 
a minimum number of ROI’s containing “pure” samples 

of each tissue of interest. These ROI’s are then used to 
compute histogram profiles of each tissue type in the volume. 
Without any RF-correction, we found that tissue samples 
were needed from almost every slice before a reasonable 
segmentation could be achieved, as will be shown in Section 
111011 “Quantitative Analysis”. The number of ROI’ s required 
to give an accurate profile of each tissue is reduced, however, 
by the W-correction procedures outlined above so that ROI’s 
from one or two slices will usually suffice to achieve a 
reasonable segmentation of the surrounding four slices, which 
corresponds to a 40-cm-wide band within the head. This is 
shown in the Section 111. The histograms so obtained are 
used to determine an initial segmentation which in turn is 
used to develop a set of neighborhood interaction parameters, 
indicating the strength of interaction between different tissue 
types. 

A final segmentation is achieved iteratively through suc- 
cessive applications of the ICM algorithm to each voxel in 
the volume until convergence is achieved, usually after five 
to eight iterations of the algorithm. There are a number of 
methods of measuring convergence of the algorithm, usually 
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Fig. 5. Partial Volume Segmentation of slice 16 from the PD-weighted scan. (a) gray matter, (b) white matter, (c) CSF, (d) lesion. 

done by placing a limit on the number of voxels which change 
from one iteration to the next. With a partial volume solution 
to the problem, the number of voxels which change between 
iterations is not readily measurable. However we have adopted 
a method which tracks the change in p ( & j )  between iterations, 
resulting in a vector of values for each &, indicating the 
change in each tissue. A scalar measure of the change in voxel 
i ,  on iteration m, denoted lei, 1 ,  is obtained by calculating the 
2-Norm of this vector such that 

The user may then assess changes between successive 
iterations and apply suitable threshold criteria on the number of 
changes required per iteration, in order to allow convergence 
to be achieved within five to eight iterations. In practice we 

have found that five iterations are always sufficient for the 
segmentations. The computation time for one iteration over a 
27-slice 256 x 256 scan is around five min on a Sun SPARC 
2 workstation. 

The resulting segmentation constitutes a maximum proba- 
bility of the classification of each voxel given the original data 
and the calculated neighborhood interaction model. Following 
convergence, a partial volume estimate is obtained, where, 
for each voxel, a set of probabilities is obtained indicating 
thie percentage composition of each tissue in the voxel. We 
carried out the segmentation step using our 3-D version of 
thie ICM algorithm on each of the PD-weighted and T2- 
weighted sequences independently, as we found it useful to 
view the segmentations of the PD and T2 images separately 
(see Section 111). Furthermore, the four-tissue partial volume 
segmentation of a 27-slice 8-b MRI scan occupies seven 
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Fig. 6 .  Binary Lesion Segmentation of central slices of another PD-weighted data set compared with the manual segmentations. 

megabytes and we encountered severe computer performance 
problems when we attempted to use the multispectral data sets 
during segmentation, probably due to the computer memory 
requirements. 

Fig. 5 shows an example of the output of this step for the 
PD-weighted sequence from slice 16 of the study. The output 
consists of a set of N images for each slice in the volume, 
where N is the number of tissues present in the volume (in 
this case N = 4). The intensity of each voxel indicates the 
probability that that voxel is of the tissue type represented in 
the image. There is an equivalent set of images obtained from 
the T2 sequence. 

Fig. 6 shows how good our ICM algorithm is at segmen- 
tation, using just PD data from another data set. The partial 
volume segmentation has been thresholded, so that all values 
between 250 and 255 (representing high probabilities of lesion) 

have been set to one and all lower probabilities have been 
set to zero. The manual segmentation is shown below for 
comparison. Only the central slices are shown, as there are 
only a few small lesions in the outer slices. 

E. Post-Processing 

1 )  Introduction: Almost 95% of all MS lesions occur in the 
white matter of the brain [24], [20]. In both the PD-weighted 
and T2-weighted scans, healthy white matter presents as a 
dark tissue and MS lesion as very bright. Intensity profiles 
taken across the diameter of many MS lesions show a gradual 
falling off of intensity near the border of the lesion (here we 
are temporarily ignoring the complex histology of some MS 
lesions which show a darker center to the lesion). 

