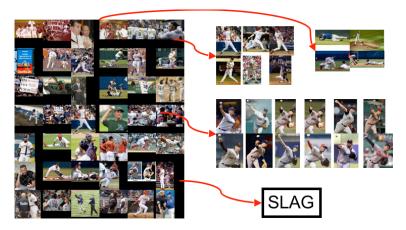

Stock Price Prediction


- Problems in which *t_i* is continuous are called regression
- E.g. *t_i* is stock price, *x_i* contains company profit, debt, cash flow, gross sales, number of spam emails sent, ...

Machine Learning

Curve Fitting

Coin Tossing

Clustering Images

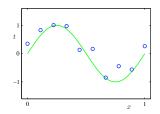
Wang et al., CVPR 2006

- Only x_i is defined: unsupervised learning
- E.g. *x_i* describes image, find groups of similar images

An Example - Polynomial Curve Fitting

- Suppose we are given training set of *N* observations (x_1, \ldots, x_N) and $(t_1, \ldots, t_N), x_i, t_i \in \mathbb{R}$
- Regression problem, estimate *y*(*x*) from these data

Polynomial Curve Fitting


- What form is *y*(*x*)?
 - Let's try polynomials of degree M:

$$y(x, w) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$

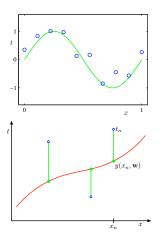
- This is the hypothesis space.
- How do we measure success?
 - Sum of squared errors:

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2$$

• Among functions in the class, choose that which minimizes this error

・ コット (雪) (小田) (コット 日)

Polynomial Curve Fitting


- What form is *y*(*x*)?
 - Let's try polynomials of degree M:

$$y(x, w) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$

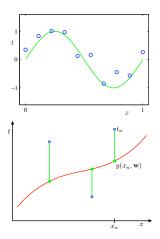
- This is the hypothesis space.
- How do we measure success?
 - Sum of squared errors:

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2$$

• Among functions in the class, choose that which minimizes this error

・ コット (雪) (小田) (コット 日)

Polynomial Curve Fitting


- What form is *y*(*x*)?
 - Let's try polynomials of degree M:

$$y(x, w) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$

- This is the hypothesis space.
- How do we measure success?
 - Sum of squared errors:

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2$$

• Among functions in the class, choose that which minimizes this error

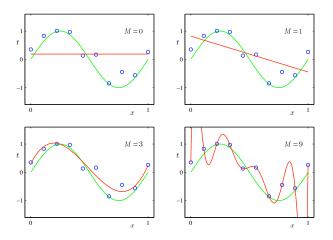
・ コット (雪) (小田) (コット 日)

Coin Tossing

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Polynomial Curve Fitting

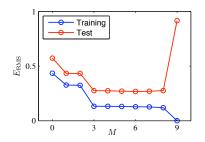
Error function


$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2$$

Best coefficients

$$w^* = \arg\min_w E(w)$$

Found using pseudo-inverse (more later)


Which Degree of Polynomial?

- A model selection problem
- $M = 9 \rightarrow E(w^*) = 0$: This is over-fitting

Coin Tossing

Generalization

- Generalization is the holy grail of ML
 - · Want good performance for new data
- Measure generalization using a separate set
 - Use root-mean-squared (RMS) error: $E_{RMS} = \sqrt{2E(w^*)/N}$