

Scribe Notes from Tuesday January 20
and Thursday January 22, 2004

By:

Maryam Bavarian

Ladan Mahabadi

Irina Pekerskaya

On Tuesday January 20, 2004, a few criticisms of the FIND-S algorithm were discussed:

1) Lack of Convergence of the learner to all possible target concepts

Criticism:
 FIND-S is confined to determining only one consistent hypothesis. In

other words, it is unable to find all the hypotheses that are consistent with
the training data when applicable.

 Hard to determine when the algorithm has learned the concept in order to

stop

As Mitchell claims, it is desired to have a learning algorithm that "… could
determine whether it had converged and, if not, at least characterize its
uncertainty regarding the true identity of the target concept.

Plausible justification:

 At times only one hypothesis is adequat
 One intrinsic property of every learner is that it is hard to determine certainly

when the task of learning has been accomplished. Furthermore, future data can
prove any learner wrong!

2) Unclear Advantage of choosing the most specific hypothesis.
Criticism:

 The advantage of the most specific hypothesis, which FIND-S finds, over
some other consistent hypothesis such as the most general hypothesis is
unclear

Justification:
 Specific hypotheses are useful

3) Lack of contingency plan in case of noisy data
Criticism:

 FIND-S may be severely misled in case of inconsistent sets of training
examples for it ignores negative examples.

Mitchell adds that "… an algorithm that could at least detect when the training data is
inconsistent and …accommodate such errors" is preferred.

Plausible justification:
 Our assumption is consistency. In other words, it is assumed that the

given training data is consistent and the target hypothesis can indeed
be induced from it

4) Lack of detecting Multiple maximally specific hypothesis

 If in the hypotheses space, there are several maximally specific
hypotheses, FIND-S , as alluded in the first criticism, fails to detect them.

The above criticism leads to the following brief introduction of evaluation criteria of algorithms
which in turn can clarify: “What constitutes a “good learning algorithm?”
Valid for given assumptions
Prove Performance:

 Convergence
 Mistake bound

 Confidence Interval (even though this criterion is more considered a
property of the hypothesis and justifies the estimate)

 Unbiased and consisten Estimation:
“unbiased estimator” (prove that you are not too far from the
truth), “consistent estimator” (prove that it converges). The last
two estimators are proved by statisticians.

 Computation Efficiency
Time and Space considerations

 User friendliness
 Scalability
 Training time
 Success on some problems (“Empirical Studying”)

Even though the above factors are very useful guidelines in proving a learner effective, there is
always the issue of incompleteness. In other words, success on some training data does not
guarantee future success unless the structure of the training data is conserved in the test data.
Furthermore, if a learner is very successful on some problems, it does not imply that will be as
effective on all problems. Simply put, there is not one ideal algorithm. This encourages one to
look for patterns among problems instead of looking for pattern among data.
One common factor among all learners is that they are based on a plausible principle.
e.g.

 Occam’s Razor

“`Pluralitas non est ponenda sine necessitas.'

(Plurality should not be posited without necessity.)

A logical principle by William of Occam who stated that one need not
make more assumptions than the minimum needed. Simply put, the
shortest interpretation is the best. In our applications, the shortest
hypothesis and later on the shortest decision tree are preferred based on
this principle.
Jacob Eliosoff[2] lists the following machine learning related
interpretations of Occam’s Razor:

1. When deciding between two models which make equivalent
predictions, choose the simpler one.

2. If two decision rules classify the existing data equally well,
the simpler one is more likely to classify future data
correctly.

3. Given a simple decision rule A, and a much more complex
rule B which classifies the existing data only slightly better
than A, A is likely to classify future data better than B.

4. Simpler classifiers are more likely to be correct.

Evaluating Learners

• S : Simulation studies

a. Randomly generate target concept (probability distribution) = c
b. Randomly generate data according to concept

c. Run learner on data output H
d. Compare c with H

A Standard but Dubious Way of Designing a Machine Learning System

1. Choose a syntactic representation for hypotheses (e.g., decision tree, Bayesian Net,

neural net)

2. Given evidence, solve the computational problem of finding hypothesis with “best fit”

Problem:

• No performance guarantee (convergence, generalization)

• The syntax implicitly introduces a bias – perhaps not the one the user wanted.

