< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Graphical Models - Part I Oliver Schulte - CMPT 726

Bishop PRML Ch. 8, some slides from Russell and Norvig AIMA2e

Markov Random Fields

Inference

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Probabilistic Models

Bayesian Networks

Markov Random Fields

Inference

Markov Random Fields

Inference

Probabilistic Models

Bayesian Networks

Markov Random Fields

Inference

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

(ロ) (同) (三) (三) (三) (○) (○)

Probabilistic Models

- We now turn our focus to probabilistic models for pattern recognition
 - Probabilities express beliefs about uncertain events, useful for decision making, combining sources of information
- Key quantity in probabilistic reasoning is the joint distribution

 $p(x_1, x_2, \ldots, x_K)$

where x_1 to x_K are all variables in model

- Address two problems
 - Inference: answering queries given the joint distribution
 - Learning: deciding what the joint distribution is (involves inference)
- All inference and learning problems involve manipulations of the joint distribution

€ 990

Reminder - Three Tricks

• Bayes' rule:

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)} = \alpha p(X|Y)p(Y)$$

Marginalization:

$$p(X) = \sum_{y} p(X, Y = y) \text{ or } p(X) = \int p(X, Y = y) dy$$

• Product rule:

$$p(X,Y) = p(X)p(Y|X)$$

• All 3 work with extra conditioning, e.g.:

$$p(X|Z) = \sum_{y} p(X, Y = y|Z)$$

$$p(Y|X, Z) = \alpha p(X|Y, Z) p(Y|Z)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Joint Distribution

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- Consider model with 3 boolean random variables: *cavity*, *catch*, *toothache*
- Can answer query such as

 $p(\neg cavity | toothache)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Joint Distribution

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- Consider model with 3 boolean random variables: *cavity*, *catch*, *toothache*
- Can answer query such as

 $p(\neg cavity | toothache)$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Joint Distribution

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

- Consider model with 3 boolean random variables: *cavity*, *catch*, *toothache*
- Can answer query such as

$$p(\neg cavity|toothache) = \frac{p(\neg cavity, toothache)}{p(toothache)}$$

 $p(\neg cavity|toothache) = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Joint Distribution

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

- Consider model with 3 boolean random variables: *cavity*, *catch*, *toothache*
- Can answer query such as

$$p(\neg cavity | toothache) = \frac{p(\neg cavity, toothache)}{p(toothache)}$$

$$p(\neg cavity|toothache) = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Joint Distribution

In general, to answer a query on random variables
 Q = *Q*₁,..., *Q_N* given evidence *E* = *e*, *E* = *E*₁,..., *E_M*,
 e = *e*₁,..., *e_M*:

$$p(\boldsymbol{Q}|\boldsymbol{E} = \boldsymbol{e}) = \frac{p(\boldsymbol{Q}, \boldsymbol{E} = \boldsymbol{e})}{p(\boldsymbol{E} = \boldsymbol{e})}$$
$$= \frac{\sum_{\boldsymbol{h}} p(\boldsymbol{Q}, \boldsymbol{E} = \boldsymbol{e}, \boldsymbol{H} = \boldsymbol{h})}{\sum_{\boldsymbol{q}, \boldsymbol{h}} p(\boldsymbol{Q} = \boldsymbol{q}, \boldsymbol{E} = \boldsymbol{e}, \boldsymbol{H} = \boldsymbol{h})}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Problems

- The joint distribution is large
 - e. g. with K boolean random variables, 2^K entries
- Inference is slow, previous summations take $O(2^K)$ time
- Learning is difficult, data for 2^K parameters
- Analogous problems for continuous random variables

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reminder - Independence

- A and B are independent iff p(A|B) = p(A) or p(B|A) = p(B) or p(A,B) = p(A)p(B)
- p(Toothache, Catch, Cavity, Weather) = p(Toothache, Catch, Cavity)p(Weather)
 - 32 entries reduced to 12 (Weather takes one of 4 values)
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