Fig. 7 illustrates this phenomenon. A model of a slice 
from a typical PD-weighted scan is shown indicating the 
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Fig. 7. Model of typical MS lesion occurring in the white matter of the brain. 
The intensity of lesion voxels decreases with distance from the centre of the 
voxel, traveling through an area characteristic of gray matter (see Fig. 8). 

presence of an MS lesion in the white matter of the brain. 
Fig. 8 shows the one-dimensional (1-D) intensity profile of 
the lesion measured from the centre of the lesion through 
its border and into the white matter. As the distance along 
the profile to the white matter decreases the intensity profile 
travels through an area which is characteristic of gray matter. 
This phenomenon is probably due to the partial volume effect: 
voxels near the borders of tissues contain contributions from 
two or more tissue types. The ultimate intensity of the voxel is 
an average value over all the tissue types it covers. This partial 
volume effect causes confusion of lesion with gray matter 
and results in significant mis-classification of lesion near its 
border. Furthermore, the histology of MS lesions is complex, 
so further partial volume effects may be observed within the 
lesions themselves, as well as at all tissue boundaries. 

As is evident from Fig. 5, the result of the segmentation to 
this point is not adequate for accurate quantification of MS 
lesion. One of the reasons for the inaccuracy is the significant 
sharing of intensity profiles obtained from different tissues. 
This overlap is present in both the PD and T2-weighted data 
sets. 

Figs. 9 and 10 illustrate the histogram profiles obtained for 
gray matter, white matter, CSF and MS lesion taken from 
the PD-weighted and T2-weighted scans, respectively. The 
histograms have been normalized and low-pass filtered to 

Distance From Centre of Lesion 

Fig. 8. 1-D intensity profile of typical MS lesion, as shown in Fig. 7, 
measured from the centre of the lesion and extending into the white matter. 
’The profile travels through an area characteristic of gray matter. 

Voxd lnlensity (x) 

Fig. 9. 
I’D-weighted scan. 

Tissue profiles obtained from ROI’s selected from an RF-corrected 

reduce noise. In the PD histograms, overlap between white 
matter and CSF, and between gray matter and lesion is 
especially noticeable. The T2 histograms show considerable 
sharing of intensities between lesion and CSF, and between 
lesion and gray matter. 

The overlap of white matter with CSF in the PD profile is 
the reason for the error visible in Fig. 5(b) and (c). The effect 
of the gray matterflesion overlap is noticeable in Fig. 5(a) and 
(d). Because of this significant overlap of histogram profiles 
and the resulting errors introduced in the ICM segmentation it 
is necessary to post-process the images. 

We apply two levels of post-processing to the PDR2 
segmentations. In the first step the two segmentations that have 
been achieved independently to this point are combined. This 
combination reduces, but does not eliminate, the confusion 
caused by the overlapping histograms. The second phase of 
post-processing exploits knowledge about the nature of MS 
llesions which occur almost exclusively in the white matter 
of the brain. We obtain a white matterflesion mask and then 
segment the lesions from the masked image. 
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Fig. 10. Tissue profiles obtained from ROI's selected from an W-corrected 
T2-weighted scan. 

2 )  Partial Volume Product: As a first step in resolving the 
problem of histogram overlap, we will combine the results 
of the PD and T2 segmentations obtained by our ICM algo- 
rithm. We accomplish this by 1) multiplying the respective 
probabilities for each tissue type and 2) normalizing the 
result so that the total probability for any given voxel adds 
to one. We performed the combination by multiplying the 
probabilities obtained from segmenting the PD and T2 scans 
separately because it gave better resulting segmentations then 
either scan alone [31]. However, other methods of combining 
the partial volume segmentations may yield results which 
are better still, and we will investigate this in future. Other 
researchers such as Zijdenbos [27] report that using a third 
image such as a separately acquired TI-weighted image gives 
even better results; unfortunately we were unable to obtain a 
third matching data set as our data sets were already acquired 
as part of a clinical trial. 