More Systematic Approach

1. Determine first what performance you want, or what “the best fit” is.

2. Then choose a syntactic representation that makes it easy to implement this performance.

One major short coming of the FIND-S algorithm is its inability to find all the hypotheses
consistent with the training data. CANDIDATE-ELIMINIATION algorithm addresses this
shortcoming and "… outputs a description of the set of all hypotheses consistent with the
training examples." The beauty of this algorithm is that it does not list all of such hypotheses
because that would be impractical. It would only keep track of two hypotheses from which all
the other consistent hypotheses may be generated if needed. The two representative hypotheses
are the Specific boundary S and the general boundary G.
Definition:

 Specific boundary S:
The set of maximally specific members of the hypothesis space consistent
with the training data

 General boundary G:

The set of maximally general members of the hypothesis space consistent
with the training data

As long as the sets G and S are well defined, the version space (The subset of hypotheses from
the hypotheses space consistent with the training data) can be completely specified.

⇒ Version Space Representation Theorem:

Version Space = S U G U {consistent hypotheses that lie

Between S and G in the partially ordered
hypothesis space}

⇒ Proof:
 Show that every consistent hypothesis, h ,that has the following property

s ≤ h ≤ g (for some s in S and g in G where ≤ denotes a
partial order)

will be in the version space

By definition of S all of its members will be consistent with all the
positive examples in the training data. Since h is more general than s and g
is more general than h then they must also be satisfied by all the positive
training examples. Similarly, no member g of G can be satisfied by any
negative training examples and since g is more general than h and in turn
more general than s then h and s can not possible satisfy any of the
negative examples of the training data.
Thus

S U G U R is a subset of the Version Space

where R denotes {consistent hypotheses that lie
Between S and G in the partially ordered hypothesis
space}

 Show that
Version Space is a subset of S U G U R

Proof by contradiction:

Let ‘s assume that there is a positive element j of the version space such
that

j is included in S U G U R

Then since G contains all the maximally general hypotheses in the version
space, it must be that
j ≥ g (for all g in G). Thus by the definition of G, j must be a negative
training datum. This contradicts our assumption and thus, version space is
a subset of S U G U R

 The above two steps prove that
o Version Space = S U G U R

Candidate-Elimination Learning Algorithm

This algorithm computes the version space containing all hypotheses from H that are consistent
with an observed sequence of training examples. The algorithm consists of the following steps:

1. Initialize G to the set of maximally general hypotheses in H

G0 {<?,?,?,?,?,?>}

2. Initialize S to the set of maximally specific hypotheses in H

S0 {<φ,φ,φ,φ,φ,φ>}
3. For each training example d, do

• If d is a positive example
• Remove from G any hypothesis inconsistent with d

• For each hypothesis in S that is not consistent with d
• Remove s form S
• Add to S all minimal generalizations h of s such that

o h is consistent with d, and some member of G is more
general than h

• Remove from S any hypothesis that is more general than another
hypothesis in S

• If d is a negative example
• Remove form S any hypothesis inconsistent with d
• For each hypothesis g in G that is not consistent with d

• Remove g from G
• Add to G all minimal specializations h of g such that

o h is consistent with d, and some member of S is more
specific than h

• Remove form G any hypothesis that is less general than
another hypothesis in G

We can see that as each training example is considered, the S and G boundary sets are
generalized and specialized, respectively to eliminate from the version space any hypotheses
found inconsistent with the new training example. After all examples have been processed, the
computed version space contains all the hypotheses consistent with these examples and only
these hypotheses. This algorithm can be applied to any concept learning task and hypotheses
space for which these operations are well-defined.

Remarks on Candidate-Elimination algorithm:

1. The target concept is exactly learned when S and G boundary sets converge to a single,
identical hypothesis.
2. The version space learned by this algorithm will converge toward the hypothesis that
correctly describes the target concept, if:

1) There are no errors in the training examples;
Ex.1: If a positive example is incorrectly presented as negative, the algorithm will remove
the correct target concept from a version space.
2) There is some hypothesis in H that correctly describes the target concept
Ex.2
 Sky … Enjoy Sport
1 Sunny … Yes
2 Cloudy … Yes
3 Rainy … No

If we use only conjunctions, we are unable to represent disjunctive target concept such as
“Sky=Sunny or Sky=Cloudy”

3. The optimal query strategy is to generate instances that satisfy exactly half of the hypotheses
in the current version space.
Why?
If the trainer classifies this instance as positive – S will be generalized
If the trainer classifies it as negative – G will be specialized

So, the size of the version space will be reduced by half with each new example, and the correct
target concept can be found in log2[VS] steps.

