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Entropy 
 
Entropy of V:   H(V) =  -?P(V=vi)log2 P(V=vi)  
                                  = # of bits needed to obtain full information 
Entropy ˜  measure of uncertainty 
 
Example: 
Say, there are 2 classes: class1 and class2 with their probabilities P1 and P2. 
H = P1 (-log2 P1)+ P2 (-log2 P2) 
 
If P1=0 and P2=1 
H= - (0.log0 + 1.log1) = 0 
 
If P1 = ½ and P2 = ½  
H= -(½ log2 ½ +½ log2 ½) = 1 
 

 
Figure 1 : P(V) vs H(V) 

  

 
Examples: 
Fair Coin:  H( ½ , ½ ) = 1 bit 
Biased Coin:  H( 1/100, 99/100) = -1/100 log2(1/100) – 99/100 log2(99/100) = 0.08 bits  
 
As P(V) à 1  
Information of actual outcome à 0 
H(0, 1) = H(1, 0) = 0 bits i.e. No Uncertainty left in source. 
 



The logarithmic function is as follows:  
 

 
Figure 2: Logarithmic function 

 
In the interval of 0 to 1, P decreases linearly and - log(P) decreases at a slower rate. 
 
So, frequent messages get shorter codes. For example, in speed dial of mobile phone we 
put the person’s number whom we call frequently. 
Based on this, Samuel Morse invented Morse Code  which is a binary code of {-, .} and 
used to represent English alphabets and numbers in Information Theory. The main idea 
behind is to give simplest or shortest codes to the most frequently used letters. 
He counted the number of  letters in sets of printers’ type and found that E is most 
commonly used letter(frequency=12,000) followed by T (9,000) followed by A,I,N,O,S 
and so on with Z having lowest frequency (200).  

The figures he came up with were: 

12,000   E   2,500     F 
9,000     T   2,000     W, Y 
8,000     A, I, N, O, S  1,700     G, P 
6,400     H   1,600     B 
6,200     R   1,200     V 
4,400     D   800        K        
4,000     L   500        Q  
3,400     U   400       J, X 
3,400     C, M   200       Z 
 
So he used shortest codes for E and T.  
 
 
 
 
 
 



MORSE CODE ALPHABETS: 

The International Morse code characters are:  

A   .-  

B   -...  

C   -.-.  

D   -..  

E   .  

F   ..-.  

G   --.  

H   ....  

I   ..  

J   .---  

K   -.-  

L   .-..  

M   --  

N   -.  

O   ---  

P   .--.  

Q   --.-  

R   .-.  

S   ...  

T   -  

U   ..-  

V   ...-  

W   .--  

X   -..-  

Y   -.--  

Z   --..  

0   -----  

1   .----  

2   ..---  

3   ...--  

4   ....-  

5   .....  

6   -....  

7   --...  

8   ---..  

9   ----.  

Fullstop   .-.-.- 
Comma   --..-- 
Query   ..--..  

 
 



Later Shannon proposed a closed form of optimal number of bits. 
 

Shannon’s Theorem tells that in an optimal encoding, ceiling value of (- log2Pi) bits are 
assigned to Class ‘i’. This gives a lower bound result of expected message length. 
 
However, since number of bits must have an integer value it can be greater than Entropy.  
 

If probability is given, Entropy and message length can be obtained. Similarly, if message 
length is given, probability can be assigned.  
 
Message Length, L = - log2P 
2-L = P 
Thus, given a distribution of message length we can get a probability distribution. 
 

For example, in the Morse Code Alphabet 
Message Length, L of the letter ‘E’ is 1 and that of letter ‘A’ is 2 
Therefore, probability, P of letter ‘E’ = 2-1 = ½  
                 And probability of letter ‘A’ = 2-2 = ¼         

 

Entropy of collection of Examples: 
 
Training data provides estimates of probabilities (when exact probabilities are not given) 
 
Given a training set with { p positive, n negative} examples: 
 
H( p/(p+n), n/(p+n)) = -p/(p+n) log2 (p/(p+n)) –n/(p+n) log2(n/(p+n))               

 
Eg: wrt 12 restaurant   examples, S: 
        p = n = ½       =>     H( ½ , ½ ) = 1 bit 
 So, 1 bit of information is needed to classify a randomly picked example from S. 
 
