
Machine Learning — Week 3

Date: 27th, 29th January, 2004
Scribe: Rajashree Paul, Wendy-Yang Wang, Ming Zhou

Outline

Ø Entropy
Ø Information Gain and Gain Ratio
Ø Selection of the best predictive attribute
Ø Hypothesis Space in Decision Tree Induction
Ø Inductive Bias in Decision Tree
Ø Pruning
Ø Overall Comments on Learner
Ø Decision Tree for continuous space
Ø Alternatives for decision trees

Ø Overview of Artificial Neural Networks
Ø Construction of Artificial Neural Networks
Ø Problems and applications for Artificial Neural Networks
Ø Introduction of Perceptron
Ø Perceptron training rule
Ø Gradient descent and delta rule
Ø Comparison of perceptron training rule and delta rule
Ø Some comments

Ø Appendix

Entropy

Entropy of V: H(V) = -?P(V=vi)log2 P(V=vi)
 = # of bits needed to obtain full information
Entropy ˜ measure of uncertainty

Example:
Say, there are 2 classes: class1 and class2 with their probabilities P1 and P2.
H = P1 (-log2 P1)+ P2 (-log2 P2)

If P1=0 and P2=1
H= - (0.log0 + 1.log1) = 0

If P1 = ½ and P2 = ½
H= -(½ log2 ½ +½ log2 ½) = 1

Figure 1 : P(V) vs H(V)

Examples:
Fair Coin: H(½ , ½) = 1 bit
Biased Coin: H(1/100, 99/100) = -1/100 log2(1/100) – 99/100 log2(99/100) = 0.08 bits

As P(V) à 1
Information of actual outcome à 0
H(0, 1) = H(1, 0) = 0 bits i.e. No Uncertainty left in source.

The logarithmic function is as follows:

Figure 2: Logarithmic function

In the interval of 0 to 1, P decreases linearly and - log(P) decreases at a slower rate.

So, frequent messages get shorter codes. For example, in speed dial of mobile phone we
put the person’s number whom we call frequently.
Based on this, Samuel Morse invented Morse Code which is a binary code of {-, .} and
used to represent English alphabets and numbers in Information Theory. The main idea
behind is to give simplest or shortest codes to the most frequently used letters.
He counted the number of letters in sets of printers’ type and found that E is most
commonly used letter(frequency=12,000) followed by T (9,000) followed by A,I,N,O,S
and so on with Z having lowest frequency (200).

The figures he came up with were:

12,000 E 2,500 F
9,000 T 2,000 W, Y
8,000 A, I, N, O, S 1,700 G, P
6,400 H 1,600 B
6,200 R 1,200 V
4,400 D 800 K
4,000 L 500 Q
3,400 U 400 J, X
3,400 C, M 200 Z

So he used shortest codes for E and T.

MORSE CODE ALPHABETS:

The International Morse code characters are:

A .-

B -...

C -.-.

D -..

E .

F ..-.

G --.

H

I ..

J .---

K -.-

L .-..

M --

N -.

O ---

P .--.

Q --.-

R .-.

S ...

T -

U ..-

V ...-

W .--

X -..-

Y -.--

Z --..

0 -----

1 .----

2 ..---

3 ...--

4 -

5

6 -....

7 --...

8 ---..

9 ----.

Fullstop .-.-.-
Comma --..--
Query ..--..

Later Shannon proposed a closed form of optimal number of bits.

Shannon’s Theorem tells that in an optimal encoding, ceiling value of (- log2Pi) bits are
assigned to Class ‘i’. This gives a lower bound result of expected message length.

However, since number of bits must have an integer value it can be greater than Entropy.

If probability is given, Entropy and message length can be obtained. Similarly, if message
length is given, probability can be assigned.

Message Length, L = - log2P
2-L = P
Thus, given a distribution of message length we can get a probability distribution.

