
   

Naïve Bayes Classifiers 
 
Example: PlayTennis (6.9.1) 
Given a new instance, e.g. (Outlook = “sunny”, Temperature = “cool”, Humidity = 
“high”, Wind = “strong”), we want to compute the most likely hypothesis: 
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 P(yes)*P(sunny|yes)*P(cool|yes)*P(high|yes)*P(strong|yes) = 0.005 
 P(no)*P(sunny|no)*P(cool|no)*P(high|no)*P(strong|no) = 0.021 
 
Therefore vNB = (PlayTennis = “no”) 
 
Example: Learning to classify text (6.10) 
Why do we want to automatically classify text? 

- Rank news articles by order of interest to reader 
- Classify web pages by topic 
- Filter spam 

The naïve Bayes classifier is among the most effective algorithms for this task. 
 
Issue: How do we represent a text document?  What attributes should we define?  
Possibilities include: 

- word frequency vector (word : frequency) 
- position vector (position : word) 

Note that both of these possibilities are, from a linguistic point of view, poor 
representations.  However, “with friends like statistics, who needs linguistics?” 
 
Also, it is difficult to formally define “good” grammar for a language like English.  For 
example, the sentence: 

“The horse, raced past the barn, fell.” 
is technically correct English under a formal grammar, but no one would ever actually 
say something like that. 
 
Formal definition of text classification parameters 
Target concept: Interesting? : Document  {+, –} 
Representation: Vector of words (one per position) 
Learning:  Use training examples to estimate the following probabilities: 

P(+), P(–), P(document | +), P(document | –) 
 
Naïve Bayes classifier independence assumption 
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where P(ai = wk | vj) is the probability of seeing word k in position i, given hypothesis vj. 



   

This ignores the possibility of predicting the next word occurrence based on previous 
words.  For example, it is far more likely to see the word “prime” adjacent to the words 
“minister” or “rib” than it is to see it anywhere else. 
 
We can add one more simplifying assumption: that it does not matter where in a 
document a given word appears.  Formally: 
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or, words (attributes) are identically and independently distributed (i.i.d.). 
 
Some classification algorithms will add more tweaks for efficiency, such as ignoring the 
top 100 most frequent words (“and”, “is”, “the”, etc.) or ignoring words with frequency 
<3. 
 
Estimating attribute frequencies (6.9.1.1) 
The Maximum Likelihood Estimate for word probabilities would be: 
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where nk is the number of occurrences of word k in the text, and n is the total number of 
words in the text.  However, there are two problems with this estimate.  First, it does not 
account for prior distributions or base rates.  Second, if a word does not appear in the 
training text, this probability will be 0.  If this word appears in a test example or a real 
world example, this probability term will dominate the classifier (everything will be 
multiplied by 0). 
 
To solve both of these problems, we introduce the m-estimate: 
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We show the more general form here.  For any attribute, we add m “virtual” training 
examples drawn from our prior distribution (frequency pk for attribute ak).  In the case of 
our text classification example, we assume uniform priors for every word: 
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If we choose m = |Vocabulary|, then: 
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We can think of the number of “virtual” examples m as a measure of confidence in our 
prior distribution.  In this case, it makes intuitive sense that m should be at least the size 
of the vocabulary. 
 
Notes: 
In general, it is very important that your training examples be representative of the 
general data for the classification problem. 



   

Naïve Bayes algorithms for learning and classifying text (Table 6.2) 
 
LEARN_NAÏVE_BAYES_TEXT(Examples, V) 
 
Examples is a set of text documents along with their target values. 
V is the set of all possible target values. 
This function learns the probability terms P(wk | vj) describing the probability that a 
randomly drawn word from a document in class vj will be the English word wk. 
It also learns the class prior probabilities P(vj). 
 
1. Collect all words, punctuation, and other tokens that occur in Examples 

• Vocabulary  the set of all distinct words and other tokens occurring in any 
text document from Examples 

2. Calculate the required P(vj) and P(wk | vj) probability terms 
• For each target value vj in V do 

• docsj  the subset of documents from Examples for which the target value 
is vj 

• P(vj)  
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• Textj  a single document created by concatenating all members of docsj 
• n  total number of distinct word positions in Textj 
• For each word wk in Vocabulary do 

• nk  number of times word wk appears in Textj 

• P(wk | vj)  
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CLASSIFY_NAÏVE_BAYES_TEXT(Doc) 
 
Returns the estimated target value for the document Doc. 
ai denotes the word found in the ith position within Doc. 
 