So, Entropy of a collection S, E(S) = -? Pilog2 Pi 

 
 

What happens to Entropy when S is split by attributes? 
 
Say, S is split by attribute A  
 
E now = 

 
                  
where Values(A) is the set of all possible values for attribute A,  and S v is the subset of 
S for which attribute A has value v  (i.e., S v ={ s ? S | A(s) = v}). 
 



Information Gained by testing attribute A: 
 
♦ Gain(A) =  H ( p/ (p+n), n/(p+n) ) – Uncert(A) 
 
Where, Uncert (A) = Uncertainty remaining after getting information on attribute A 
 
Assume A divides training set E into E 1, E 2,………….E v, where A has v distinct values.  
E i has {pi (A) positive, ni (A) negative}examples. 
 
♦ Entropy of each E i is: 
 

  
♦ Uncert (A) = Expected information content  
                        => weigh contribution of each E i 
 
Uncert (A) =  

                     
 
Therefore, Information Gain of a attribute A relative to a collection of examples S is 
defined as : 

 
 
 

 
 
This value represents: 
 
♦ Reduction in entropy caused by partitioning the collection of examples, S on this 
attribute, A. 
 
♦ The number of bits saved when encoding the target value of an arbitrary member of S, 
by knowing the value of attribute A. 
 
 



Which attribute is the best classifier? 
 
Information gain provides a precise measure used by ID3 to select the best attribute at 
each step in growing the tree.  
 
So the aim is to find the attribute which maximizes the Information Gain. 
 

Greedy approach à Split on attribute that most reduces entropy (uncertainty) of 
class, over training examples that reach there. 

 
For the above example,  
Given an initial collection S of 9 positive and 5 negative examples,[9+, 5-], sorting these by 
their humidity produces collection of [3+, 4-] (Humidity = High) and [6+,1-] (Humidity = 
Normal) 
‘Humidity’ provides greater information gain than ‘Wind’. So ‘Humidity’ is better classifier 
attribute compared to ‘Wind’. 
 
 
The process of selecting a new attribute for partitioning as the tree is 
built: 
 
Let us consider the following example (Table 3.2 from Tom M Mitchell’s book): 
 
Task:  Learn f(outlook, temperature, humidity, wind) ?  { Yes, No} 
 
Gain(S, outlook) = 0.246 
Gain(S, humidity) = 0.151 
Gain(S, wind) = 0.048 
Gain(S, temperature) =0.029 
 
Outlook attribute provides the best prediction of the target attribute so it is chosen as the 



decision attribute for the root node. 
 

 
So, ‘Humidity’ is selected as the best predictive attribute at the left most node of the tree 
shown above. 
 
 
Alternative Attribute Selection Heuristic: Gain Ratio 
 
à Information gain has the disadvantage that it prefers attributes with large number of 
values that split the data into many small, pure subsets, e.g. patient ID number, name, 
date, etc. 
 
 
àNeed alternative metric that discounts gain in these cases. 



ð Quinlan’s (1986) gain ratio is one approach. 
 

à First measure the amount of information provided by an attribute that is not specific to 
the category, i.e. the entropy of the data with respect to the values of an attribute. 
 

 
where Si is the subset of the examples S that have the i-th value for attribute A. The more 
uniformly examples are distributed among the values of an attribute, the higher its 
SplitInfo is. 
 
à GainRatio then uses SplitInfo to discourage selecting such features. 
 

 
 
 
Hypothesis Space in Decision Tree Induction: 
 
Ø Conducts a search of the space of decision Trees, which can represent all possible 

finite discrete functions relative to the given attributes. 
 

