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Abstract

In these notes, a derivation of the estimate of the mean of a normal distribution forms a foun-
dation for the discussion of the least-squares estimate as an example of the class of maximum-
likelihood estimates. Finally, the Naive Bayesian Classifier is introduced.

1 Overview

This lecture is set in the context of a larger discussion; our first step is to recall that context. Thus, these
notes are structured to cover the following aspects:

1. Overview of using Bayesian Statistics in machine learning

2. Learning the mean of a Gaussian distribution

3. Learning real-valued functions

4. Naive Bayes classifier

The major parts of the lecture are contained in§ 2, § 3, and§ 4.
The goal of this lecture is to provide an overview of various machine learning techniques. The

lecture is accompanied by the book by Mitchell [2]. Most of the insights and explanations given in
these notes are derived from this source, and through the teaching of Dr. Oliver Schulte of Simon
Fraser University. Another valuable source of information for our summary was Tom Mitchell’s online
slides for the book [1].

1.1 Bayes Learning

Bayesian Learning directly manipulates probabilities, given the data observed as well as prior probabil-
ities. It is usually concerned with the posterior probabilities of hypotheses being true. There are several
approaches that we can take to distinguish between hypotheses, summarized in the following figure:
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1.2 Quick Review of Basic Bayesian Statistics 2

Look at P(h)P(e|h) 
vs. P(not h)P(e|not h)

Look at P(e|h) 
vs. P(e|not h) 

[classical statistics]if P(h)=P(not h)

Posterior Probability?

no yes

Exact Probability?

yes no

Exact Comparison?

yes no

Use different method

Bayes Theorem
[Bayes Statistics]

Figure 1: Various Bayesian approaches appropriate to differing requirements

If we are not concerned with posterior probabilities, then we need not use Bayesian methods and
can use some frequentist1 approach. Next, if we are concerned with exact posterior probability values,
we use Bayesian statistics to find it. Otherwise, if we are interested in an exact comparison between
two posterior probabilities, then we compare them; if we are not concerned with an exact comparison,
we can discard the prior probabilities and work only with the conditional probabilities of the data given
the hypothesis. Note that this is the same as the frequentist, or classical approach. The approaches we
look at in the following notes fall into this last category. Nevertheless, they can be shown to correspond
to Bayesian statistics under certain assumptions.

1.2 Quick Review of Basic Bayesian Statistics

All algorithms we are considering to be Bayesian learners are based on Bayes’ theorem:

P (h|D) =
P (D|h)P (h)

P (D)
. (1)

This equation relates the following probabilities:

• posterior probabilityP (h|D) of hypothesish to hold given the dataD,

• likelihoodP (D|h) of observing dataD given hypothesish.

• prior probabilitiesP (D) andP (h) of encountering dataD or respectively hypothesish.

When we use this relationship for learning a concept we usually look for the hypothesis with the highest
maximum a posterioriprobability (MAP) for the given data. That simply means that we’re looking to
get the largest posterior probability for the data given the hypothesis:

hMAP = argmax
h∈H

P (h|D)

= argmax
h∈H

P (D|h)P (h)
P (D)

(2)

1In other words: Classical, not Bayesian. Concerned only with observable data, not prior probabilities.
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When comparing different hypothesesh that are all derived from the same dataD we can drop the
denominatorP (D). This leads to the last form of Eq.2:

hMAP = argmax
h∈H

P (D|h)P (h) (3)

It is possible to further simplify the above search problem by assuming thatall hypotheses are
equally probable(all P (hi) are equal and sum to one). Incorporating this into Eq.3 yields the so-called
maximum likelihoodhypothesis:

hML = argmax
h∈H

P (D|h). (4)

Thus, the maximum likelihood hypothesishML can be understood as a special case of maximum pos-
terior hypothesishMAP given all hypotheses are equally probable.

2 Maximum Likelihood Estimator

A good way to get an understanding of a new learning algorithm is to compare it to other ones we
have already looked at before. This helps to reveal specific differences and similarities between the ap-
proaches. In a previous lecture we have already investigated the properties of FIND-S and CANDIDATE -
ELIMINATION from a Bayesian perspective.2

Maximum likelihood estimation is a special case of Bayesian learning. Here we will consider a
very simple setting to get an impression of the basic properties of this technique. The insights we get
from this analysis will help us to arrive at a more general statement in the next section. Our current
problem has the following properties:

• The data is given as a set of valuesD = {di} that are drawn from a normally distributed source
N (µ, σ),

• The hypothesis space contains only normal distributionsN (µ, σ) of fixed standard deviationσ;
the differentµ we are taking into account as hypotheses are all equally probable,

• The samples are assumed to be taken in an independent and identically distributed manner (which
we abbreviateiid ).