For example, in the Morse Code Alphabet
Message Length, L of the letter ‘E’ is 1 and that of letter ‘A’ is 2
Therefore, probability, P of letter ‘E’ = 2-1 = ½
 And probability of letter ‘A’ = 2-2 = ¼

Entropy of collection of Examples:

Training data provides estimates of probabilities (when exact probabilities are not given)

Given a training set with { p positive, n negative} examples:

H(p/(p+n), n/(p+n)) = -p/(p+n) log2 (p/(p+n)) –n/(p+n) log2(n/(p+n))

Eg: wrt 12 restaurant examples, S:
 p = n = ½ => H(½ , ½) = 1 bit
 So, 1 bit of information is needed to classify a randomly picked example from S.

So, Entropy of a collection S, E(S) = -? Pilog2 Pi

What happens to Entropy when S is split by attributes?

Say, S is split by attribute A

E now =

where Values(A) is the set of all possible values for attribute A, and S v is the subset of
S for which attribute A has value v (i.e., S v ={ s ? S | A(s) = v}).

Information Gained by testing attribute A:

♦ Gain(A) = H (p/ (p+n), n/(p+n)) – Uncert(A)

Where, Uncert (A) = Uncertainty remaining after getting information on attribute A

Assume A divides training set E into E 1, E 2,………….E v, where A has v distinct values.
E i has {pi (A) positive, ni (A) negative}examples.

♦ Entropy of each E i is:

♦ Uncert (A) = Expected information content
 => weigh contribution of each E i

Uncert (A) =

Therefore, Information Gain of a attribute A relative to a collection of examples S is
defined as :

This value represents:

♦ Reduction in entropy caused by partitioning the collection of examples, S on this
attribute, A.

♦ The number of bits saved when encoding the target value of an arbitrary member of S,
by knowing the value of attribute A.

Which attribute is the best classifier?

Information gain provides a precise measure used by ID3 to select the best attribute at
each step in growing the tree.

So the aim is to find the attribute which maximizes the Information Gain.

Greedy approach à Split on attribute that most reduces entropy (uncertainty) of
class, over training examples that reach there.

For the above example,
Given an initial collection S of 9 positive and 5 negative examples,[9+, 5-], sorting these by
their humidity produces collection of [3+, 4-] (Humidity = High) and [6+,1-] (Humidity =
Normal)
‘Humidity’ provides greater information gain than ‘Wind’. So ‘Humidity’ is better classifier
attribute compared to ‘Wind’.

The process of selecting a new attribute for partitioning as the tree is
built:

Let us consider the following example (Table 3.2 from Tom M Mitchell’s book):

Task: Learn f(outlook, temperature, humidity, wind) ? { Yes, No}

Gain(S, outlook) = 0.246
Gain(S, humidity) = 0.151
Gain(S, wind) = 0.048
Gain(S, temperature) =0.029

Outlook attribute provides the best prediction of the target attribute so it is chosen as the

decision attribute for the root node.

So, ‘Humidity’ is selected as the best predictive attribute at the left most node of the tree
shown above.

Alternative Attribute Selection Heuristic: Gain Ratio

à Information gain has the disadvantage that it prefers attributes with large number of
values that split the data into many small, pure subsets, e.g. patient ID number, name,
date, etc.

àNeed alternative metric that discounts gain in these cases.

ð Quinlan’s (1986) gain ratio is one approach.

à First measure the amount of information provided by an attribute that is not specific to
the category, i.e. the entropy of the data with respect to the values of an attribute.

where Si is the subset of the examples S that have the i-th value for attribute A. The more
uniformly examples are distributed among the values of an attribute, the higher its
SplitInfo is.

à GainRatio then uses SplitInfo to discourage selecting such features.

Hypothesis Space in Decision Tree Induction:

Ø Conducts a search of the space of decision Trees, which can represent all possible

finite discrete functions relative to the given attributes.

Ø Maintains a single discrete hypothesis consistent with the data, so there is no way to
determine how many other decision trees are consistent with the data, or to create
useful instance queries that resolve competing hypotheses.

Ø Performs Hill-climbing search so may find locally optimal solution.

Ø Guaranteed to find a tree that fits any noise-free training set but it may not be the

smallest.

Ø Performs batch learning – bases each decision on all remaining training examples.

Algorithm can be modified to terminate early to avoid fitting noisy data.