Ø Maintains a single discrete hypothesis consistent with the data, so there is no way to 
determine how many other decision trees are consistent with the data, or to create 
useful instance queries that resolve competing hypotheses. 

 
Ø Performs Hill-climbing search so may find locally optimal solution. 

 
Ø Guaranteed to find a tree that fits any noise-free training set but it may not be the 

smallest. 
 
Ø Performs batch learning – bases each decision on all remaining training examples. 

Algorithm can be modified to terminate early to avoid fitting noisy data.  
 
 
Inductive Bias 
 
Given:  
à Concept learning algorithm L 
à Instance space X 
à Training examples Dc ={x, c(x)}, labeled by (unknown) target concept c 
 
Let: 



à L(Dc) be classifier returned by L after training on data Dc 
à L(xi, Dc) be assigned to instance xi by L(Dc) 
 
Definition: 
  
The Inductive Bias of L is any minimal set of assertions B such that 
for all target function c, corresponding training example Dc 

 

 
Where A¦  B means “A logically entails B” 
 
 
Inductive Bias in C4.5: 
 
C4.5 has a preference bias and not restriction bias (as in case of Candidate-Elimination 
algorithm). 
 
Ø Prefers shorter trees over the longer trees in the space of possible trees 
 
Ø Prefers trees that place high information gain attributes close to the root 
 
 
Why prefer shorter trees? 
 
à  Occam’s razor: Prefer the simplest (shortest) hypothesis that fits the data. 
 
♦ Argument in favor: 
   

à Fewer short hypotheses than long hypotheses 
ð a short hypothesis that fits data unlikely to be coincidence 
ð a long hypothesis that fits data might be coincidence 

 
♦ Argument opposed: 
 

à There exists many ways to define small sets of hypotheses 
ð E.g.: all trees with prime number of nodes whose attributes all begin with 

“Z” 
à What is so special about small sets based on size of hypothesis? 

 
 
 
Avoid Overfitting: Reduced-Error Pruning 
 
A hypothesis overfits the training examples if some other hypothesis that fits the training 



example less well but actually performs better over the entire distribution of instances 
(including instances beyond the training set). 
 
Reduced-Error Pruning: 
 
à Split data into Training and Validation Set. 
  

Algorithm: 
Do until further pruning is harmful: 
ð Evaluate impact on Validation set of  pruning each possible node (plus 

those below it) 
ð Greedily remove the node that most improves accuracy on Validation set. 

 
à Produces small version of accurate subtree 
 
à Drawback: Limited data set 
 
 
Comments of Learner 
 
♦ Hypothesis space is complete. 

ð contains target function 
 

♦ No back tracking 
ð fast 
ð local minima 

 
♦ Statistically based search choices 

ð robust to noisy data 
 
♦ Inductive bias 

ð prefer shortest tree 
 

 
How to know that the hypothesis classifier is GOOD? 
 
Ø Trust the learner 
 
Ø Hypothesis looks good to the user: User Acceptable 
 
Ø Test the learner using Validation set: Cross fold training and testing 
 
 
Issues in Design of Decision Tree Learner 
 

What attributes to split on? 



 When to stop? 
 Should tree be pruned? 
 How to evaluate classifier (decision tree learner)? 

 
 
Using Decision Tree Classifier: 
 
Requirements: 

Instances presented by Attribute-Value pairs 
  à E.g.: “bar = yes”, “size = large”, “type = French”, “temp =  82.6” 
  (Boolean, Discrete, Nominal, Continuous) 
 
Can handle:  
  à Disjunctive descriptions 
  àErrors in training data 
  àMissing attribute values in data 
 
Our focus: 

à Target function output is discrete (Decision Tree also works for   
continuous outputs)  

 
Examples: 
  à Equipment or medical diagnosis 
  à Credit risk analysis 
  à Modeling calendar scheduling preferences 
 
 
 
 
More for Decision Tree Learning 
 
Decision Tree for continuous space 
 
For instances with continuous(numeric) attributes, normally there are two methods.  
 
