Introduction to Computational Game Theory

CMPT 882

Simon Fraser University

Oliver Schulte

Iterated Weak Dominance

The IWD procedure

In our discussion of trembling-hand equilibrium, we encountered the idea that players should avoid weakly dominated strategies. This can be used as an alternative solution concept to Nash equilibrium via an **iterated elimination algorithm**.

1. Start with a game *G*; we'll assume it's a 2-player game for now.

2. For both player 1 and 2, simultaneously eliminate all weakly dominated strategies. We now have a smaller game G'.

3. Repeat step 1 with G', until we arrive at a submatrix G^* of G such that no strategy is weakly dominated in G^* .

4. Return G^* .

Note The text also considers dominance by mixed strategies. For now we will neglect this possibility for the sake of simplicity.

Iterated Dominance: Example

What's the result of applying iterated dominance to the game below?

	<u>Column</u>		
Row	L	С	R
Т	4, 2	6, 1	6, 0
Μ	3,0	5,3	9, 2
В	3,0	5, 2	3,4

First, we look for dominated strategies. For the row player, T and M both dominate B (T strictly and M weakly). For the column player, there is no dominance. So in round 1, we eliminate B for Row. With B gone, C dominates R for Column, so we eliminate R. With R gone, T dominates M for Row, so we eliminate M. Now L dominates C for Column, so we are left with (T,L) as the only pair of strategies surviving iterated dominance. Thus we predict that Row will play T and Column will play L.

Iterated Dominance: Exercise

	Defense		
Offense	Counter Run	Counter Pass	Blitz
Run	3	7	15
Pass	9	8	10

Outcomes are "expected yard gains for offense"

Iterated Dominance: Exercise

Two players make a guess, "1", "2" or "3". The player whose guess is closest to the average wins. In case of a tie, the pie goes to the player with the lower guess, if there is one; otherwise the pie is split equally between the two. The pie is worth \$2.

	<u>Column</u>		
Row	1	2	3
1	\$1, \$1	\$2,0	\$2,0
2	0, \$2	\$1, \$1	\$2,0
3	0, \$2	0, \$2	\$1, \$1