Inductive Bias

Given:
à Concept learning algorithm L
à Instance space X
à Training examples Dc ={x, c(x)}, labeled by (unknown) target concept c

Let:

à L(Dc) be classifier returned by L after training on data Dc
à L(xi, Dc) be assigned to instance xi by L(Dc)

Definition:

The Inductive Bias of L is any minimal set of assertions B such that
for all target function c, corresponding training example Dc

Where A¦ B means “A logically entails B”

Inductive Bias in C4.5:

C4.5 has a preference bias and not restriction bias (as in case of Candidate-Elimination
algorithm).

Ø Prefers shorter trees over the longer trees in the space of possible trees

Ø Prefers trees that place high information gain attributes close to the root

Why prefer shorter trees?

à Occam’s razor: Prefer the simplest (shortest) hypothesis that fits the data.

♦ Argument in favor:

à Fewer short hypotheses than long hypotheses
ð a short hypothesis that fits data unlikely to be coincidence
ð a long hypothesis that fits data might be coincidence

♦ Argument opposed:

à There exists many ways to define small sets of hypotheses
ð E.g.: all trees with prime number of nodes whose attributes all begin with

“Z”
à What is so special about small sets based on size of hypothesis?

Avoid Overfitting: Reduced-Error Pruning

A hypothesis overfits the training examples if some other hypothesis that fits the training

example less well but actually performs better over the entire distribution of instances
(including instances beyond the training set).

Reduced-Error Pruning:

à Split data into Training and Validation Set.

Algorithm:
Do until further pruning is harmful:
ð Evaluate impact on Validation set of pruning each possible node (plus

those below it)
ð Greedily remove the node that most improves accuracy on Validation set.

à Produces small version of accurate subtree

à Drawback: Limited data set

Comments of Learner

♦ Hypothesis space is complete.

ð contains target function

♦ No back tracking
ð fast
ð local minima

♦ Statistically based search choices

ð robust to noisy data

♦ Inductive bias

ð prefer shortest tree

How to know that the hypothesis classifier is GOOD?

Ø Trust the learner

Ø Hypothesis looks good to the user: User Acceptable

Ø Test the learner using Validation set: Cross fold training and testing

Issues in Design of Decision Tree Learner

What attributes to split on?

 When to stop?
 Should tree be pruned?
 How to evaluate classifier (decision tree learner)?

Using Decision Tree Classifier:

Requirements:

Instances presented by Attribute-Value pairs
 à E.g.: “bar = yes”, “size = large”, “type = French”, “temp = 82.6”
 (Boolean, Discrete, Nominal, Continuous)

Can handle:
 à Disjunctive descriptions
 àErrors in training data
 àMissing attribute values in data

Our focus:

à Target function output is discrete (Decision Tree also works for
continuous outputs)

Examples:
 à Equipment or medical diagnosis
 à Credit risk analysis
 à Modeling calendar scheduling preferences

More for Decision Tree Learning

Decision Tree for continuous space

For instances with continuous(numeric) attributes, normally there are two methods.

1) discretize the real-valued attributes into ranges such as big, medium and small. Then

deal them as the discrete values.
2) we can use thresholds(cut) on the features to split the nodes(As shown in fig A):

Splitting the nodes based on thresholds of the form A < c that partition the examples
into those with A < c and those with A >= c. The information gain of such splits are
easily calculated and compared to splits on discrete features in order to select the best
split.

The cutting value can be determined by various methods: 1). c can be one of the values
from the training attribute A 2) it can be median, quartiles, … of the ordered values of A.

 A(Temperature) < c(20)
 T F
 .

 < 15 >= 28

T F F T

… 0 … 1

Temperature = {1, 2, …8, 10… 14, 15, 17,20,…28, 35}

Fig A Decision tree for continuous attributes

Alternatives to Decision Trees

Due to the property of tree structure, there exists redundancy in the learnt decision trees.
Two alternatives to deal with such problem are provided here.

Ø Decision Lists

We could consider decision list to be an extended “If…Then…Elseif….” rule. As shown
in Fig B, A 2-decision list and the path followed by an input. Evaluation starts at the
leftmost item and continues to the right until the first condition is satisfied, at which point
the binary value below becomes the final result of the evaluation.