The output from this step is a single set of N images which 
reflect in some way the tissue partial volume and for simplicity, 
we assume that the resulting combined set of images represents 
the partial volume of each tissue. Fig. 11 shows the result of 
combining the result shown in Fig. 5 (PD segmentation) with 
the equivalent result from the T2 sequence. 

Although an improvement over the separate segmentations, 
the results given in Fig. 11 still show a significant amount of 
confusion of gray matter with MS lesion. We have compared 
this segmentation with sample manual segmentations of all 
tissue types and produced a confusion matrix to quantify the 
extent of misclassification. Table I11 illustrates the confusion 
of gray matter with MS lesion. 

The rows in the confusion matrix indicate each tissue which 
has been segmented manually. Each row adds to 100%. The 
columns indicate the percentage of that tissue classified by 
the ICM algorithm (after combination of the PDm2 segmen- 
tations). For example, for the manually classified White Matter 
our algorithm classified 3.9% as gray matter, 95.9% as white 
matter, none as CSF and 0.2% as lesion. Note that about 50% 

TABLE I11 
CONFUSION MATRIX-ILLUSTRATING THE CONFUSION OF GRAY MATTER WITH 

MS LESION. EACH ROW SHOWS THE PERCENTAGE OF EACH TISSUE WHICH HAS 
BEEN CLASSIFIED AS EVERY OTHER TISSUE (DATA Is FOR SLICES 11-20 ONLY) 

Tissue 

Gray 

White 

CSF 

Lesion 

Percent of Manual Seg Classified by ICMSeg 

3.9 I 95.9 I 0.0 1 0.2 

of the "true" manually outlined lesion has been classified as 
lesion; these are the true positive lesion segmentations. Note 
also the confusion of lesion with gray matter illustrated in 
rows labeled Gray and Lesion. In effect 20% of the manually 
classified gray matter has been labeled incorrectly as lesion, 
and remarkably 41% of manually classified lesion has been 
labeled by the ICM algorithm as gray matter. 

A further quantitative measure of the accuracy of the auto- 
matic segmentation methods, the similarity index, is described 
in Section, III. 

This confusion of lesion and gray matter provides the 
motivation for post-processing the segmentation. 

3) White Matter/Lesion Mask: Although the results from 
the previous step are encouraging, they fall short of what is 
needed to accurately quantify the extent of MS disease state. It 
can be seen from Fig. 11 that the areas surrounding the borders 
of some of the MS lesions have been incorrectly classified as 
gray matter. This is a result of the nature of the intensity profile 
of the MS lesion and the dependence of the ICM algorithm on 
the initial histograms obtained previously. Although our ICM 
algorithm generates a partial volume solution, it does not fully 
compensate for the partial volume effect around the lesion 
borders. As well, it is difficult to validate a partial volume 
segmentation since the only bench mark for comparison is a 
manual segmentation, obtained by physically outlining lesions 
on all slices in the volume. The output of this manual outlining 
is a binary segmentation for each slice. Further post-processing 
of the ICM segmentation will provide us with a binary solution 
suitable for comparison with the manual segmentation. 

As mentioned previously, MS lesions occur almost exclu- 
sively in the white matter of the brain. If we can obtain 
a mask of white matter, including lesion, exclusive of gray 
matter, CSF, and background, it should be much easier to 
separate lesions from the white matter. The intensity profiles 
of these tissues are sufficiently contrasted to enable separation 
of the tissues by a second application of the ICM algorithm 
to the white matter mask. Therefore, our next step in the 
post-processing of the segmentation is to combine the results 
obtained for white matter and lesion in order to obtain a white 
matternesion mask, to be followed by another application of 
ICM. The result is binarized by an automatic thresholding step 
which reduces the number of low probability lesion areas. 
Following the binarization phase lesions of small size are 
eliminated from the image. 
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Fig. 11. Segmentation of slice 16 from combination of the PD (Fig. 5) and T2 (not shown) segmentations: (a) gray matter, (b) white matter, (c) CSF, (d) lesion. 

The first step in developing the white matterflesion mask is 
to sum the partial volume images for white matter and lesion, 
as shown in Fig. 11. 

