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1 Relations and Functions

Let A be a set. An ordered pair from A is a pair (a, b) such that both a and b
are from A. To say that a pair (a, b) is ordered is to say that we distinguish it
from the pair (b, a) (whereas with sets, {a, b} = {b, a}). A (binary) relation R
on A is a set of ordered pairs from A. If (a, b) is an ordered pair in a relation
R, we write aRb (read “R holds between a and b”). A relation R on a set A is
reflexive iff for all x ∈ A, xRx holds. A relation R on a set A is transitive
iff for all x, y, z ∈ A, if it is the case that xRy and yRz both hold, then xRz
holds. A relation R on a set A is total iff for all x, y ∈ A, either xRy or yRx
(or both) holds.

We are especially interested in relations that rank a given set of options
A. For a given agent and a given set of options A, we assume that the agent
has a (weak) preference relation � on the options A. The agent’s strict
preference relation � on A is then defined for all x, y ∈ A by: x � y iff x � y
and not y � x . The agent’s indifference relation ∼ is defined for all x, y ∈ A
by: x ∼ y iff x � y and y � x. A weak preference � relation is rational iff it
is total, reflexive and transitive.

A score function, or utility function, u assigns a number to each option
in a given set A. A utility function u represents a preference relation � on a
set of options A just in case for all options x, y ∈ A : x � y holds iff u(x) ≥ u(y).

Theorem 1 Let A be a finite set of options and � a preference relation on A.
Then there is a utility function that represents � just in case � is rational.

2 Decision Problems

In all decision problems, we start with a set of options A. We distinguish be-
tween decision-making under certainty and decision-making under uncertainty.
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2.1 Decision-Making With Certainty

In a decision problem with certainty, we have a finite set D = {d1, ..., dn} of
dimensions or attributes of interest. We assume that for each dimension
di ∈ D, the agent has a rational preference ordering �iover the options A. An
option x ∈ A strongly Pareto-dominates another option y ∈ A iff1 for all
dimensions di ∈ D it is the case that x �i y. An option x ∈ A weakly Pareto-
dominates another option y ∈ A iff for all dimensions di ∈ D it is the case
that x �i y, and for at least one dimension dk ∈ D, we have that x �k y.

We obtain another interpretation of decisions under certainty if we take the
set of “dimensions” to be a set of members of society, such that the preference
orderings �irepresent the preferences of person i. Strong Pareto-dominance
then means that all members of the society prefer the dominant option over the
dominated one, and weak Pareto-dominance means that some members of the
society prefer the dominant option over the dominated one, while others prefer
the dominant option at least as much as the dominated one (but not necessarily
more).

2.2 Decision-Making Under Uncertainty

We represent uncertainty by a finite set S = {s1, s2, ..., sj} of states of the
world. We assume as well that a set of possible outcomes O is given, and
that the decision-maker has a rational preference relation � represented by a
utility function u over the outcomes O. An act a is a function that assigns to
each state of the world s ∈ S an outcome a(s) ∈ O.

An act a strictly dominates an act b iff for all states of the world s ∈ S,
it is the case that u(a(s)) > u(b(s)). An act a weakly dominates an act b iff
for all states of the world s ∈ S, it is the case that u(a(s)) ≥ u(b(s)), and for at
least one state of the world s ∈ S, it is the case that u(a(s)) > u(b(s)).

The worst-case outcome for an act a is the smallest number r such that for
some state of the world s, r is the payoff that a yields in s (i.e., r = u(a(s))).
Let Worst(a) denote this number, for any act a. An act a is a maximin option
iff there is no other act b such that Worst(b) > Worst(a).

In certain circumstances, we may assume that an agent chooses in accor-
dance with the principles of expected utility. In these circumstances, we assume
that the agent has a subjective probability function p that assigns a number
(a probability) to each state of the world. This function p is a probability
function iff the following conditions obtain.

1. The probability function p assigns a number p(s) to each state of the world
in S.

2. The probability function p assigns no negative numbers. That is, for all
states of the world s ∈ S, p(s) ≥ 0.

1I use the abbreviation “iff” for “if and only if”.
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3. The probabilities of the various states of the world add up to 1. In symbols:
p(s1) + p(s2) + · · ·+ p(sj) = 1.

Now we can define the expected utility of an act a given probability
function p and utility function u:

EU(a) = p(s1)× u(a(s1)) + p(s2)× u(a(s2)) + · · ·+ p(sj)× u(a(sj)).

The principle of expected utility says that an agent should strictly prefer an
act a to an act b just in case EU(a) > EU(b).

3 Cooperative Games

Cooperative Game Theory deals with the question of what sort of agreements
a group of agents would commit themselves to, for example as a result of a
negotiation. The definition of a cooperative game is very simple.2

Definition 2 A cooperative game is a pair (N, v), where

1. N is a finite set of players, and

2. v assigns to each nonempty subset C of N a number v(C).

A nonempty subset C of the set of players N is called a coalition. The num-
ber v(C) is called the worth of the coalition. Intuitively, v(C) is the amount
that the players forming the coalition C can obtain by joining forces. The result
of a cooperative game with n players is an allocation x = (x1, x2, ..., xn) that
specifies the payoff to each player, namely xi for player i. For a given coalition
C and an allocation x = (x1, x2, ..., xn), we obtain the payoff to the coalition C
by adding the payoffs of its members; we write x(C) for the payoff to coalition
C from x. For example, suppose that in a cooperative game with three players,
the resulting payoff vector is x = (4, 2, 8). Then the payoff to the coalition of
player 1 and 3 is x({1, 3}) = x1 + x3 = 4 + 8 = 12.