Ø Decision Diagram

1 32 xx ∧ 4x
31 xx ∧

51 xx ∧
64 xx ∧

61 xx ∧

0 1 0 1 1 0

L(011011) = 1

Fig B Decision list

Artificial Neural Networks(ANNs)

Overview of Artificial Neural Network

Artificial Neural Network(ANNs) is a system that attempts to model the highly massive
parallel and distributed processing of the human brain. ANNs are composed of
multiple layers of simple processing elements called neurons, with weighted links
interconnecting the neurons together. Learning is accomplished by adjusting these
weights to cause the overall network to output appropriate results.

Ø Analogy to the Brain

Consider: 1) The speed at which the brain recognizes images;

Only 0.1 second for human to recognize a scene.

2) How many neurons populating a brain;
Human brain has 1011 neurons, each of which connected to 104 others.

3) The speed at which a single neuron transmits signals..

The neuron switching time is 0.001 second.

Appealing fact: human can make complex decisions in a surprisingly short time.

T
F

F T

yes

windy

sunny

strong

strong

Subtree
A

subtree
B

As shown in the left diagram,
suppose subtree A and subtree
B are the same in the original
decision tree, then subtree A
can be eliminated, and make

the original directed edge
point to subtree B. This make

a decision diagram with
equivalent functionality.

² Biological Neuron

Fig A. Schematic of biological neuron

² Simple Model of a Neuron

Activation
Functionf()

∑ ai

Input
func

Output

ai = f(Ini)

Input
Links

Output
Links

W j,i
 aj

Fig B Schematic of the artificial neuron

² Set of input links from other units
² Set of output links to other units
² An activation level:

Input function∑: Sum of inputs, get Ini
Activation function ai = f(Ini)

[1] : Linear or non- linear transformation.

Ø Two Views of Neural Networks

² Study and model biological learning processes

eg: Design Computer Modeled after brain. [Von Neumann, 1985] But to build
the Connection Machine simulating such a high parallel computing is beyond
current hardware capability.

² Mathematical representation of nonlinear systems (Our Focus)

Lots of Simple Computational Unit à Massively parallel implementation to

1 f(), which is also called squashing function, can be of many forms.

realize complicated task

Construction of Neural Networks

Ø A task easy for humans but hard for engineers…

High parallel and distributed processing, time and cost consuming.

Ø Components of ANN
² Many neuron- like threshold switching units (Nj)
² Many weighted interconnections among units(Wj,i)? R
² Layers of network, normally three: Input, Hidden and Output.

Note: Normally, in ANN learning, Architecture of Nodes and connection are fixed.

Learning is automatically tuning and finding the best combination of weights

Problems Suitable for ANN

Ø Input instances are represented by high dimensional, discrete or

real-valued pairs.
Ø The output may be discrete-valued, real-valued, or a vector of several

real- or discrete-valued attributes.
Ø The training examples may contain errors.
Ø The form of target function is unknown.
Ø Long training times are acceptable.
Ø Fast evaluation of the learned target function may be required..
Ø The ability of humans to understand the learned target function is not

important.

Applications of ANN

Most effective method for interpret noisy, complex sensor input data, such as
inputs from cameras and microphones.

Ø Control

Drive cars, Control plants, Pronunciation: NETtalk (mapping text to phonemes)
Ø Recognize/Classify

Handwritten characters, Spoken words, Images(eg: faces), Credit risks
Ø Predict
 Market forecasting, Trend analysis

Prototypical Example — ALVINN

The ALVINN system uses BACKPROPAGATION to learn to steer an autonomous
vehicle driving at speeds up to 70 miles per hour.

Perceptron

A perceptron takes a vector of real-valued inputs, calculates a linear combination of
these inputs, and outputs a 1 if the result is greater than some threshold and –1 otherwise.
The following diagram illustrate a typical perceptron:

Vector Representation:

Ø Can eliminate threshold
Create extra input 0x fixed at –1.

