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On Tuesday  January 20, 2004, a few criticisms of  the  FIND-S algorithm were discussed: 
 
1) Lack of Convergence of the learner to all possible target concepts 

Criticism: 
 FIND-S is confined to determining only one consistent hypothesis. In 

other words, it is unable to find all the hypotheses that are consistent with 
the training data when applicable. 

 
 Hard to determine when the algorithm has learned the concept in order to 

stop 
 

As Mitchell claims, it is desired to have a learning algorithm that "… could 
determine whether it had converged and, if not, at least characterize its 
uncertainty regarding the true identity of the target concept. 

 
Plausible justification: 
 

 At times only one hypothesis is adequat 
 One intrinsic property of every learner is that it is hard to determine certainly 

when the task of learning has been accomplished. Furthermore, future data can 
prove any learner wrong! 

 
2) Unclear Advantage of choosing the most specific hypothesis. 
Criticism: 

 The advantage of the most specific hypothesis, which FIND-S finds, over 
some other consistent hypothesis such as the most general hypothesis is 
unclear 

Justification: 
 Specific hypotheses are useful 

 
3) Lack of contingency plan in case of noisy data 
Criticism: 

 FIND-S may be severely misled in case of inconsistent sets of training 
examples for it ignores negative examples. 

Mitchell adds that "… an algorithm that could at least detect when the training data is 
inconsistent and …accommodate such errors" is preferred. 
 

Plausible justification: 
 Our assumption is consistency. In other words, it is assumed that the 

given training data is consistent and the target hypothesis can indeed 
be induced from it 

 
4) Lack of detecting Multiple maximally specific hypothesis 

 If in the hypotheses space, there are several maximally specific 
hypotheses, FIND-S , as alluded in the first criticism, fails to detect them. 

 
The above criticism leads to the following brief introduction of evaluation criteria of algorithms 
which in turn can clarify: “What constitutes a “good learning algorithm?” 
Valid for given assumptions 
Prove Performance: 

 Convergence 
 Mistake bound 



 Confidence Interval (even though this criterion is more considered a 
property of the hypothesis and justifies the estimate) 

 Unbiased and consisten Estimation: 
“unbiased estimator” (prove that you are not too far from the 
truth), “consistent estimator” (prove that it converges). The last 
two estimators are proved by statisticians. 

 Computation Efficiency 
Time and Space considerations 

 User friendliness 
 Scalability 
 Training time 
 Success on some problems (“Empirical Studying”) 
  

Even though the above factors are very useful guidelines in proving a learner effective, there is 
always the issue of incompleteness. In other words, success on some training data does not 
guarantee future success unless the structure of the training data is conserved in the test data. 
Furthermore, if a learner is very successful on some problems, it does not imply that will be as 
effective on all problems. Simply put, there is not one ideal algorithm. This encourages one to 
look for patterns among problems instead of looking for pattern among data. 
One common factor among all learners is that they are based on a plausible principle. 
e.g. 

 Occam’s Razor 

“`Pluralitas non est ponenda sine necessitas.' 

(Plurality should not be posited without necessity.) 

 
A logical principle by William of Occam who stated that one need not 
make more assumptions than the minimum needed. Simply put, the 
shortest interpretation is the best. In our applications, the shortest 
hypothesis and later on the shortest decision tree are preferred based on 
this principle. 
Jacob Eliosoff[2] lists the following machine learning related 
interpretations of Occam’s Razor: 

1. When deciding between two models which make equivalent 
predictions, choose the simpler one. 

2. If two decision rules classify the existing data equally well, 
the simpler one is more likely to classify future data 
correctly. 

3. Given a simple decision rule A, and a much more complex 
rule B which classifies the existing data only slightly better 
than A, A is likely to classify future data better than B. 

4. Simpler classifiers are more likely to be correct. 

Evaluating Learners 
 

• S : Simulation studies 
 
a.    Randomly generate target concept (probability distribution) = c 
b.    Randomly generate data according to concept 



c.    Run learner on data  output H 
d.    Compare c with H 
 

A Standard but Dubious Way of Designing a Machine Learning System 
 
1. Choose a syntactic representation for hypotheses (e.g., decision tree, Bayesian Net, 

neural net) 
 
2. Given evidence, solve the computational problem of finding hypothesis with “best fit” 

 
Problem: 
 

• No performance guarantee (convergence, generalization) 
 
• The syntax implicitly introduces a bias – perhaps not the one the user wanted. 