Fig. 12 shows the result of this addition. The intensity of 
voxels in the resulting sum image is guaranteed not to exceed 
the maximum since the images combined are partial volume 
images. Note the dark areas surrounding lesion borders in the 
sum image, most of which are areas previously classified as 
gray matter. It is these areas which must be filled in in order 
to accurately obtain a white matter mask. There are also some 
other areas of low probability for both lesion and white matter, 
probably the result of noise, which must also be eliminated 
from the sum image. 

We now apply a series of morphological filtering and 
optimum thresholding to reduce this erroneous noise and to 
expand the lesions to merge with the white matter in which 
they are contained. To reduce the tiny islands and eliminate the 

low probability areas we first apply a morphological opening 
process using a 3 x 3 diamond-shaped filter. In order to expand 
the lesions to merge with the surrounding white matter we then 
apply a morphological closing using a 5 x 5 circular kernel. 
The size of the closing filter is increased because the 3 x 3 
Iternel is too small to close many of the openings in most 
images. Following application of the morphological operators 
ihere are still several larger areas of low probability which 
needed to be eliminated. We applied an automatic thresholding 
iechnique in order to remove these areas. 

The automatic thresholding technique we use was first 
introduced by Tsai et al. and employs a technique called 
moment-preserving thresholding (MPT) [47]. In MPT the 
object is to preserve the first k’th moments of an image and to 
find the threshold values which maintain the moments in the 
segmentation. Let I ( i ,  j )  denote the intensity of sample points 
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Fig. 12. Sum of lesion and white matter segmentations from Fig. 11. 

in the image, i.e., the set of intensities of the indexed pairs 

( i , j )  2=1,2 , . . . ,M,  j = 1 , 2 , . . . , N  

where M and N are the number of pixels in the x and y 
directions, respectively. 

The kth moment of an image, m k ,  is defined to be 

Thus the zeroth moment of an image is one, and the first 
moment is the average gray level present in the image. These 
moments are also obtainable from the histogram of the image. 
Preservation of moments is motivated by the assumption that 
the original image is simply a blurred version of the true 
segmentation. We use a value of IC = 3, maintaining the first 
three moments of the image, in order to obtain a threshold 
which best separates white mattedlesion from background or 
low probability areas. The MPT method has been tested and 
compared to other thresholding methods by Lee et al. [48] 
and Sahoo et al. [49]. 

Fig. 13 shows the mask obtained following application 
of the morphological operations and MPT thresholding to 
the white mattedlesion sum of Fig. 12. This mask is now 
applied to the original RF-corrected image to create an image 
consisting of white matter and lesion only. This is done for 
both the PD and T2 data sets. 

4)  Re-Application of ICM: Now that we have an image 
containing only white matter and lesion, we are again ready 
to apply the ICM algorithm. The original histograms of 
white matter and lesion are again used to drive the algo- 
rithm. Because of the presence of only two tissue types, the 
computational time and space requirements are significantly 
reduced. Following application of ICM to each of the two 

Fig. 13. 
of Fig. 3(c). 

Mask used to extract lesion and white matter from the original data 

echo sequences the outputs are again combined and normalized 
as before. The result of this step for slice 16 of the lesion 
segmentation is given in Fig. 14(a). Comparing this slice with 
that of Fig. 11 illustrates the improvement in the segmentation 
that has resulted from application of the white matter mask. 

There are still areas of Fig. 14(a) which are erroneous and 
likely the result of noise and/or errors in the white matter mask. 
The final step in the segmentation process will eliminate the 
low probability lesions and remove the small lesions. 
5) Removal of SmallLLow Probability Lesions: In order to 

eliminate the low probability lesions from the segmentation, 
we next apply MPT thresholding to the results of the previous 
step. Following this we remove small lesions from the segmen- 
tation by a series of basic image processing steps. For each 
lesion in the segmentation a set of run-length encodings are 
produced which define the lesion. These run-length encodings 
are used to determine the size of each lesion. Any lesion 
size found to be less than an input bound (in this case 15 
pixels) is eliminated from consideration. The minimum lesion 
size was arrived at by examining the sizes of manually drawn 
lesions. We tried to match our minimum size with that of the 
human observer. The resulting lesion segmentation for slice 
16 is given in Fig. 14(c). This final segmentation compares 
well with manually segmented lesions from the same study. 
Fig. 14(e) shows the manual segmentation of slice 16 from 
the study. 