1) discretize the real-valued attributes into ranges such as big, medium and small. Then 

deal them as the discrete values. 
2) we can use thresholds(cut) on the features to split the nodes(As shown in fig A):  

Splitting the nodes based on thresholds of the form A < c that partition the examples 
into those with A < c and those with A >= c. The information gain of such splits are 
easily calculated and compared to splits on discrete features in order to select the best 
split.   

 
The cutting value can be determined by various methods: 1).  c can be one of the values 
from the training attribute A 2) it can be median, quartiles, … of the ordered values of A.  



        
                      A(Temperature) < c(20) 
                            T     F   
          .       
                      
                        < 15       >= 28 

T      F      F    T 
 

 
…         0     …       1 
 

Temperature  = {1, 2, …8, 10… 14, 15, 17,20,…28, 35} 
 

Fig A  Decision tree for continuous attributes  
 
Alternatives to Decision Trees 
 
Due to the property of tree structure, there exists redundancy in the learnt decision trees. 
Two alternatives to deal with such problem are provided here. 
 
Ø Decision Lists 
    
 
 
 
 
 
 
 
 
 
 
 
We could consider decision list to be an extended “If…Then…Elseif….” rule. As shown 
in Fig B, A 2-decision list and the path followed by an input. Evaluation starts at the 
leftmost item and continues to the right until the first condition is satisfied, at which point 
the binary value below becomes the final result of the evaluation.   
 
 
 
Ø Decision Diagram 
 

1 32 xx ∧  4x  
31 xx ∧  
 

51 xx ∧  
64 xx ∧  

61 xx ∧  
 

0 1 0 1 1 0 

L(011011) = 1 

Fig B  Decision list  



 
 
 
 
 
 
 
 
 
 

Artificial Neural Networks(ANNs) 
 
Overview of Artificial Neural Network 
 
Artificial Neural Network(ANNs) is a system that attempts to model the highly massive 
parallel and distributed processing of the human brain. ANNs are composed of  
multiple layers of simple processing elements called neurons, with weighted links 
interconnecting the neurons together. Learning is accomplished by adjusting these 
weights to cause the overall network to output appropriate results. 
 
Ø Analogy to the Brain 
 
Consider:  1) The speed at which the brain recognizes images; 

Only 0.1 second for human to recognize a scene. 
 

2) How many neurons populating a brain;  
Human brain has 1011 neurons, each of which connected to 104 others. 

 
3) The speed at which a single neuron transmits signals..         

The neuron switching time is 0.001 second.     

 
Appealing fact: human can make complex decisions in a surprisingly short time. 

T 
F 

F T 

yes 

windy 

sunny 

strong 

strong 

Subtree  
A 

subtree 
B 

As shown in the left diagram, 
suppose subtree A and subtree 
B are the same in the original 
decision tree, then subtree A 
can be eliminated, and make 

the original directed edge 
point to subtree B. This make 

a decision diagram with 
equivalent functionality. 



² Biological Neuron 
 

 
Fig A. Schematic of biological neuron 

 
² Simple Model of a Neuron 

 

Activation  
Functionf( ) 

∑ ai 

Input 
func 

Output  

ai = f(Ini) 

Input  
Links  

Output 
Links  

W j,i   
 aj  

 
Fig B Schematic of the artificial neuron 

 
² Set of input links from other units 
² Set of output links to other units 
² An activation level: 

Input function∑:  Sum of inputs, get Ini 
Activation function ai = f(Ini)

[1] : Linear or non- linear transformation.  
 

Ø Two Views of Neural Networks 
 
² Study and model biological learning processes    

eg: Design Computer Modeled after brain. [Von Neumann, 1985]  But to build 
the Connection Machine simulating such a high parallel computing is beyond 
current hardware capability.  