 
More Systematic Approach 
 
1. Determine first what performance you want, or what “the best fit” is. 
 
2. Then choose a syntactic representation that makes it easy to implement this performance. 

 
 
One major short coming of the FIND-S algorithm is its inability to find all the hypotheses 
consistent with the training data. CANDIDATE-ELIMINIATION algorithm addresses this 
shortcoming and "… outputs a description of the set of all hypotheses consistent with the 
training examples." The beauty of this algorithm is that it does not list all of such hypotheses 
because that would be impractical. It would only keep track of two hypotheses from which all 
the other consistent hypotheses may be generated if needed. The two representative hypotheses 
are the Specific boundary S and the general boundary G. 
Definition: 

 Specific boundary S: 
The set of maximally specific members of the hypothesis space consistent 
with the training data 

 
 General boundary G: 

The set of maximally general members of the hypothesis space consistent 
with the training data 

 
As long as the sets G and S are well defined, the version space (The subset of hypotheses from 
the hypotheses space consistent with the training data) can be completely specified. 
 

⇒ Version Space Representation Theorem: 
 
Version Space = S U G U {consistent hypotheses that lie 

Between S and G in the partially ordered 
hypothesis space} 

⇒ Proof: 
 Show that every consistent hypothesis, h ,that has the following property 

 



s ≤  h ≤ g  (for some s in S and g in G where  ≤ denotes a 
partial order) 

will be in the version space 
 

By definition of S all of its members will be consistent with all the 
positive examples in the training data. Since h is more general than s and g 
is more general than h then they must also be satisfied by all the positive 
training examples.  Similarly, no member g of G can be satisfied by any 
negative training examples and since g is more general than h and in turn 
more general than s then h and s can not possible satisfy any of the 
negative examples of the training data. 
Thus 

S U G U R is a subset of  the Version Space 
 

where R denotes {consistent hypotheses that lie 
Between S and G in the partially ordered hypothesis 
space} 

 
 

 Show that 
Version Space is a subset of S U G U R 

 
Proof by contradiction: 

Let ‘s assume that there is a positive element j of the version space such 
that 

j is included in S U G U R 
 

Then since G contains all the maximally general hypotheses in the version 
space, it must be that 
j ≥ g (for all g  in G). Thus by the definition of G, j must be a negative 
training datum. This contradicts our assumption  and thus, version space is 
a subset of S U G U R 
 

 The above two steps prove that 
o Version Space = S U G U R 
 

Candidate-Elimination Learning Algorithm 
 
This algorithm computes the version space containing all hypotheses from H that are consistent 
with an observed sequence of training examples. The algorithm consists of the following steps: 
 
1. Initialize G to the set of maximally general hypotheses in H 
 
G0  {<?,?,?,?,?,?>} 
 
2. Initialize S to the set of maximally specific hypotheses in H 
 
S0 {<φ,φ,φ,φ,φ,φ>} 
3. For each training example d, do 
 

• If d is a positive example 
• Remove from G any hypothesis inconsistent with d 



• For each hypothesis in S that is not consistent with d 
• Remove s form S 
• Add to S all minimal generalizations h of s such that 

o h is consistent with d, and some member of G is more 
general than h 

• Remove from S any hypothesis that is more general than another 
hypothesis in S 

 
 

• If d  is a negative example 
• Remove form S any hypothesis inconsistent with d 
• For each hypothesis g in G that is not consistent with d 

• Remove g from G 
• Add to G all minimal specializations h of g such that 

o h is consistent with d, and some member of S is more 
specific than h 

• Remove form G any hypothesis that is less general than 
another hypothesis in G 

We can see that as each training example is considered, the S and G boundary sets are 
generalized and specialized, respectively to eliminate from the version space any hypotheses 
found inconsistent with the new training example. After all examples have been processed, the 
computed version space contains all the hypotheses consistent with these examples and only 
these hypotheses. This algorithm can be applied to any concept learning task and hypotheses 
space for which these operations are well-defined. 
 
 
 
Remarks on Candidate-Elimination algorithm: 
 
1. The target concept is exactly learned when S and G boundary sets converge to a single, 
identical hypothesis. 
2.  The version space learned by this algorithm will converge toward the hypothesis that 
correctly describes the target concept, if: 

1) There are no errors in the training examples; 
Ex.1:  If a positive example is incorrectly presented as negative, the algorithm will remove 
the correct target concept from a version space. 
2) There is some hypothesis in H that correctly describes the target concept 
Ex.2 
 Sky … Enjoy Sport 
1 Sunny … Yes 
2 Cloudy … Yes 
3 Rainy … No 
 
If we use only conjunctions, we are unable to represent disjunctive target concept such as 
“Sky=Sunny or Sky=Cloudy” 

 
3. The optimal query strategy is to generate instances that satisfy exactly half of the hypotheses 
in the current version space. 
Why? 
If the trainer classifies this instance as positive – S will be generalized 
If the trainer classifies it as negative – G will be specialized 



So, the size of the version space will be reduced by half with each new example, and the correct 
target concept can be found in log2[VS] steps. 
 