A coalition C is effective for an allocation x = (x1, x2, ..., xn) iff v(C) ≥
x(C). The central concept for predicting the outcome of a cooperative game is
the notion of the core of a game. We predict that an allocation will not be the
result of a cooperative game if there is another allocation that is preferred to the
first by some coalition that has the power to bring about its preferred allocation.
To formulate this idea precisely, we say that an allocation y = (y1, y2, ..., yn)
dominates another allocation x = (x1, x2, ..., xn) via coalition C iff for all
members i of C, yi > xi. Finally, an allocation is feasible if it does not award
more payoff than there is to be distributed; formally, an allocation x is feasible
iff x(N) ≤ v(N).

To avoid awkward phrasing, the next definition defines what payoffs vectors
are not in the core; all others are of course in the core.

2Strictly speaking, our definition is that of a cooperative game with transferable payoffs,
a special case of the more general definition of a cooperative game.
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Definition 3 Let (N, v) be a cooperative game with n players. An allocation
x = (x1, x2, ..., xn) is not in the core of (N, v) iff there is another feasible
allocation y = (y1, y2, ..., yn) and a coalition C such that

1. C is effective for y (i.e., y(C) ≤ v(C)), and

2. y dominates x via C (i.e., yi > xi for all members i ∈ C).

4 Simultaneous Matrix Games

This section introduces the notion of a simultaneous-move game, also known
as a normal form game, or a matrix game, or a strategic form game.
Here and in the next section, I will give the definitions for 2-player games; the
definitions generalize to the case of n-player games in more or less obvious ways.

Definition 4 A 2-player simultaneous matrix game is a quadruple G = (S1, S2,�1

,�2) where

1. Si is the set of strategies for player i,

2. �i is player i’s preference relation over all pairs of strategies (s1, s2) where
s1 ∈ S1, s2 ∈ S2.

We assume that each player’s preference relation �iis rational and hence can
be represented by a utility or payoff function ui. Thus player i strictly prefers
a pair of strategies (s1, s2) to another pair (s′

1, s
′
2) just in case ui(s1, s2) >

ui(s′
1, s

′
2).

Consider a strategic form game G = (S1, S2,�1,�2) and payoff functions
ui that represent �i. A strategy s1 ∈ S1 strictly dominates another strat-
egy s′

1 ∈ S1 just in case for all strategies s2 ∈ S2, we have that u1(s1, s2) >
u1(s′

1, s2). A strategy s1 ∈ S1 weakly dominates another strategy s′
1 ∈ S1

just in case for all strategies s2 ∈ S2, we have that u1(s1, s2) ≥ u1(s′
1, s2) and for

at least one strategy s2 ∈ S, we have that u1(s1, s2) > u1(s′
1, s2). Dominance is

defined similarly for player 2’s strategies.
The worst-case outcome for a strategy s1 ∈ S1 is the smallest number r

such that for some strategy s2 ∈ S2 of player 2, r is the payoff that s1 yields
against s2 (i.e., u1(s1, s2) = r). Let Worst(s1) denote this number, for any
strategy s1 ∈ S1. A strategy s1 ∈ S1 is a maximin strategy iff there is no
other strategy s′

1 ∈ S1 such that Worst(s1) > Worst(s′
1). We define player 2’s

maximin strategies in the analogous way.
Dominance and maximin are essentially the same concepts as in individual

decision theory, with the other player’s strategies playing the role of states of
the world. An important new notion in games is that of a best reply and a Nash
equilibrium.

Definition 5 Let G = (S1, S2,�1,�2) be a two-player simultaneous-move game.
Assume that utility function ui represents the preference relation �i.
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1. A strategy s1 ∈ S1 of player 1 is a best reply against a strategy s2 ∈ S2

iff there is no other strategy s′
1 ∈ S1 of player 1 such that u1(s′

1, s2) >
u1(s1, s2). Similarly, a strategy s2 ∈ S2 of player 2 is a best reply against
a strategy s1 ∈ S1 of player 1 iff there is no other strategy s′

2 ∈ S2 of player
2 such that u2(s1, s

′
2) > u2(s1, s2).

2. A pair of strategies (s1, s2) with s1 ∈ S1, s2 ∈ S2 is a Nash equilibrium
iff s1 is a best reply against s2 and s2 is a best reply against s1.

5 Sequential Game Trees

A directed graph G is a pair G = (V,E) where V is the set of vertices (or
nodes), and E is the set of edges connecting the vertices,3 such that if there is
an edge from node u to node v, there is no edge back from node v to node u.
A tree T is a directed graph with a distinguished node r, the root, such that

1. for every node in the tree, there is exactly one path connecting the node
to the root,

2. the root has no predecessors,

3. each node other than the root has exactly one predecessor, and

4. the successors of each node are ordered from left to right.

Nodes without successors in a tree T are called leaves, or terminal nodes.
We define finite game trees for two players as follows. Game trees are also

known as sequential games, or as games in extensive form.

Definition 6 A finite game tree for two players is a triple (T,�1,�2) with
information sets I1

1 , I2
1 , ..., Ik

1 for player 1, and I1
2 , I2

2 , ..., Im
2 for player 2 with

the following properties.

1. p is a turn function that assigns to each non-terminal node v in T a
player i. Intuitively, if p(v) = i, it is player i’s turn to move at v.

2. �irepresents player i’s preferences over the terminal nodes in T .

3. Each non-terminal node v in T is contained in exactly one information
set Ik

i such that i = p(v) .

A game tree is a game of perfect information if each information set
contains exactly one node.

3Formally, E is a relation on V .

5