 
² Mathematical representation of nonlinear systems (Our Focus) 

Lots of Simple Computational Unit à  Massively parallel implementation to   

                                                 
1 f( ), which is also called squashing function, can be of many forms.  



realize complicated task  
 

Construction of Neural Networks 
 
Ø A task easy for humans but hard for engineers… 

High parallel and distributed processing, time and cost consuming.  
 

Ø Components of ANN 
² Many neuron- like threshold switching units (Nj) 
² Many weighted interconnections among units(Wj,i)? R 
² Layers of network, normally three: Input, Hidden and Output. 

 
Note: Normally, in ANN learning, Architecture of Nodes and connection are fixed. 

Learning is automatically tuning and finding the best combination of weights  
  
 

Problems Suitable for ANN 
 
Ø Input instances are represented by high dimensional, discrete or 

real-valued pairs.   
Ø The output may be discrete-valued, real-valued, or a vector of several 

real- or discrete-valued attributes.  
Ø The training examples may contain errors.  
Ø The form of target function is unknown. 
Ø Long training times are acceptable. 
Ø  Fast evaluation of the learned target function may be required.. 
Ø The ability of humans to understand the learned target function is not 

important.      
 
 



Applications of ANN 
 
Most effective method for interpret noisy, complex sensor input data, such as 
inputs from cameras and microphones. 
 
Ø Control  

Drive cars, Control plants, Pronunciation: NETtalk (mapping text to phonemes) 
Ø Recognize/Classify 

Handwritten characters, Spoken words, Images(eg: faces), Credit risks 
Ø Predict  
   Market forecasting, Trend analysis 
 
Prototypical Example — ALVINN 

The ALVINN system uses BACKPROPAGATION to learn to steer an autonomous 
vehicle driving at speeds up to 70 miles per hour. 

 
 
 
Perceptron 
 

A perceptron takes a vector of real-valued inputs, calculates a linear combination of 
these inputs, and outputs a 1 if the result is greater than some threshold and –1 otherwise. 
The following diagram illustrate a typical perceptron: 



 
 

     
Vector Representation: 

 
 

Ø Can eliminate threshold 
Create extra input 0x  fixed at –1.  

)()(
0

,0
1

, ∑∑
==

==
n

j
jij

n

j
jijti xwstepxwstepo  

where  

     tw i =,0  (threshold) 

     10 −=x  
 

Ø Can have different “squashing” function 
Squashing function get its name by mapping a wide range of input to a narrow range of 
output. Typical Functions are: Threshold (as shown above), Linear, Logistic(Sigmoid) 
and Hyperbolic Tangent. Sigmoid is often used due to its smooth shape and nice property.  
 
Ø Version Space 

Learning a perceptron involves choosing values for the weights w0,w1,  w2, … , wn. 
Therefore, the space H of candidate hypotheses considered in perceptron learning is the 
set of all possible real-valued weight vectors. 

   H = { < w0,w1, w2, … , wn> | wi ?  R} 
 

Ø Representational Power of Perceptrons  
We can view the perceptron as representing a hyperplane decision surface in the 
n-dimensional space of instances. The perceptron output a 1 for the  instances lying on the 
one side of the hyperplane and output a –1 for the instances lying on the other side. As 
shown in the following figure, the equation for the hyperplane is w0 +x1*w1+x2*w2 = 0. 



 
 A single perceptron can be used to separate set of examples that is linearly separable. 
It can be used to represent many Boolean functions, like AND and OR. In fact, every 
Boolean function can be represented by some network of perceptrons only two levels 
deep. But there exist some set of examples, like XOR that is not linearly separable, which 
can not be represented by perceptrons: 

 
As shown in the above example, no line can be found to separate the positive 

examples from the negative examples. Such target function can not be represented by 
perceptrons. Some example Boolean function will be discuss in Appendix A.  

 
 

Perceptron Training Rule 

Ø Why train a perceptron ? 
The target function is not know. Given a set of training instances, train the 

perceptron to approximate the target function. To be precise, the task is to determine a 
weight vector that causes the perceptron to produce the correct +1 or –1 output for each 
of the given training examples. 