The normal distribution, also known as the Gaussian distribution, is completely characterized by its
meanµ and the standard deviationσ:

P (X = x) = N (µ, σ) =
1√

2πσ2
e−

1
2
(x−µ

σ
)2 (5)

Eq. 5 is the probability density function of the distribution. A plot of a normalized version of it is
shown in Fig.2. Due to the central limit theorem we can approximate the sum of many independent
random variables by a normal distribution.3 We claim without proof that this demonstrates the validity
of deriving general claims from the discussion of only this distribution.

Let us imagine that we have performed some experiment - perhaps a survey, or a physics experiment.
We have a number of sample of dataD, and we wish to use it to characterize the result of the experiment.

2The major difference was in choosing priorsP (h) for the hypotheses.
3Seehttp://en.wikipedia.org/wiki/Central_limit_theorem or http://mathworld.wolfram.

com/CentralLimitTheorem.html .
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Figure 2: Gaussian distribution, normalized, withµ = 0 andσ = 1 (also referred to as the standard normal distribution).

A very frequent, though often inadequate4 way that people do that is to find the mean of the underlyind
distribution. Said another way, looking at the dataD we are now interested in finding the most likely
value ofµ:

P (D|N (µ, σ)) =
m∏

i=1

P (di|N (µ, σ)). (6)

Assuming a fixedσ and taking the unknownµ as the hypothesis we are looking for we can write instead

P (D|µ) =
m∏

i=1

P (di|µ). (7)

We can compute the probability of the hypothesis as a product because of the independence of the
samples. Furthermore, since we are interested in maximizing the probability of our hypothesis, we
can also consider the logarithm of the probability instead. This is a monotonous and well defined
mapping for values> 0. Taking all this into account the maximum likelihood hypothesis is determined
as follows:

hML = argmax
h∈H

P (D|N (µ, σ))

hML = argmax
µ

P (D|µ) (8)

= argmax
µ

m∏
i=1

P (di|µ).

Maximizing the logarithm of the probability is equivalent and turns the product into a sum

hML = argmax
µ

ln
m∏

i=1

P (di|µ)

= argmax
µ

m∑
i=1

lnP (di|µ)

= argmax
µ

m∑
i=1

ln
1√

2πσ2
e
− 1

2

(
di−µ)

σ

)2

.

4The mean provides us with a simple measure of central tendency, that is very suceptible to outlying data and provides
no information about the shape of the distribution it describes. Unfortunately, it is frequently held up as a very descriptive
measure to those who might be confused by more detailed statistics
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For fixedσ we can drop the first factor in the expression. It does not affect the maximization because
it is constant and positive. In addition to that the natural logarithm and the exponential function cancel
each other out.

hML = argmax
µ

m∑
i=1

ln e
− 1

2

(
di−µ)

σ

)2

= argmax
µ

m∑
i=1

−1
2

(
di − µ)

σ

)2

= argmax
µ

m∑
i=1

− 1
2σ2

(di − µ)2

= argmin
µ

m∑
i=1

(di − µ)2 (9)

In the last step we have removed the constant negative factor changing the problem to become a mini-
mization. We can now take the derivative of the target function with respect toµ and set it to zero.

⇒ 0 =
m∑

i=1

−2(di − µ)

0 = −
m∑

i=1

diµ + mµ

µ =
1
m

m∑
i=1

di (10)

This is also called the empirical average of the distributionD. Theorem:The maximum likelihood
estimate of the meanµ of a Gaussian distributionX is the empirical averagēX.

3 Approximating real valued functions

A common technique used when fitting an expected function to a set of data samples is tominimize the
squared errorbetween the approximating function and the given data. In this section we are going to
show that this is equivalent to finding a maximum likelihood hypothesis under certain assumptions.