4. Even if the version space still contains multiple hypotheses, indicating that the target concept 
has not been learned, it is possible to classify certain examples with the same degree of 
confidence as if target concept had been uniquely determined. 

1) Instance classified as positive by every hypothesis in the current version space. Then, 
regardless of which hypotheses will be found to be the correct target concept, it is already 
clear the example will be classified as positive. 

2) Instance classified negative by every hypothesis  - it can be safely considered negative 
3) If half of hypotheses classify an example as positive, and another half as negative, we 

can’t say anything about its actual class. 
4) More hypotheses classified as positive than as negative (or vice versa) – case is still quite 

ambiguous, but one approach it to output the majority vote. The proportion of hypotheses 
voting for the certain class can be interpreted as the probability that instance belong to 
this class. 

 
 
Supervised Learning 
 

• Many forms of machine learning ~ function approximation 
 

 
• Note  f : X  R not known (f need not be in H) 

Want h that works well throughout “instance space” X …. Training examples only small 
subset 
 
Typically xi  represented by vector of feature values: 

 
 
 
….perhaps xi  in Rn, or discrete, pr combination, or … 

• Kinds of functions 
o Real-Valued functions: f(x) in R 
o Probability Distibution: Pf (y | x ) = P(f(x)|x) 
o Classifiers: f(x) in {c1,…,ck} 
... perhaps {c1,c2} = {T, F} 

 
 
 
 
 



Discrete - Valued Functions: Classification 
 

 
• Unknown function: maps from flower measurements to species of flower 
 
• Examples: 100 flowers measured and classified by R.A. Fisher 

 
• Hypothesis space: All linear discrimiators of form  

 
h (x )    = setosa         if w0+ w1.x.SepalWidth+w2.x.SepalLength > 0 

                      Virginica    otherwise 
 

Real – Valued Functions 
 

 
• Unknown function: maps elevation to mean annual temperature 
 
• Examples: 175 weather stations with known elevation and temperature 

 
• Hypothesis space: All functions of form 

 
Temp = w0 + w1.elev 



Inductive bias 
 
1. An unbiased learner 
As we have seen, the hypotheses space for Candidate-Elimination algorithm is biased – we 
consider only conjunctive hypotheses, the number for which is 973 for the example from the 
homework. 
If we wish to assure that the hypothesis space contains the unknown target concept, we can 
consider unbiased learner, that will be capable to represent any possible subset of instances. For 
our examples there will be 296 distinct target concepts. 
Now we can reformulate EnjoySport task by defining new hypotheses space allowing arbitrary 
disjunctions, conjunctions and negations of our earlier hypotheses. 

 We can express any target concept 
? Our algorithm is unable to generalize beyond the observed instances. 
Why? 
S boundary – always disjunctions of observed positive examples 
G boundary – negated disjunction of observed negative examples 
Now, in order to converge to a single concept, we need to have every single instance in X 
as a training example. 
 
The fundamental property of inductive inference: a learner that makes no a priory 
assumptions regarding the identity of the target concept has no rational basis for 
classifying any unseen instances. 
 

2. Finding an appropriate hypothesis. 
 

Our goal is to generalize, that is to build hypotheses according to original data 

 
Which of the hypotheses is the best? 
It depends: 
 If data is noisy or not? 
 What is known about the function? (Ex. Piece-wise linear, smooth…) 

 
3. Bias 

Learning algorithms embodies some “bias” to prefer one hypothesis over another 
 
There are two types of bias: 

 Restriction bias or language bias – specifies what hypothesis space is searched 
 Preference bias or search bias – specifies how hypothesis space is explored 

 
So, the tradeoff is 
If choosing more expressive language with bigger hypothesis space, it’s harder to find 
good hypothesis. 
 



Def: Consider a concept learning algorithm L for the set of instances X. Let c be an 
arbitrary concept defined over X, and let Dc = {(x,c(x))} be an arbitrary set of training 
examples of c. Let L(xi, Dc) denote the classification assigned to the instance xi by L after 
training on the data Dc. The inductive bias of L is any minimal set of assertions B such 
that for any target concept c and corresponding training examples Dc 

(∀xi∈X) [(B∧Dc∧Xi) ⇒ L(xi, Dc)] 
where the notation y ⇒ z indicates that z follows deductively from y (i.e. that z is 
provable from y 
 
Inductive  bias of Candidate-Elimination algorithm – the target concept c is contained 
in the given hypothesis space H. 
 