Two algorithms are available to solve this learning problem: the perceptron training 
rule and the delta rule. These two algorithms are guaranteed to converge to some 
acceptable hypotheses.  

Ø Perceptron training Rule 
The goal of the algorithms is to find an acceptable weight vector. It begins with 

random weights, then iteratively apply the perceptron to the training example, modifying 
the perceptron weights whenever it misclassifies an example. The process is repeated, 
iterating through the training examples as many times as needed until the perceptron 
classifies all training examples correctly. The weight is modified as follows : 



 
v Idea: 
Ø After each labeled instance < x, t >,  Err = t – o (x)  where t = c(x) is the target 

value and o(x) is the perceptron output 
Ø The idea is to move the weight in appropriate direction to make Err → 0. If Err > 

0 , then we need to increase o(x), else we need to decrease o(x). So to modify the 
weight, we should have a term (t – o) 

Ø Input i contributes wi*xi to the total input. If xi > 0, increasing wi will increase 
o(x); If xi < 0, increasing wi will decrease o(x). Thus the change of the weight 
should has the has a term xi *(t – o) 

Ø ?  is called learning which moderate the degree to which weights are changed at 
each step 

Ø Thus we have the following fomula for the algorithm: 

                    

                     
 which is the key for the perceptron training rule algorithm. 
   An example is provided in appendix B 

Ø Correctness of Perceptron Training Rule  
² The rule is intuitively right 

Change the weight in a direction to reduce the error. 
² Excellent Convergency[ Rosenblatt 1960 ] 
 

  
 
 
² Converge Conditions 

1) The training data is linearly separable  
2) The learning rate is sufficiently small 

² Proof 
The weight space has no local minima, so given enough training example, the 
training algorithm will find the correct function. 

² About learning rate 
If η is too large, may overshot. 
If η is too small, the algorithm may take too long  

If function f can be represented by perceptron, then learning algorithm is 
guaranteed to quickly converge to f 



So often η = η(k) which decay with the number of iterations (k). 
 
Gradien Descent and Delta Rule 

Ø Why Delta Rule Algorithm 
The perceptron rule algorithm fails to converge if the training example set is not 

linearly separable. On the other hand, the delta rule algorithm converges toward a 
best fit approximation to the target concept if given non- linearly separable training 
examples. The key idea behind the delta rule is to use gradient descent to search the 
hypothesis space of possible weight vectors to find the weight that best fit the 
training examples. 

Ø Squared Error Function 
For better understanding of the delta training rule, here we consider only the 

unthresholded perceptron. That is to say, instead of output 1 and –1, the perceptron 
output the linear sum of the inputs:   

  
And we have the error function of a hypothesis ( weight vector ) relative to the 

training examples is defined as : 

  
in which D is the set of training examples. 

 

Ø Gradient 
The gradient of Error function E with respect to weight vector  is defined as: 

 
When interpreted as a vector in weight space, the gradient specifies the direction that 
produces the steepest increase in E. Thus the negative of the gradient vector gives the 
direction of the steepest decrease, which is the direction we desire. 
 
² Intuition of Gradient Descent 

 

1550 

1600 
1700 

 
The intuition behind the gradient descent algorithm is rather simple. Suppose we 



are looking for a house numbered 1415, and we are in 1600. When look at the two 
neighbors, one is 1550, and the other is 1700. Then intuitively we will choose to go 
in the 1550 direction because it lead to a decrease in the number, which is the 
direction we desire. The same is with gradient descent algorithm. Our goal is to 
decrease the error function, and we know that the negative vector of gradient leads to 
the decrease of the error, so we go the direction defined by the negative vector of 
gradient.  
 
² Graph of Gradient Descent 

 
Here the w0 and w1 plane represents the entire hypothesis space, while the 

vertical axis indicates the error E relative to some fixed set of training examples. The 
arrow shows the negated gradient at one particular point, indicating the direction in 
the w0 and w1 plane producing steepest descent along the error surface. 