4. Even if the version space still contains multiple hypotheses, indicating that the target concept
has not been learned, it is possible to classify certain examples with the same degree of
confidence as if target concept had been uniquely determined.

1) Instance classified as positive by every hypothesis in the current version space. Then,
regardless of which hypotheses will be found to be the correct target concept, it is already
clear the example will be classified as positive.

2) Instance classified negative by every hypothesis - it can be safely considered negative
3) If half of hypotheses classify an example as positive, and another half as negative, we

can’t say anything about its actual class.
4) More hypotheses classified as positive than as negative (or vice versa) – case is still quite

ambiguous, but one approach it to output the majority vote. The proportion of hypotheses
voting for the certain class can be interpreted as the probability that instance belong to
this class.

Supervised Learning

• Many forms of machine learning ~ function approximation

• Note f : X R not known (f need not be in H)

Want h that works well throughout “instance space” X …. Training examples only small
subset

Typically xi represented by vector of feature values:

….perhaps xi in Rn, or discrete, pr combination, or …

• Kinds of functions
o Real-Valued functions: f(x) in R
o Probability Distibution: Pf (y | x) = P(f(x)|x)
o Classifiers: f(x) in {c1,…,ck}
... perhaps {c1,c2} = {T, F}

Discrete - Valued Functions: Classification

• Unknown function: maps from flower measurements to species of flower

• Examples: 100 flowers measured and classified by R.A. Fisher

• Hypothesis space: All linear discrimiators of form

h (x) = setosa if w0+ w1.x.SepalWidth+w2.x.SepalLength > 0

 Virginica otherwise

Real – Valued Functions

• Unknown function: maps elevation to mean annual temperature

• Examples: 175 weather stations with known elevation and temperature

• Hypothesis space: All functions of form

Temp = w0 + w1.elev

Inductive bias

1. An unbiased learner
As we have seen, the hypotheses space for Candidate-Elimination algorithm is biased – we
consider only conjunctive hypotheses, the number for which is 973 for the example from the
homework.
If we wish to assure that the hypothesis space contains the unknown target concept, we can
consider unbiased learner, that will be capable to represent any possible subset of instances. For
our examples there will be 296 distinct target concepts.
Now we can reformulate EnjoySport task by defining new hypotheses space allowing arbitrary
disjunctions, conjunctions and negations of our earlier hypotheses.

 We can express any target concept
? Our algorithm is unable to generalize beyond the observed instances.
Why?
S boundary – always disjunctions of observed positive examples
G boundary – negated disjunction of observed negative examples
Now, in order to converge to a single concept, we need to have every single instance in X
as a training example.

The fundamental property of inductive inference: a learner that makes no a priory
assumptions regarding the identity of the target concept has no rational basis for
classifying any unseen instances.

2. Finding an appropriate hypothesis.

Our goal is to generalize, that is to build hypotheses according to original data

Which of the hypotheses is the best?
It depends:
 If data is noisy or not?
 What is known about the function? (Ex. Piece-wise linear, smooth…)

3. Bias

Learning algorithms embodies some “bias” to prefer one hypothesis over another

There are two types of bias:

 Restriction bias or language bias – specifies what hypothesis space is searched
 Preference bias or search bias – specifies how hypothesis space is explored

So, the tradeoff is
If choosing more expressive language with bigger hypothesis space, it’s harder to find
good hypothesis.

Def: Consider a concept learning algorithm L for the set of instances X. Let c be an
arbitrary concept defined over X, and let Dc = {(x,c(x))} be an arbitrary set of training
examples of c. Let L(xi, Dc) denote the classification assigned to the instance xi by L after
training on the data Dc. The inductive bias of L is any minimal set of assertions B such
that for any target concept c and corresponding training examples Dc

(∀xi∈X) [(B∧Dc∧Xi) ⇒ L(xi, Dc)]
where the notation y ⇒ z indicates that z follows deductively from y (i.e. that z is
provable from y

Inductive bias of Candidate-Elimination algorithm – the target concept c is contained
in the given hypothesis space H.