)()(
0

,0
1

, ∑∑
==

==
n

j
jij

n

j
jijti xwstepxwstepo

where

 tw i =,0 (threshold)

 10 −=x

Ø Can have different “squashing” function
Squashing function get its name by mapping a wide range of input to a narrow range of
output. Typical Functions are: Threshold (as shown above), Linear, Logistic(Sigmoid)
and Hyperbolic Tangent. Sigmoid is often used due to its smooth shape and nice property.

Ø Version Space

Learning a perceptron involves choosing values for the weights w0,w1, w2, … , wn.
Therefore, the space H of candidate hypotheses considered in perceptron learning is the
set of all possible real-valued weight vectors.

 H = { < w0,w1, w2, … , wn> | wi ? R}

Ø Representational Power of Perceptrons
We can view the perceptron as representing a hyperplane decision surface in the
n-dimensional space of instances. The perceptron output a 1 for the instances lying on the
one side of the hyperplane and output a –1 for the instances lying on the other side. As
shown in the following figure, the equation for the hyperplane is w0 +x1*w1+x2*w2 = 0.

 A single perceptron can be used to separate set of examples that is linearly separable.
It can be used to represent many Boolean functions, like AND and OR. In fact, every
Boolean function can be represented by some network of perceptrons only two levels
deep. But there exist some set of examples, like XOR that is not linearly separable, which
can not be represented by perceptrons:

As shown in the above example, no line can be found to separate the positive

examples from the negative examples. Such target function can not be represented by
perceptrons. Some example Boolean function will be discuss in Appendix A.

Perceptron Training Rule

Ø Why train a perceptron ?
The target function is not know. Given a set of training instances, train the

perceptron to approximate the target function. To be precise, the task is to determine a
weight vector that causes the perceptron to produce the correct +1 or –1 output for each
of the given training examples.

Two algorithms are available to solve this learning problem: the perceptron training
rule and the delta rule. These two algorithms are guaranteed to converge to some
acceptable hypotheses.

Ø Perceptron training Rule
The goal of the algorithms is to find an acceptable weight vector. It begins with

random weights, then iteratively apply the perceptron to the training example, modifying
the perceptron weights whenever it misclassifies an example. The process is repeated,
iterating through the training examples as many times as needed until the perceptron
classifies all training examples correctly. The weight is modified as follows :

v Idea:
Ø After each labeled instance < x, t >, Err = t – o (x) where t = c(x) is the target

value and o(x) is the perceptron output
Ø The idea is to move the weight in appropriate direction to make Err → 0. If Err >

0 , then we need to increase o(x), else we need to decrease o(x). So to modify the
weight, we should have a term (t – o)

Ø Input i contributes wi*xi to the total input. If xi > 0, increasing wi will increase
o(x); If xi < 0, increasing wi will decrease o(x). Thus the change of the weight
should has the has a term xi *(t – o)

Ø ? is called learning which moderate the degree to which weights are changed at
each step

Ø Thus we have the following fomula for the algorithm:

 which is the key for the perceptron training rule algorithm.
 An example is provided in appendix B

Ø Correctness of Perceptron Training Rule
² The rule is intuitively right

Change the weight in a direction to reduce the error.
² Excellent Convergency[Rosenblatt 1960]

² Converge Conditions

1) The training data is linearly separable
2) The learning rate is sufficiently small

² Proof
The weight space has no local minima, so given enough training example, the
training algorithm will find the correct function.

² About learning rate
If η is too large, may overshot.
If η is too small, the algorithm may take too long

If function f can be represented by perceptron, then learning algorithm is
guaranteed to quickly converge to f

So often η = η(k) which decay with the number of iterations (k).

Gradien Descent and Delta Rule

Ø Why Delta Rule Algorithm
The perceptron rule algorithm fails to converge if the training example set is not

linearly separable. On the other hand, the delta rule algorithm converges toward a
best fit approximation to the target concept if given non- linearly separable training
examples. The key idea behind the delta rule is to use gradient descent to search the
hypothesis space of possible weight vectors to find the weight that best fit the
training examples.

Ø Squared Error Function
For better understanding of the delta training rule, here we consider only the

unthresholded perceptron. That is to say, instead of output 1 and –1, the perceptron
output the linear sum of the inputs:

And we have the error function of a hypothesis (weight vector) relative to the

training examples is defined as :

in which D is the set of training examples.