 
 

Gradient: 

 
Training Rule:  

      ie,           
 

Gradient descent algorithm starts with an arbitrary initial weight vector, then 
repeatedly modifies it in small steps. At each step, the weight vector is altered in the 
direction that produces the steepest descent along the error surface.  
 
 
 
 
 



 
² Local Optimal 
 

b 

a 

Err 

Weight   
The algorithm may not be able to find an optimal hypothesis for the set of training 
examples. As illustrated in the above figure, suppose the initial weight vector is a. 
Using the gradient descent algorithm, the weight vector will change in the direction 
indicated by the arrow. When it reaches point b, it finds a local optimal, and output as 
the hypothesis for the training example. But obviously there exists point (weight 
vector), which produces lower error. 

Ø Delta Rule 
We have already known that the gradient is : 

 
We are interested in the negated gradient, which would be the change to the weight vector 
when multiplied by the learning rate: 

 
For each weight wi, the change would be:  

 
And we can calculate each partial derivative as follows: 

 
Thus we can easily compute the modification to the weight vector by using the inputs, 
target values and output values for each training examples. The algorithm is given as 
follows: 



 
Perceptron Training Rule vs. Delta Rule 
 

Ø Perceptron Training 
The perceptron training rule guaranteed to succeed given: 
² The training examples are linearly separable 
² Sufficiently small learning rate?  

Ø Delta Rule 
The delta rule training using gradient descent will  
² guaranteed to converge to a hypothesis with minimum training error 
² given sufficiently small learning rate?  
² even when the training data contains noise 
² even when the training data is not linearly separable. 

 
Some comments 
 

Ø Training and representation power of Decision Tree and ANN.  
The Version space of ANN is the set of all possible real-valued weighted vectors. It 
can represent both discrete and continuous function.  While the space of decision 
trees can represent any discrete-valued function defined over discrete-valued 
instances. Decision tree training can have a relatively shorter training time. 

Ø Readability Improvement: 
Introduce the hybrid structure, as shown below. It’s an application in Linguistic. 
Each node in the network can also represented by another ANN. In such a hybrid 
structure, the readability is highly improved. 

 
 
 
 
 

 
 

  
 
Hybrid ANN 

Semantic 

Phonetics 

Lexicon 

ANN 

ANN 

ANN 



Appendix 
 

A. Function Examples  
Many Boolean function can be represented if we assume Boolean va lues of 1 ( true ) and 
–1 ( false ).  
v Function OR 

 
 
 
 
 
 
 
 
 
Given the true value table, we construct a perceptron representing the Boolean 
function OR by setting w1=0.5, w2=0.5 and w0= -0.3. 
 

  
 

W 1 
W 2  

W 0 

X 1  
X 2  

 1  

 r  

X 1 ∨ X 2  

  
 It is easy to verify that for x1 = 1, x2 = 1, the output of the perceptron is 1 because w0 
+x1*w1+x2*w2 = ( -0.3 ) + 1* 0.5 + 1 * 0.5 = 0.7 > 0. And it also output 1 for x1 = 1, 
x2 = 0 and x1 = 0, x2 = 1.  

But for x1 =0, x2 = 0, the output of the perceptron is –1 because w0 +x1*w1+x2*w2 

= ( -0.3 ) + 0* 0.5 + 0 * 0.5 = -0.3 < 0. The linearly separable hyperplane is illustrated 
as the following figure. 

 

1 

1 0 

+ + 

+ - 

 
v Function AND 

X1 X2 X1∨X2 

   0   0   -1 

   0   1    1 

   1   0    1 
   1   1    1 

Parameters:  
 
       W1  =  0.5 
       W2  =  0.5 
       W0  =  -0.3 
 



 
 
 
 
 
 
 
 

Given the true value table, we construct a perceptron representing the Boolean 
function AND by setting w1=0.5, w2=0.5 and w0= -0.9. 