Fig. 14 illustrates the success of the segmentation on slice 
number 16 from the study. Fig. 14(b) and (d) shows the 
number of false positive and negative lesions resulting from 
our segmentation before and after elimination of small and 
low probability lesions. These results compare favorably 
with the manual segmentation of the same slice shown in 
Fig. 14(e). 
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Fig. 14. Our segmentation versus manual segmentation (a) Segmentation of slice 16 of the study before elimination of small lesions. (b) False negative 
(dark) and false positive (light) lesions of Fig. 14(a) compared with manual segmentation [Fig. 14(e)]. (c) Segmentation after elimination of small lesions. 
(d) False negative (dark) and false positive (light) lesions of Fig. 14(c) compared with manual segmentation [Fig. 14(e)]. (f) Original RF-corrected PD 
data of slice 16 with manually outlined lesions overlayed in white. 

Techniques for postprocessing image segmentations using 
white matter masks have also been reported by Zijdenbos 
et al. in [27], although they focus on removing false pos- 
itive lesions based on their location within the brain. Our 
postprocessing could be extended to incorporate such spa- 
tial information, so that classified lesions in particular areas 
could be eliminated as being unlikely to be true positive 
lesions. 

111. QUANTITATIVE ANALYSIS 

To quantify these results, we use the similarity index de- 
scribed by Zijdenbos [27], derived from a reliability measure 
known as the kappa statistic, used by Vannier for analysing 
MR images [50]. Consider a binary segmentation as a set A 
containing the pixels considered to belong to the classification. 
The similarity of two segmentations AI and A2 is given by a 
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(c) (d) 

Fig. 15. Similarity between the (a) semiautomatic segmentation (SEG) with the (b) manual segmentation (man ROI's). (c) The XOR figure illustrates the 
false positives and the false negatives, and (d) the INTERSECTION figure shows the correctly labeled lesion pixels. The similarity index for this slice is 0.80. 

real number S E ( 0 .  . . l} defined by 

Because the similarity index is the ratio of twice the common 
area of the segmentations to the sum of the sizes of the 
individual areas, it is sensitive to both size and location. 
Therefore, two equally sized regions that overlap each other 
with half of their area results in S = and a region completely 
overlapping a smaller one of half its size yields S = 5. 
This reflects the intuitive feeling that two regions, of which 
one fully encompasses the other, are more similar than two 
partially overlapping regions. 

Now Zijdenbos states that although S > 0.7 indicates 
excellent agreement, the absolute value of S is difficult to 
interpret; however, as an example, the similarity index of the 

two images in Fig. 14(c) and (e) is 0.65. Further, the similarity 
index of the two segmentations in Fig. 15 is 0.80. 

The similarity measure can be applied to any binary seg- 
mentation, so we typically apply our MPT thresholding tech- 
nique to the semi-automatic grey-scale lesion segmentations 
to obtain the similarity measure of the semi-automatic lesion 
segmentation compared with the manual lesion segmentation. 

Fig. 16 shows the effects of our RF correction technique. 
The final semi-automatic segmentation of lesions using the 
raw (uncorrected) data provide poor overlap with the manual 
segmentations for slices 11-13 and 20, and somewhat rea- 
sonable overlap (0.4-0.5) for the other slices. After the RF 
correction has been applied, the similarity index improves for 
every slice except slice 17, hence showing the efficacy of the 
W correction technique. We presume that the filtering which 
occurs during W correction can, on occasion, have a deletrious 
effect on segmentation, and indeed, we observe that the best 
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Fig. 16. Similarity indices for the central slices of the semi-automatic seg- 
mentation of the raw (uncorrected) data, the segmentation of the RF-corrected 
data using histograms from slice 14 only, and the segmentation of the 
RF-corrected data using histograms from several slices with respect to the 
manual lesion segmentation. 
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Fig. 17. Similarity indices for the central slices of the initial segmentations 
using just the initial T2 and PD data, the segmentation of the combined initial 
PD and T2 segmentations, and the final, post-processed lesion segmentation 
with respect to the manual lesion segmentation. 

segmentations (and similarity measures) arise when the filter 
width is between 16 and 32 pixels wide. 