 

4. Three learners with different biases: 
 
Algorithm Principles of 

classification 
Bias Effectiveness 

of work 
Correctness 

Role learner Stores all observed 
examples. Can 
classify x if and only 
if it matches 
previously unseen 
examples. 

Has no inductive 
bias, as no 
additional 
assumptions 
required 

Cannot classify 
any unseen 
examples 

Those that 
were classified 
done correctly 

Candidate 
Elimination 
algorithm 

New instances are 
classified only in the 
case where all 
member of the 
current version space 
agree on the 
classification 

The target concept 
is represented in its 
hypothesis space 

Can classify 
some instances 
that Role-
learner will not 

Correctness 
depends on the 
correctness of 
the inductive 
bias 

Find-S Finds the most 
specific hypothesis 
consistent with the 
training examples 

The target concept 
is represented in its 
hypothesis space, 
All instances are 
negative unless the 
opposite is entailed 
by its other 
knowledge 

Can classify 
even more 
unseen 
instances 

Correctness 
depends on the 
correctness of 
the inductive 
bias 

 
So, if we do more assumptions about hypothesis space (i.e. the bias is stronger) the algorithm can 
classify more unseen examples, but the correctness of classification strongly depends on the 
correctness of the inductive bias. 
 



Class discussions on the homework: 
2.4. b) 
 

 
 
G: 2≤x≤8, 2≤y≤5 
And 3≤x≤8 2≤y≤7 
 
 
 
 
 
 
 

 
 
When we are performing Candidate-Elimination algorithm, we add the hypothesis h to G only if 
some member of S is more specific than h. So, when S-boundary contains only one hypothesis, 
G boundary has necessarily include S boundary, that’s why the following answer is not correct: 
 
 

2≤x≤3 2≤y≤5 
and 3≤x≤8 2≤y≤7 
 
 
 
 
 
 
 
 
 
 

 
 
2.4.d) The smallest number of training examples is 6 that is 2 positive and 4 negative. 
 
 
 
 
 
 
 
 
 
 
 
 
We cannot take less negative instances, because otherwise we will receive G-boundary much 
bigger than S-boundary. But  for the target concept to be exactly learned S and G boundary sets 
have to converge to a single, identical, hypothesis that is for our example a single rectangle. 
 

Positive 
example 

Negative 
example 

S 
boundary 
& G 
boundary 
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4
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8
9

10
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+
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0
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3
4
5
6
7
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+
G2



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Actually, even if we take 4 negative examples, but accommodate them in the corners, the 
resulted version space won’t converge to a single rectangle. 
Decision Tree Learning 

 
• Framework 

o Classification Learning 
o Definition: Decision tree learning is a method for approximating discrete-

valued target functions, in which the learned function is represented by a 
decision tree. One of the most popular inductive inference algorithms that has 
been successfully applied to a broad range of tasks from learning to diagnose 
medical cases to learning access credit risks of loan applicants. 

• Algorithm for learning decision tree 
o Entropy: a measure commonly used in information theory that characterizes 

the (im)purity of an arbitrary collection of examples. It will be discussed more 
later. 

o Inductive Bias (Occam’s Razor): the inductive bias is the set of assumptions 
that together with training data deductively justify the classifications assigned 
by the learner to future instances. 

• Evaluation 
o Cross Validation: One of the methods used for comparison of learning 

algorithms. 
 

• Overfitting 
o Given a hypothesis space H, a hypothesis h ε H  is said to overfit the training 

data if there exists some alternative hypothesis h’ ε H, such that h has smaller 
error over h’, but h’ has a smaller error than h over the entire distribution of 
instances. Overfitting is a significant practical difficulty for decision tree 
learning and many other learning methods. 

o Post Pruning: one of the approaches to avoid overfitting in decision tree 
learning. 