Ø Gradient
The gradient of Error function E with respect to weight vector is defined as:

When interpreted as a vector in weight space, the gradient specifies the direction that
produces the steepest increase in E. Thus the negative of the gradient vector gives the
direction of the steepest decrease, which is the direction we desire.

² Intuition of Gradient Descent

1550

1600
1700

The intuition behind the gradient descent algorithm is rather simple. Suppose we

are looking for a house numbered 1415, and we are in 1600. When look at the two
neighbors, one is 1550, and the other is 1700. Then intuitively we will choose to go
in the 1550 direction because it lead to a decrease in the number, which is the
direction we desire. The same is with gradient descent algorithm. Our goal is to
decrease the error function, and we know that the negative vector of gradient leads to
the decrease of the error, so we go the direction defined by the negative vector of
gradient.

² Graph of Gradient Descent

Here the w0 and w1 plane represents the entire hypothesis space, while the

vertical axis indicates the error E relative to some fixed set of training examples. The
arrow shows the negated gradient at one particular point, indicating the direction in
the w0 and w1 plane producing steepest descent along the error surface.

Gradient:

Training Rule:

 ie,

Gradient descent algorithm starts with an arbitrary initial weight vector, then
repeatedly modifies it in small steps. At each step, the weight vector is altered in the
direction that produces the steepest descent along the error surface.

² Local Optimal

b

a

Err

Weight
The algorithm may not be able to find an optimal hypothesis for the set of training
examples. As illustrated in the above figure, suppose the initial weight vector is a.
Using the gradient descent algorithm, the weight vector will change in the direction
indicated by the arrow. When it reaches point b, it finds a local optimal, and output as
the hypothesis for the training example. But obviously there exists point (weight
vector), which produces lower error.

Ø Delta Rule
We have already known that the gradient is :

We are interested in the negated gradient, which would be the change to the weight vector
when multiplied by the learning rate:

For each weight wi, the change would be:

And we can calculate each partial derivative as follows:

Thus we can easily compute the modification to the weight vector by using the inputs,
target values and output values for each training examples. The algorithm is given as
follows:

Perceptron Training Rule vs. Delta Rule

Ø Perceptron Training
The perceptron training rule guaranteed to succeed given:
² The training examples are linearly separable
² Sufficiently small learning rate?

Ø Delta Rule
The delta rule training using gradient descent will
² guaranteed to converge to a hypothesis with minimum training error
² given sufficiently small learning rate?
² even when the training data contains noise
² even when the training data is not linearly separable.

Some comments

Ø Training and representation power of Decision Tree and ANN.
The Version space of ANN is the set of all possible real-valued weighted vectors. It
can represent both discrete and continuous function. While the space of decision
trees can represent any discrete-valued function defined over discrete-valued
instances. Decision tree training can have a relatively shorter training time.

Ø Readability Improvement:
Introduce the hybrid structure, as shown below. It’s an application in Linguistic.
Each node in the network can also represented by another ANN. In such a hybrid
structure, the readability is highly improved.

Hybrid ANN

Semantic

Phonetics

Lexicon

ANN

ANN

ANN

Appendix

A. Function Examples
Many Boolean function can be represented if we assume Boolean va lues of 1 (true) and
–1 (false).
v Function OR

Given the true value table, we construct a perceptron representing the Boolean
function OR by setting w1=0.5, w2=0.5 and w0= -0.3.

W 1
W 2

W 0

X 1
X 2

 1

 r

X 1 ∨ X 2

 It is easy to verify that for x1 = 1, x2 = 1, the output of the perceptron is 1 because w0
+x1*w1+x2*w2 = (-0.3) + 1* 0.5 + 1 * 0.5 = 0.7 > 0. And it also output 1 for x1 = 1,
x2 = 0 and x1 = 0, x2 = 1.

But for x1 =0, x2 = 0, the output of the perceptron is –1 because w0 +x1*w1+x2*w2

= (-0.3) + 0* 0.5 + 0 * 0.5 = -0.3 < 0. The linearly separable hyperplane is illustrated
as the following figure.