To show whether the RF correction worked properly, we 
used histogram data from one slice only (slice 14) to be 
used in the segmentation algorithm. The final segmentation is 
strikingly similar to the segmentation using several slices for 
obtaining the histogram data, showing that the RF-correction 
appears to have worked well. 

Fig. 17 illustrates the effects of post-processing after the 
initial segmentation. We applied an automatic thresholding 
technique to remove areas of low probability to the initial 
segmentation data shown in Fig. 11 to obtain a binary initial 
lesion classification suitable for the similarity measure. We 
then used the similarity index to illustrate the effects of our 
postprocessing methods with the same manually outlined "gold 
standard" lesion segmentations. Fig. 17 shows that the initial 
lesion segmentations using the T2 data is very poor, but is 
better using the PD data. Combining the PD and T2 data 

0.8 
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0.5 
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0.3 

improves the similarity index further, (except for slices 17 
and 18). There is a fairly good overlap with the manual 
segmentations but there are a large number of false positive 
lesions which lower the weighted similarity measure over all 
the central slices to 0.36. 

After postprocessing, however, the false positives are much 
reduced so the similarity measures are much improved. The 
weighted average over all the central slices is 0.505, which 
may be considered to represent a 50% recording of true 
positives, and another 50% of a combination of false positives 
and false negatives. This is well within the range observed by 
Vannier and Zijdenbos, although the number of false positives 
are still a concern. We noted that the larger the lesions, the 
better the similarity index, as there tends to be a constant 
small number of false positive lesion pixels and when there 
are only a few gold standard lesion pixels, these false positives 
lower the similarity measure further than when there are a large 
number of gold standard pixels. 

The false positives arise because of the confusion of lesion 
with grey matter, which arises because 
deviation of the intensity histograms for 
due in pairt to the difficulty in isolating 
in such thick slices (5  mm thick), to the residual RF inhomo- 
geneity which is not corrected, and to the age of the scanner 
used. Data. sets from our new MR scanner show much less RF 
inhomogeneity and less variation within the tissue types, so 
we would expect these data to show an even higher similarity 
measure for lesion segmentation, and initial results indicate 
that similarity measures of greater than 90% will be obtainable 
with these data sets. However, manually outlined lesions from 
the new scanner are not yet available for us. 

We applied our ICM segmentation technique to other PD 
data sets from the same scanner with the same acquisition 
parameters, with even better results, as shown in Fig. 18. If 
the T2 data for these sets were available, we would expect 
that the segmentations would improve further, as we noted in 
Fig. 17 that the final segmentations after post-processing were 
much better than the initial segmentation from the PD data 
alone. 
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IV. CONCLUSION AND FUTURE WORK 

We have developed a semi-automatic system for segmen- 
tation of MRI brain images which provides an acceptable 
segmentation of the white matter and lesions, based on min- 
imal manual intervention. We have outlined the brain with a 
new fully automatic method before applying an RF correction 
technique. In each patient scan, only a few ROI’s need to 
be manually drawn for each of the four main tissue types 
(lesion, grey matter, white matter, and CSF). Furthermore, 
because of our RF correction technique, these tissues could 
be selected from the same slice, thus our method is suitable 
for almost fully automatic segmentation. Our method utilizes 
partial volume analysis for every brain voxel, and does not 
require any distortion or resampling. 

Future work will include improving the preprocessing steps 
of image scaling, image enhancements and RF inhomogeneity 
corrections. We hope to develop a graphical user interface to 
guide the radiologist through the stages of the segmentation 
algorithm, so that the system can be used for speedy seg- 
mentation of large numbers of images. We are also actively 
investigating the effects of data compression on the image 
segmentations. Finally, we will use the segmentations to aid 
in analysis of data from follow-up exams, where the lesions 
are evolving over time. 
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