(ロ) (同) (三) (三) (三) (○) (○)

Reminder - Conditional Independence

- *p*(*Toothache*, *Cavity*, *Catch*) has 2³ 1 = 7 independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 (1) P(catch|toothache, cavity) = P(catch|cavity)
- The same independence holds if I haven't got a cavity:
 (2) P(catch|toothache, ¬cavity) = P(catch|¬cavity)
- *Catch* is conditionally independent of *Toothache* given *Cavity*: p(Catch|Toothache, Cavity) = p(Catch|Cavity)
- Equivalent statements:
 - *p*(*Toothache*|*Catch*, *Cavity*) = *p*(*Toothache*|*Cavity*)
 - p(Toothache, Catch|Cavity) = p(Toothache|Cavity)p(Catch|Cavity)
 - Toothache $\perp L$ Catch|Cavity

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Conditional Independence contd.

- Write out full joint distribution using chain rule: p(Toothache, Catch, Cavity) = p(Toothache|Catch, Cavity)p(Catch, Cavity) = p(Toothache|Catch, Cavity)p(Catch|Cavity)p(Cavity) = p(Toothache|Cavity)p(Catch|Cavity)p(Cavity) 2 + 2 + 1 = 5 independent numbers
- In many cases, the use of conditional independence greatly reduces the size of the representation of the joint distribution

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Graphical Models

- Graphical Models provide a visual depiction of probabilistic model
- Conditional indepence assumptions can be seen in graph
- Inference and learning algorithms can be expressed in terms of graph operations
- We will look at 3 types of graph (can be combined)
 - Directed graphs: Bayesian networks
 - Undirected graphs: Markov Random Fields
 - Factor graphs

Probabilistic Models

Bayesian Networks

Markov Random Fields

Inference

Probabilistic Models

Bayesian Networks

Markov Random Fields

Inference

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Bayesian Networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link \approx "directly influences")
 - a conditional distribution for each node given its parents:

$p(X_i|pa(X_i))$

 In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Topology of network encodes conditional independence assertions:
 - Weather is independent of the other variables
 - *Toothache* and *Catch* are conditionally independent given *Cavity*

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects causal knowledge:
 - · A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call
- (Causal models and conditional independence seem hardwired for humans!)

Example contd.

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number *p* for X_i = true (the number for X_i = false is just 1 - *p*)
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- i.e., grows linearly with *n*, vs. *O*(2^{*n*}) for the full joint distribution
- For burglary net, ?? numbers

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number *p* for X_i = true (the number for X_i = false is just 1 - *p*)
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- i.e., grows linearly with *n*, vs. *O*(2^{*n*}) for the full joint distribution
- For burglary net, ?? numbers

•
$$1 + 1 + 4 + 2 + 2 = 10$$
 numbers
(vs. $2^5 - 1 = 31$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Probabilistic Models

Bayesian Networks

Markov Random Fields

Inference

Global Semantics

 Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|pa(X_i))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

e.g.,
$$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e) =$$

Markov Random Fields

Inference

Global Semantics

 Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|pa(X_i))$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

e.g.,
$$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e) =$$

 $P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$ = 0.9 × 0.7 × 0.001 × 0.999 × 0.998 ≈ 0.00063

Example - Car Insurance

http://aispace.org/bayes

Specifying Distributions - Discrete Variables

- Earlier we saw the use of conditional probability tables (CPT) for specifying a distribution over discrete random variables with discrete-valued parents
- For a variable with no parents, with *K* possible states:

$$p(\boldsymbol{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}$$

 e.g. p(B) = 0.001^{B1}0.999^{B2}, 1-of-K representation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specifying Distributions - Discrete Variables cont.

