Introduction to Computational Game Theory

CMPT 882

Simon Fraser University

Oliver Schulte

Matrix Games and Nash Equilibrium

Matrix Games: Definition

- We have *n* players 1,2,...,*n*.
- Each player *i* has a strategy set *S_i*. Members of *S_i* are denoted by *s_i* or *a_i*.
- Each player *i* has a utility function $u_i: S_1 x \dots x S_n \rightarrow \mathbb{R}$. Let (s_1, \dots, s_n) be a tuple of strategies, one for each player. Then $u_i(s_1, \dots, s_n)$ specifies the payoff for player *i*.
- A matrix game G is **finite** if each strategy set S_i is finite.
- In the case of two players and a finite game, we can represent the game in a **game matrix**: the rows are labelled with the strategies for player 1, the columns with the strategies of player 2, and the matrix entry M_{ij} is the pairs of payoffs for the strategy pair (s_i, s_j) .
- The syntactic format of this definition is very simple. However, as we will see, matrix games can model strategic phenomena of arbitrarily high complexity.
- Equivalent Games:
 - Note that the labels of the strategies (rows or columns) do not matter.
 - Also remember that payoff functions can be rescaled by positive linear transformations.

Examples

	С	D
С	a,a	b,c
D	c,b	d,d

- Any game where c > a > b > d is a **Prisoner's Dilemma**.
- An alternative definition: A PD is a 2x2 game where each player has a strictly dominant strategy, and the outcome where both players choose their dominated strategy strongly Pareto-dominates the outcome where both players choose their dominant strategy.

The TCP backoff game

	С	D
С	-1,-1	-4,0
D	0,-4	-3,-3

In the TCP protocol, you are supposed to back off from sending packets if congestion occurs. Interpret C as "back off" and D as "don't back off". If you don't back off and other people do, your message experiences no delay. The game matrix is a possible model of delays in this scenario.

- Note the similarity to the fire exit problem.
- Like the fire exit, this is best treated as a population game. We'll come back to this.

Exercise

Write down a game matrix for the game of Rock, Paper, Scissor.

Game Theory vs. Decision Theory

- From an agent's point of view, a game is a special decision problem where States of the World = Choices of Other Players.
- Conversely, a single agent decision problem under uncertainty can be viewed as a special case of a 2-player game.
- Let player 1 be the agent. Let player 2 be "nature" or the "environment".
- The strategy set of the agent is the set of options in the choice problem. The strategy set of Nature is the set of states of the world.
- Nature is indifferent among all outcomes. (How do you represent this with a utility function?). Therefore we can omit listing Nature's payoffs.
- The fact that single-agent decision problems are a special game means that theorems of game theory also apply to decision problems.

	<u>Nature</u>	
Agent	Heads	Tails
Bet 1	100	60
Bet 2	70	100

Solution Concepts

- A definition of how players will play a certain game is called a **solution concept**. We will consider a number of solution concepts.
- The most famous is the Nash equilibrium.

Nash Equilibrium (pure or deterministic strategies)

Consider a 2-player game.

- A strategy s_1 for player 1 is a **best response** against a strategy s_2 for player 2 iff there is no strategy s'_1 that does better against s_2 than s_1 does. In symbols, there can't be a strategy s'_1 such that $u_1(s'_1,s_2) > u_1(s_1,s_2)$.
- Similarly, a strategy s_2 for player 2 is a **best response** against a strategy s_1 for player 1 iff there is no strategy s'_2 such that $u_2(s_1,s'_2) > u_2(s_1,s_2)$.
- Note that a player can have more than one best response against another player's strategy.
- A pair of strategies (*s*₁, *s*₂) is a Nash equilibrium iff *s*₁ is a best response against *s*₂ and *s*₂ is a best response against *s*₁.

Examples of Nash Equilibrium

	<u>Column</u>	
Row	С	D
С	0, 0	-2, 2
D	2, -2	-1, -1

The Prisoner's Dilemma has a unique N.E.: (D,D)

<u>Column</u>			
Row	L	R	
L	1, 1	0, 0	
R	0, 0	1, 1	

The pure Coordination Game has two N.E.'s: (L,L) and (R,R)

Exercises for Nash Equilibrium

Find the Nash Equilibria of the following games.

	<u>Column</u>	
Row	L	R
L	2, 1	0, 0
R	0, 0	1, 2

The Battle of the Sexes

<u>olumn</u>	
Straight	Turn
-15, -15	4,0
0, 4	1, 1
•	<u>olumn</u> Straight -15, -15 0, 4

Chicken

What about Rock, Paper, Scissors?

Justifications of Nash equilibrium

Economists predict routinely that players will play Nash equilibria. There are two main justifications for this.

1. **The steady state interpretation.** If players were to play the game repeatedly, they would keep improving their responses until they are each playing a best reponse.

2. The self-enforcing agreement interpretation. Suppose the players agreed in advance how they were going to play. Then they could trust each other to keep their agreement iff that agreement is a Nash equilibrium.

Mixed Strategies