4. Three learners with different biases:

Algorithm Principles of

classification
Bias Effectiveness

of work
Correctness

Role learner Stores all observed
examples. Can
classify x if and only
if it matches
previously unseen
examples.

Has no inductive
bias, as no
additional
assumptions
required

Cannot classify
any unseen
examples

Those that
were classified
done correctly

Candidate
Elimination
algorithm

New instances are
classified only in the
case where all
member of the
current version space
agree on the
classification

The target concept
is represented in its
hypothesis space

Can classify
some instances
that Role-
learner will not

Correctness
depends on the
correctness of
the inductive
bias

Find-S Finds the most
specific hypothesis
consistent with the
training examples

The target concept
is represented in its
hypothesis space,
All instances are
negative unless the
opposite is entailed
by its other
knowledge

Can classify
even more
unseen
instances

Correctness
depends on the
correctness of
the inductive
bias

So, if we do more assumptions about hypothesis space (i.e. the bias is stronger) the algorithm can
classify more unseen examples, but the correctness of classification strongly depends on the
correctness of the inductive bias.

Class discussions on the homework:
2.4. b)

G: 2≤x≤8, 2≤y≤5
And 3≤x≤8 2≤y≤7

When we are performing Candidate-Elimination algorithm, we add the hypothesis h to G only if
some member of S is more specific than h. So, when S-boundary contains only one hypothesis,
G boundary has necessarily include S boundary, that’s why the following answer is not correct:

2≤x≤3 2≤y≤5
and 3≤x≤8 2≤y≤7

2.4.d) The smallest number of training examples is 6 that is 2 positive and 4 negative.

We cannot take less negative instances, because otherwise we will receive G-boundary much
bigger than S-boundary. But for the target concept to be exactly learned S and G boundary sets
have to converge to a single, identical, hypothesis that is for our example a single rectangle.

Positive
example

Negative
example

S
boundary
& G
boundary

0
1

2
3

4
5

6
7

8
9

10

0 1 2 3 4 5 6 7 8 9 10

S
G1

G2 +
+

+

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

S
G1

+
+

+
G2

Actually, even if we take 4 negative examples, but accommodate them in the corners, the
resulted version space won’t converge to a single rectangle.
Decision Tree Learning

• Framework

o Classification Learning
o Definition: Decision tree learning is a method for approximating discrete-

valued target functions, in which the learned function is represented by a
decision tree. One of the most popular inductive inference algorithms that has
been successfully applied to a broad range of tasks from learning to diagnose
medical cases to learning access credit risks of loan applicants.

• Algorithm for learning decision tree
o Entropy: a measure commonly used in information theory that characterizes

the (im)purity of an arbitrary collection of examples. It will be discussed more
later.

o Inductive Bias (Occam’s Razor): the inductive bias is the set of assumptions
that together with training data deductively justify the classifications assigned
by the learner to future instances.

• Evaluation
o Cross Validation: One of the methods used for comparison of learning

algorithms.

• Overfitting
o Given a hypothesis space H, a hypothesis h ε H is said to overfit the training

data if there exists some alternative hypothesis h’ ε H, such that h has smaller
error over h’, but h’ has a smaller error than h over the entire distribution of
instances. Overfitting is a significant practical difficulty for decision tree
learning and many other learning methods.

o Post Pruning: one of the approaches to avoid overfitting in decision tree
learning.

• Topics:

o k-ary attribute values
o Real attribute values

G
 boundary

G
boundary

S
boundary

Positive
example

Negative
example

o Other splitting criteria
o Atrribute cost
o Missing values
o …

Decision Tree Representation

Decision tree classify instances by sorting them down the tree from the root to some leaf node,
which provides the classification of the instance. Each node in the tree specifies a test of some
attribute of the instance, and each branch descending form that node corresponds to one of the
possible values for this attribute. In summary internal nodes test value of feature xj and branch
according to result of test and leaf nodes specify class h(x). An instance is classified by starting
at the root node of the tree, testing the attribute specified by this node, then moving down the
tree branch corresponding to the value of the attribute in the given example. This process is then
represented for the subtree rooted at the new node.

classified as “No”