• With two variables *x*₁, *x*₂ can have two cases

• Dependent

Independent

$$p(\mathbf{x}_1, \mathbf{x}_2 | \boldsymbol{\mu}) = p(\mathbf{x}_1 | \boldsymbol{\mu}) p(\mathbf{x}_2 | \mathbf{x}_1, \boldsymbol{\mu})$$
$$= \left(\prod_{k=1}^K \boldsymbol{\mu}_{k1}^{x_{1k}}\right) \left(\prod_{k=1}^K \prod_{j=1}^K \boldsymbol{\mu}_{kj2}^{x_{1k}x_{2j}}\right)$$

• $K^2 - 1$ free parameters in μ

$$p(\mathbf{x}_1, \mathbf{x}_2 | \boldsymbol{\mu}) = p(\mathbf{x}_1 | \boldsymbol{\mu}) p(\mathbf{x}_2 | \boldsymbol{\mu})$$
$$= \left(\prod_{k=1}^K \boldsymbol{\mu}_{k1}^{x_{1k}}\right) \left(\prod_{k=1}^K \boldsymbol{\mu}_{k2}^{x_{2k}}\right)$$

• 2(K-1) free parameters in μ

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Chains of Nodes

- With *M* nodes, could form a chain as shown above
- Number of parameters is:

$$\underbrace{(K-1)}_{x_1} + (M-1)\underbrace{K(K-1)}_{others}$$

- Compare to:
 - $K^M 1$ for fully connected graph
 - M(K-1) for graph with no edges (all independent)

- Another way to reduce number of parameters is sharing parameters (a. k. a. tying of parameters)
- Lower graph reuses same μ for nodes 2-M
 - μ is a random variable in this network, could also be deterministic
- (K-1) + K(K-1) parameters

Specifying Distributions - Continuous Variables

 One common type of conditional distribution for continuous variables is the linear-Gaussian

$$p(x_i|pa_i) = \mathcal{N}\left(x_i; \sum_{j \in pa_i} w_{ij}x_j + b_i, v_i\right)$$

• e.g. With one parent *Harvest*:

$$p(c|h) = \mathcal{N}\left(c; -0.5h + 5, 1\right)$$

• For harvest *h*, mean cost is -0.5h + 5, variance is 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Linear Gaussian

- Interesting fact: if all nodes in a Bayesian Network are linear Gaussian, joint distribution is a multivariate Gaussian.
- Converse is true as well, see Ch.2.3.

$$p(x_i|pa_i) = \mathcal{N}\left(x_i; \sum_{j \in pa_i} w_{ij}x_j + b_i, v_i\right)$$
$$p(x_1, \dots, x_N) = \prod_{i=1}^N \mathcal{N}\left(x_i; \sum_{j \in pa_i} w_{ij}x_j + b_i, v_i\right)$$

- Each factor looks like $\exp((x_i (w_i^T x_{pa_i})^2))$, this product will be another quadratic form of the components of *x*.
- With no links in graph, end up with diagonal covariance matrix
- With fully connected graph, end up with full covariance
 matrix

(日) (日) (日) (日) (日) (日) (日)

Conditional Independence in Bayesian Networks

- Recall again that *a* and *b* are conditionally independent given *c* (*a* ⊥⊥ *b*|*c*) if
 - p(a|b,c) = p(a|c) or equivalently
 - p(a,b|c) = p(a|c)p(b|c)
- Before we stated that links in a graph are \approx "direct influences"
- We now develop a correct notion of links, in terms of the conditional independences they represent
 - This will be useful for general-purpose inference methods
 - It provides a fast solution to the *relevance problem*: determine whether *X* is relevant to *Y* given knowledge of *Z*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A Tale of Three Graphs - Part 1

• The graph above means

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

$$p(a, b) = \sum_{c} p(a|c)p(b|c)p(c)$$

$$\neq p(a)p(b) \text{ in general}$$

• So a and b not independent

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A Tale of Three Graphs - Part 1

• However, conditioned on *c*

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)} = \frac{p(a|c)p(b|c)p(c)}{p(c)} = p(a|c)p(b|c)$$