• positions  all word positions in Doc that contain tokens found in Vocabulary 
• Return vNB, where 
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Resources on Bayesian noise filtering 
http://www.cs.unc.edu/~welch/kalman/
http://www.acfr.usyd.edu.au/technology/bayesianfilter/Bayesian%20Filtering%20Classes
.htm
 

http://www.cs.unc.edu/~welch/kalman/
http://www.acfr.usyd.edu.au/technology/bayesianfilter/Bayesian Filtering Classes.htm
http://www.acfr.usyd.edu.au/technology/bayesianfilter/Bayesian Filtering Classes.htm


   

Bayes Nets 
 
Bill Gates said that the competitive advantage of Microsoft was its expertise in Bayes 
nets.  Bayes nets are embedded in a variety of Microsoft products.  For more information, 
go to http://www.gametheory.net/News/Items/063.html. 
 
Basic Definitions 
 
A Bayes net describes the probability distribution governing a set of variables by 
specifying a set of conditional independence assumptions along with a set of conditional 
probabilities. 
 
Two variables A and B are independent if and only if P(A ^ B) = P(A) × P(B). 
Independence implies irrelevance.  If A is independent of B, then B is irrelevant to A. 
 
Exercise: Prove A and B are independent if and only if P(A | B) = P(A). 
 
Proof: 
By the Product rule, P(A ^ B) = P(A | B) × P(B). 
So P(A | B) = P(A ^ B) / P(B). 
P(A ^ B) = P(A) × P(B) because A and B are independent. 
Therefore, P(A | B) = P(A) × P(B) / P(B) = P(A). 
 
Let X, Y and Z be random variables: 
• X is independent of Y if and only if P(X=x | Y=y) = P(X=x) for all x and y such that 

P(Y=y) > 0. 
• X is independent of Y given Z if and only if P(X=x | Y=y ^ Z=z) = P(X=x | Z=z) for 

all x, y and z such that P(Y=y ^ Z=z) > 0.  Notation: (X ╨ Y | Z) 
• Intuitively, if X is independent of Y given Z, then Y is irrelevant to X given Z.  Once 

you know the value of Z, the value of Y does not give you any new information about 
that of X. 

 
Axioms for independence: 
• Symmetry: if (X ╨ Y | Z), then (Y ╨ X | Z). 
• Decomposition: if (X ╨ YW | Z), then (X ╨ Y | Z). 
 

http://www.gametheory.net/News/Items/063.html


   

Example: Sprinkler 
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In the graph above, X5 is independent of X1 given X4. 
 
 



   

Markovian Parents 
 
In constructing a Bayes net, we look for “direct causes”.  A direct cause is a variable that 
immediately determines the value of another variable.  Such direct causes “screen off” 
other variables that are only indirect causes. 
 
Formally: 
Let an ordering of X1, X2, …, Xn be given.  Consider Xj.  Let PA be any subset of X1, …, 
Xj-1.  Suppose that P(Xj | PA) = P(Xj | X1, …, Xj-1) and that no subset of PA has this 
property.  Then PA forms the Markovian parents of Xj. 
 
In the sprinkler example, P(X4 | X1, X2, X3, X5) = P(X4 | X2, X3).  X1 is screened off by 
X2 and X3.  So X2 and X3 are direct causes of X4, while X1 is an indirect cause. 
 
Markovian Parents and Bayes Nets 
 
Given an ordering of variables, we can construct a causal graph by drawing arrows 
between Markovian parents and children.  Note that graphs are suitable for drawing the 
distinction between direct and indirect causes.  An arrow directed from variable A to 
variable B means that A is a direct cause of B. 
 
In a causal graph, given a parent, variable X is independent of all its non-descendents. 
A graph G is compatible with a probability P if and only if for every node V in G, given 
Parents(V), V is independent of all its non-descendents. 
 
Example: 
 

Gene  
 
 
 
 

Smoking Lung 
Cancer 

 
 
 
In the graph above, Smoking is independent of Lung Cancer given Gene.  Without Gene, 
we cannot tell whether they are independent or there is a causal relation between them.  
An experiment might help us answer the question. 
 