In the previous section we have considered a Gaussian distributed set of values. Now we are looking
at a real valued functionf(x) instead. Our data are samples of this function disturbed by noise. Thus,
one sample can be modeled asdi = f(xi) + ei. The noiseei is N (0, σ) distributed and independent
between samples. It is also possible to think of the noise as being caused by influences that were not
taken into account when forming the hypothesis space. In that case we interpret the noise as ’things
we don’t yet understand’. Of course we still have to assume that these ’things’ have a random behavior
similar toN (0, σ). Fig. 3 illustrates the samplesdi as thick dots that are distributed around an actual
(concept) functionf . The learned hypothesishML should converge to the correct concept as the number
of given samples is increased.

The derivation of the maximum likelihood hypothesis for this setting is very similar to the one we
already did in§ 2. What we did there can be understood as learning a constant functionf(xi) = µ.
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Figure 3: Gaussian disturbed samples drawn from an underlying (linear) functionf . The dotted line shows a least squared
error approximation that is obtained from a maximum likelihood hypothesis. (Image is taken from [1]).

This is now substituted with a more generalµi = h(xi) = f(xi) for each data valuedi. Substituting
the constant hypothesisµ by this newh(xi) in Eq.9 yields

hML = argmax
h∈H

P (D|h(xi))

...

hML = argmin
h∈H

m∑
i=1

(di − h(xi))
2 (11)

The omitting dots in this derivation stand for the steps between Eq.8 and Eq.9. But the substitution
of µ by h(xi) is really all that happens. The rest remains the same. The result in Eq.11 is the least
squared error approximation for our function that we were looking for. All that took us there were a
hypothesis functionh and the assumption of Gaussian distributed noise. This setting reduces to the
squared difference that is found in the exponent of the Gaussian distribution.

Let us briefly recall what we have started with. All possible functionsh(xi) that we can fit to
the data are equally probable. For that reason it was enough to look at the likelihood ofh given the
dataD. Assuming Gaussian noise in our sampling we end up minimizing the log-likelihood of the
Gaussian noise. This turns out to be equivalent to minimizing the sum of squared differences between
h(xi) anddi with respect to different hypothesis functionsh. Therefore we can state that least squares
approximation can be seen as finding a maximum likelihood hypothesis given the above assumptions.

4 Naive Bayes Classifier

Now let us consider the learning task as the discovery of a target functionf : X → V where each
x ∈ X is described by attributes:

x = 〈a1, a2, . . . , an〉 (12)

6



References 7

Now given the foundation we’ve talked about above, we can describe theMaximum A Priori(MAP)
value off(x):

vMAP = argmax
vj∈V

P (vj |a1, a2, . . . , an)

= argmax
vj∈V

P (a1, a2, . . . , an|vj)P (vj)
P (a1, a2, . . . , an)

and if we assume all hypotheses are equally likely, we have

= argmax
vj∈V

P (a1, a2, . . . , an|vj)P (vj) (13)

Equation13suggests that we are looking for the hypothesis that maximizes the posterior probability
of the hypothesis given the data. Calculating this for any real problem would be intractable, as it would
take exponential time in the hypothesis size! Clearly we need some kind of shortcut, so we make a
simplifying assumption, called theNaive Bayes assumption:

P (a1, a2, . . . , an|vj) =
∏

i

P (ai|vj) (14)

In other words, that all attributes are independent of each other, and dependent only on the class (vj)
they are in. For any practical measurement, this assumption is preposterous: we cannot presume, for
example, that a lake’s temperature is independent of the season - they clearly are dependent! However,
it has been demonstrated thatthe assumption does not significantly affect the classifier’s results.If we
do not need to estimate the actual posterior probability, but only need to decide which class to place
a sample in, we are therefore justified in making this simplification which results in the Naive Bayes
Classifier:

vNB = argmax
vj∈V

P (vj)
∏

i

P (ai|vj) (15)

This results in a logarithmic improvement in time complexity, resulting in a linear-time algorithm.
The Naive Bayes Classifier is one of the most practical classifiers available. It has been shown, under
some circumstances, to be as practical to use as decision trees, neural networks, and nearest-neighbour
learning. It is reasonable to use it when one has a moderate or large body of training data available, and
when the data attributes are largely independent of each other.

In future classes, we will explore the Naive Bayes Classifier in further depth, and we will consider
the case of text classification using the Naive Bayes Classifier. This is commonly done in text indexing
and spam detection software.
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