 

  
 

W 1 
W 2 

W 0 

X 1  
X 2  

 1  

 r 

X 1 ^ X 2  

 
It is easy to verify that for x1 = 1, x2 = 1, the output of the perceptron is 1 because w0 
+x1*w1+x2*w2 = ( -0.9 ) + 1* 0.5 + 1 * 0.5 = 0.1 > 0. But for all other values for 
example x1 =1, x2 = 0, the output of the perceptron is –1 because w0 +x1*w1+x2*w2 = 
( -0.9 ) + 1* 0.5 + 0 * 0.5 = -0.4 < 0. The linearly separable hyperplane is illustrated 
as the following figure. 

 

1 

1 0 

- + 

- - 

 
v Function XOR 

 
 
 
 
 
 
 
 

As we can see, function XOR can not be done because it is not linear separable. However 
we adjust the values of w1, w2 and w0, we can not make the positive examples on one side 
of the hyperplane while the negative example on the other side of the hyperplane.  

X1 X2 X1^X2 

   0   0    -1 

   0   1    -1 

   1   0    -1 
   1   1    1 

X1 X2 X1? X2 
0 0 -1 

0 1 1 

1 0 1 

1 1 -1 

Parameters:  
 
       W1  =  0.5 
       W2  =  0.5 
       W0  =  -0.9 
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It is easy to understand why function XOR can not be represented by a perceptron if we 
look at it from a perspective of entropy. From the true value table, we can see the entropy 
of the whole set of function values is 1. We can split the set of function value from the 
direction of x1 or x2. But the entropy of the resulting subsets remains to be 1. Intuitively, 
it make no sense to change the values of w1, w2 in order to find a direction to have the set 
of examples separated because the entropy will change not even a little bit. That is to say, 
function XOR can not be represented by a perceptron.  

 
There exists two ways to deal with nonlinear reparability:  one way is to use multiple 
layers of perceptrons combined together to approximate more complex decision surface; 
the other way is to use Support Vector Machine which uses some kernel function to 
change the  example space in order to keeping  it linear separable because 
linear-separability has many good properties. 

B. Example for perceptron training rule 
Given two examples: 

  <1, 1, 1>  and < 1, 0 , -1 > 
Suppose the initial weights for the perceptron are: 

  w1=0.5, w2=0.5 and w0= -0.4 
The algorithm takes in the first training example < 1 , 1, 1 >, thus we have t(x) = 1. 
And w0 +x1*w1+x2*w2 = -0.4 + 1* 0.5 + 1 * 0.5 = 0.6 > 0. Thus o(x) = 1. The 
algorithm correctly classifies the training instance, so no weight is changed. 

 
Then the algorithm takes in the second training example < 1, 0 , -1 >. We have t(x) = 
-1. And w0 +x1*w1+x2*w2 = -0.4 + 1* 0.5 + 0 * 0.5 = 0.1 > 0. Thus o(x) = 1. We 
have Err = t(x) – o(x) = -1 – 1 = -2.  

  ? w1= ? (t-o)x1 = 0.1 * (-2) * 1 = -0.2 , so w1 = 0.5 + (-0.2) = 0.3 
  ? w2= ? (t-o)x2 = 0.1 * (-2) * 0 = 0 , so w2 = 0.5 
  ? w0= ? (t-o)x0 = 0.1 * (-2) * 1 = -0.2 , so w0 = -0.4 + (-0.2) = -0.6 

For another iteration, when takes in <1,1,1>, we have w0 +x1*w1+x2*w2 = -0.6 + 1* 
0.5 + 1 * 0.5 = 0.4 > 0, thus o(x) = 1, correct 
When takes in <1,0,-1>, we have w0 +x1*w1+x2*w2 = -0.6 + 1* 0.5 + 0 * 0.5 = -0.1, 
thus o(x) = -1, correct. 
So the algorithm classifies all the training examples correctly, so the it stop and 
output the learnt weight vector < w0 ,w1, w2> = < -0.6, 0.3, 0.5 > 

 