In the figure above you can see a typical learned decision tree. In general, decision trees
represent a disjunction of conjunctions of constraints on the attribute values of instances. Each
path from the tree root to a leaf corresponds to a conjunction of attribute test and the tree itself to
a disjunction of conjunctions. For example, the decision tree shown in the figure above
corresponds to the expression
(Outlook = Sunny and Humidity = Normal)
or (Outlook = Overcast)
or (Outlook = Rain and Wind = Weak)

Decision Trees

Decision Tree Hypothesis Space is …

• Variable Size: it can represent any Boolean function

• Deterministic

• Discrete and Continuous Parameters

Learning algorithm is …

• Constructive Search: Build tree by adding nodes.

• Eager

• Batch: we take the algorithm and keep feeding the data
o we update based on 1-1 in online algorithms which is incremental learning
o or we update on the whole batch

Using Decision Trees

Decision tree learning is generally best suited to problems with the following characteristics:

• Instances are represented by attribute-value pairs. The easiest situation for decision
tree learning is when each attribute takes on a small number of disjoint possible
values. However extensions to the basic algorithm allow handling real-valued
attributes as well. “Bar = Yes”, “Size = Large”, “Type = French”, “Temp = 82.6”,
…(Boolean, discrete, nominal, continuous)

• The target function has discrete output values. Our focus is on such target functions.
A more substantial extension allows learning target function with real-valued outputs,
though the application of decision trees in this setting is less common.

• Can handle:
o Disjunctive descriptions may be required.
o The training data may contain errors. Decision tree learning methods are

robust to errors, both errors in classifications of the training examples and
errors in the attribute values that describe these examples.

o The training data may contain missing attribute values. Decision tree methods
can be used even when some training examples have unknown values.

Many practical problems have been found to fit these characteristics. Decision tree learning has
therefore been applied to problems such as learning to classify medical patients by their disease,
equipment malfunctions by their cause, and loan applicants by their likelihood of defaulting on
payment (credit risk analysis). Such problems, in which the task is to classify examples into one
of a discrete set of possible categories, are often referred to as classification problems.

Important Fact:

⇒ For every boolean function there is a decision tree representing it

Proof:
It has been proven in complexity theory that any boolean function can be
transformed into disjunctive normal form (a formula is in disjunctive
normal form if it is disjunction of clauses which are in turn conjunctions
of literals or their negations). Then, the transformed formula is the
representation of a decision tree because every decision tree’s path from

the root to the leaf is a conjunction of literals (positive or negative), and
the disjunction of all such paths will be the initial formula.

Constructing Decision Trees:

Most algorithms , such as ID3, that have been applied in inducing decision trees from training
data use a greedy, top down method.

ID3 operates as the following:

1) determines a promising candidate for the root (a top down approach).
2) Use a Statistical test
3) Choose the best attribute for the root
4) Create a descendent for the root for each of its attribute values
5) Partitioned training data based on the descendent nodes
6) Repeat steps 1 - 5 for all the training data remaining and associated with the descendent

nodes

Features of the algorithm:
-Greedy
-Never back tracks
-Deterministic (i.e. there is no randomness involved)

Criteria for choosing an attribute for a node:

-Information Gain

 A statistical property that "… measures how well a given attribute
separates the training examples according to their target classification"

 This is used by ID3
 Can be precisely defined through entropy

One of the most important concepts in machine learning is Entropy which:

 "measures homogeneity of examples"
 characterizes the impurity of an arbitrary collection of examples
 is 0 if all members of the collection belong to the same class (the

collection is homogeneous) and 1 when the collection has an equal
number of positive and negative examples

 is considered as an indicator of the minimum number of bits of
information needed to encode the classification of an arbitrary member of
a collection in the context of information theory

 is "a measure of the expected encoding length measured in bits. In other
words, it is the expected number of bits needed to obtain full information:

o Entropy (S) = Σi = 1 to c (-pilog2 pi) where pi
is the proportion of collection S belonging to class i

 Entropy as a function:

where

References:

o “Machine Learning,” Tom M. Mitchell published 1997 by McGraw-Hill

o http://cgm.cs.mcgill.ca/~soss/cs644/projects/jacob/interpretations.html

o Notes taken from Dr. Schulte’s class on the aforementioned dates.