1

1 0

+ +

+ -

v Function AND

X1 X2 X1∨X2

 0 0 -1

 0 1 1

 1 0 1
 1 1 1

Parameters:

 W1 = 0.5
 W2 = 0.5
 W0 = -0.3

Given the true value table, we construct a perceptron representing the Boolean
function AND by setting w1=0.5, w2=0.5 and w0= -0.9.

W 1
W 2

W 0

X 1
X 2

 1

 r

X 1 ^ X 2

It is easy to verify that for x1 = 1, x2 = 1, the output of the perceptron is 1 because w0
+x1*w1+x2*w2 = (-0.9) + 1* 0.5 + 1 * 0.5 = 0.1 > 0. But for all other values for
example x1 =1, x2 = 0, the output of the perceptron is –1 because w0 +x1*w1+x2*w2 =
(-0.9) + 1* 0.5 + 0 * 0.5 = -0.4 < 0. The linearly separable hyperplane is illustrated
as the following figure.

1

1 0

- +

- -

v Function XOR

As we can see, function XOR can not be done because it is not linear separable. However
we adjust the values of w1, w2 and w0, we can not make the positive examples on one side
of the hyperplane while the negative example on the other side of the hyperplane.

X1 X2 X1^X2

 0 0 -1

 0 1 -1

 1 0 -1
 1 1 1

X1 X2 X1? X2
0 0 -1

0 1 1

1 0 1

1 1 -1

Parameters:

 W1 = 0.5
 W2 = 0.5
 W0 = -0.9

1

1 0

+ -

+ -

It is easy to understand why function XOR can not be represented by a perceptron if we
look at it from a perspective of entropy. From the true value table, we can see the entropy
of the whole set of function values is 1. We can split the set of function value from the
direction of x1 or x2. But the entropy of the resulting subsets remains to be 1. Intuitively,
it make no sense to change the values of w1, w2 in order to find a direction to have the set
of examples separated because the entropy will change not even a little bit. That is to say,
function XOR can not be represented by a perceptron.

There exists two ways to deal with nonlinear reparability: one way is to use multiple
layers of perceptrons combined together to approximate more complex decision surface;
the other way is to use Support Vector Machine which uses some kernel function to
change the example space in order to keeping it linear separable because
linear-separability has many good properties.

B. Example for perceptron training rule
Given two examples:

 <1, 1, 1> and < 1, 0 , -1 >
Suppose the initial weights for the perceptron are:

 w1=0.5, w2=0.5 and w0= -0.4
The algorithm takes in the first training example < 1 , 1, 1 >, thus we have t(x) = 1.
And w0 +x1*w1+x2*w2 = -0.4 + 1* 0.5 + 1 * 0.5 = 0.6 > 0. Thus o(x) = 1. The
algorithm correctly classifies the training instance, so no weight is changed.

Then the algorithm takes in the second training example < 1, 0 , -1 >. We have t(x) =
-1. And w0 +x1*w1+x2*w2 = -0.4 + 1* 0.5 + 0 * 0.5 = 0.1 > 0. Thus o(x) = 1. We
have Err = t(x) – o(x) = -1 – 1 = -2.

 ? w1= ? (t-o)x1 = 0.1 * (-2) * 1 = -0.2 , so w1 = 0.5 + (-0.2) = 0.3
 ? w2= ? (t-o)x2 = 0.1 * (-2) * 0 = 0 , so w2 = 0.5
 ? w0= ? (t-o)x0 = 0.1 * (-2) * 1 = -0.2 , so w0 = -0.4 + (-0.2) = -0.6

For another iteration, when takes in <1,1,1>, we have w0 +x1*w1+x2*w2 = -0.6 + 1*
0.5 + 1 * 0.5 = 0.4 > 0, thus o(x) = 1, correct
When takes in <1,0,-1>, we have w0 +x1*w1+x2*w2 = -0.6 + 1* 0.5 + 0 * 0.5 = -0.1,
thus o(x) = -1, correct.
So the algorithm classifies all the training examples correctly, so the it stop and
output the learnt weight vector < w0 ,w1, w2> = < -0.6, 0.3, 0.5 >