 
• Topics: 

o k-ary attribute values 
o Real attribute values 

G 
 boundary 

G 
boundary 

S 
boundary 
 

Positive 
example 

Negative 
example 



o Other splitting criteria 
o Atrribute cost 
o Missing values 
o … 
 

 
Decision Tree Representation 
 
Decision tree classify instances by sorting them down the tree from the root to some leaf node, 
which provides the classification of the instance. Each node in the tree specifies a test of some 
attribute of the instance, and each branch descending form that node corresponds to one of the 
possible values for this attribute. In summary internal nodes test value of feature xj and branch 
according to result of test and leaf nodes specify class h(x). An instance is classified by starting 
at the root node of the tree, testing the attribute specified by this node, then moving down the 
tree branch corresponding to the value of the attribute in the given example. This process is then 
represented for the subtree rooted at the new node. 

 
classified as “No” 

 
In the figure above you can see a typical learned decision tree. In general, decision trees 
represent a disjunction of conjunctions of constraints on the attribute values of instances. Each 
path from the tree root to a leaf corresponds to a conjunction of attribute test and the tree itself to 
a disjunction of conjunctions.  For example, the decision tree shown in the figure above 
corresponds to the expression 
(Outlook = Sunny and Humidity = Normal) 
or       (Outlook = Overcast) 
or      (Outlook = Rain and Wind = Weak) 
 
Decision Trees 
 
Decision Tree Hypothesis Space is … 
 

• Variable Size: it can represent any Boolean function 
 



• Deterministic 
 

• Discrete and Continuous Parameters 
 
Learning algorithm is … 
 

• Constructive Search: Build tree by adding nodes. 
 
• Eager 

 
 

• Batch:  we take the algorithm and keep feeding the data 
o we update based on 1-1 in online algorithms which is incremental learning 
o or we update on the whole batch 

 
Using Decision Trees 
 
Decision tree learning is generally best suited to problems with the following characteristics: 
 

• Instances are represented by attribute-value pairs. The easiest situation for decision 
tree learning is when each attribute takes on a small number of disjoint possible 
values. However extensions to the basic algorithm allow handling real-valued 
attributes as well. “Bar = Yes”, “Size = Large”, “Type = French”, “Temp = 82.6”, 
…(Boolean, discrete, nominal, continuous) 

• The target function has discrete output values. Our focus is on such target functions. 
A more substantial extension allows learning target function with real-valued outputs, 
though the application of decision trees in this setting is less common. 

• Can handle: 
o Disjunctive descriptions may be required. 
o The training data may contain errors. Decision tree learning methods are 

robust to errors, both errors in classifications of the training examples and 
errors in the attribute values that describe these examples. 

o The training data may contain missing attribute values. Decision tree methods 
can be used even when some training examples have unknown values. 

 
Many practical problems have been found to fit these characteristics. Decision tree learning has 
therefore been applied to problems such as learning to classify medical patients by their disease, 
equipment malfunctions by their cause, and loan applicants by their likelihood of defaulting on 
payment (credit risk analysis). Such problems, in which the task is to classify examples into one 
of a discrete set of possible categories, are often referred to as classification problems. 
 
Important Fact: 

⇒ For every boolean function there is a decision tree representing it 
 

Proof: 
It has been proven in complexity theory that any boolean function can be 
transformed into disjunctive normal form (a formula is in disjunctive 
normal form if it is disjunction of clauses which are in turn conjunctions 
of literals or their negations). Then, the transformed formula is the 
representation of a decision tree because every decision tree’s path from 



the root to the leaf is a conjunction of literals (positive or negative), and 
the disjunction of all such paths will be the initial formula. 

 
Constructing Decision Trees: 
 
Most algorithms , such as ID3, that have been applied in inducing decision trees from training 
data use a greedy, top down method. 
 
ID3 operates as the following: 
 

1) determines a promising candidate for the root (a top down approach). 
2) Use a Statistical test 
3) Choose the best attribute for the root 
4) Create a descendent for the root for each of its attribute values 
5) Partitioned training data based on the descendent nodes 
6) Repeat steps 1 - 5 for all the training data remaining and associated with the descendent 

nodes 
 

Features of the algorithm: 
-Greedy 
-Never back tracks 
-Deterministic (i.e. there is no randomness involved) 
 
Criteria for choosing an attribute for a node: 
 
-Information Gain 

 A statistical property that "… measures how well a given attribute 
separates the training examples according to their target classification" 

 This is used by ID3 
 Can be precisely defined through entropy 

 
One of the most important concepts in machine learning is Entropy which: 

 "measures homogeneity of examples" 
 characterizes the impurity of an arbitrary collection of examples 
 is 0 if all members of the collection belong to the same class (the 

collection is homogeneous) and 1 when the collection has an equal 
number of positive and negative examples 

 is considered as an indicator of the minimum number of bits of 
information needed to encode the classification of an arbitrary member of 
a collection in the context of information theory 

 is "a measure of the expected encoding length measured in bits.  In other 
words, it is the expected number of bits needed to obtain full information: 

o Entropy (S) = Σi = 1 to c ( -pilog2 pi)    where pi 
is the proportion of collection  S belonging to class i 

 Entropy as a function: 



 
where 
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