   

Observational Equivalence 
 
Suppose we can observe the probabilities of various occurrences (e.g. smoking vs. lung 
cancer).  How does probabilities constrain graph? 
 
Two causal graphs G1 and G2 are compatible with the same probabilities iff: 

- G1 has the same adjacencies as G2, and  
- G1 has the same v-structures (i.e. colliders) as G2. 

 
Adjacency means that there is an edge between a pair of variables A and B. 
For example, by observing the probabilities of smoking vs. lung cancer, one cannot tell 
which direction the causal influences goes, so the following two graphs are equivalent. 
 
 

Lung 
Cancer Smoking 

Smoking 
Lung 

Cancer  
 
 
 
 
 
A v-structure is a system of three variables, say, A, B and C, such that there is an arrow 
from A to C and there is an arrow from B to C (i.e. A  C  B).  Then, C is a collider. 
For example, in the following causal graph, the variable Admission is a collider such that 
GPA ╨ Personality. 
 
 

GPA Personality 
 
 

Admission 
 
 
Recall the sprinkler network example, one cannot tell whether X1 -> X2 or vice versa.  
But can tell that X2 -> X4 and X4 -> X5 (because if you reverse the arrow between X2 and 
X4, you keep the same adjacencies but can tell that the new graph has the different  
v-structure, and same if you reverse the arrow between X4 and X5). 
 
Note: In general, you cannot always tell in machine learning what the correct hypothesis 
is even if you have all possible data.  You need more assumptions or other kinds of data. 



   

Inferring Casual Structure: The IC Algorithm 
 
- Assume a stable1 probability distribution P.  
- Find a minimal2 graph for P with as many edges directed as possible. 
- General idea: First find variables that are “directly causally related”. Connect those. 
 Add arrows as far as possible. 
 
The IC Algorithm 

1. For each pair of variables X and Y, look for a “screen off” set S(X,Y) such that  
X ╨ Y| S(X,Y) holds.  If there is no such set, add an undirected edge between X 
and Y. 

2. For each pair X,Y with a common neighbour Z, check if Z is part of a “screening 
off” set S(X,Y).  If not, make Z a common consequence of X,Y. 

3. Orient edges without creating cycles or v-structures. 
 
Simple Illustration: The sprinkler example 
In the first step of the algorithm, you want to check if there’s edge to be added between 
any two variables.  Let’s consider X1 and X2.  If there is no way to screen off the causal effect 
between them (i.e. there does not exist any S(X1, X2) such that X1 ╨ X2|S(X1, X2) ), then add a 
direct link there.  Follow this manner to add other edges (see the left figure below). 
 
To see how the second step works, let’s consider X2 and X3, and their common neighbours 
are nodes X1 and X4.  So, fix X1 and X4 respectively, and check whether each of those is in the 
“screen off” set S(X2, X3).  Since we know that X3 ╨ X2 | X1, but NOT [X3 ╨ X2 | X4], we can add 
the two arrows to make X3 and X2 both parents of X4 (see the right figure below). 
 
Finally, you can orient edges subject to no cycles or new v-structures. 

Sprinkler Rain 

Season 

X3 X2

X4 Wet 

X1 X1 Season 

Sprinkler Rain 
X3 X2

X4 Wet 

X5 Slippery X5
Slippery 

                                                 
1 A distribution P is stable iff there is a graph G such that (X ╨ Y |Z) in P iff X and Y are d-separated given 
Z in G.  We say that two variables X and Y are d-separated if all the paths between them are blocked given 
the conditioning set Z (which can be empty). 
2 A graph G is minimal for a probability distribution P iff 

– G is compatible with P, and 
– no subgraph of G is compatible with P. 


	Naïve Bayes Classifiers
	Example: PlayTennis (6.9.1)
	Example: Learning to classify text (6.10)
	Formal definition of text classification parameters
	Naïve Bayes classifier independence assumption
	Estimating attribute frequencies (6.9.1.1)
	Naïve Bayes algorithms for learning and classifying text (Ta
	Resources on Bayesian noise filtering


	Bayes Nets
	Basic Definitions
	Markovian Parents
	Observational Equivalence
	Inferring Casual Structure: The IC Algorithm
	The IC Algorithm
	Simple Illustration: The sprinkler example