• So $a \perp b | c$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A Tale of Three Graphs - Part 1

- Note the path from *a* to *b* in the graph
 - When *c* is not observed, path is open, *a* and *b* not independent
 - When c is observed, path is blocked, a and b independent
- In this case c is tail-to-tail with respect to this path

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A Tale of Three Graphs - Part 2

• The graph above means

$$p(a,b,c) = p(a)p(b|c)p(c|a)$$

• Again a and b not independent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A Tale of Three Graphs - Part 2

• However, conditioned on *c*

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)} = \frac{p(a)p(b|c)}{p(c)}p(c|a)$$
$$= \frac{p(a)p(b|c)}{p(c)}\underbrace{\frac{p(a|c)p(c)}{p(a)}}_{\text{Bayes' Rule}}$$
$$= p(a|c)p(b|c)$$

• So $a \perp b | c$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A Tale of Three Graphs - Part 2

- As before, the path from *a* to *b* in the graph
 - When *c* is not observed, path is open, *a* and *b* not independent
 - When *c* is observed, path is blocked, *a* and *b* independent
- In this case c is head-to-tail with respect to this path

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A Tale of Three Graphs - Part 3

The graph above means

$$p(a, b, c) = p(a)p(b)p(c|a, b)$$

$$p(a, b) = \sum_{c} p(a)p(b)p(c|a, b)$$

$$= p(a)p(b)$$

• This time *a* and *b* are independent

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A Tale of Three Graphs - Part 3

• However, conditioned on *c*

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)} = \frac{p(a)p(b)p(c|a,b)}{p(c)}$$

$$\neq p(a|c)p(b|c) \text{ in general}$$

• So *a* is dependent on *b* given *c*

A Tale of Three Graphs - Part 3

- The behaviour here is different
 - When *c* is not observed, path is blocked, *a* and *b* independent
 - When *c* is observed, path is unblocked, *a* and *b* not independent
- In this case *c* is head-to-head with respect to this path
- Situation is in fact more complex, path is unblocked if any descendent of c is observed

Part 3 - Intuition

- Binary random variables *B* (battery charged), *F* (fuel tank full), *G* (fuel gauge reads full)
- B and F independent
- But if we observe G = 0 (false) things change
 - e.g. p(F = 0|G = 0, B = 0) could be less than p(F = 0|G = 0), as B = 0 explains away the fact that the gauge reads empty
 - Recall that p(F|G, B) = p(F|G) is another $F \perp \!\!\!\perp B|G$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

D-separation

- A general statement of conditional independence
- For sets of nodes *A*, *B*, *C*, check all paths from *A* to *B* in graph
- If all paths are blocked, then $A \perp B | C$
- Path is blocked if:
 - Arrows meet head-to-tail or tail-to-tail at a node in *C*
 - Arrows meet head-to-head at a node, and neither node nor any descendent is in *C*

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Naive Bayes

- Commonly used naive Bayes classification model
- Class label *z*, features *x*₁,...,*x*_D
- Model assumes features independent given class label
 - Tail-to-tail at z, blocks path between features

- What is the minimal set of nodes which makes a node *x_i* conditionally independent from the rest of the graph?
 - x_i's parents, children, and children's parents (co-parents)
- Define this set *MB*, and consider:

$$p(x_i|x_{\{j\neq i\}}) = \frac{p(x_1, \dots, x_D)}{\int p(x_1, \dots, x_D) dx_i}$$
$$= \frac{\prod_k p(x_k|pa_k)}{\int \prod_k p(x_k|pa_k) dx_i}$$

• All factors other than those for which x_i is x_k or in pa_k cancel

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Learning Parameters

- When all random variables are observed in training data, relatively straight-forward
 - · Distribution factors, all factors observed
 - e.g. Maximum likelihood used to set parameters of each distribution *p*(*x_i*|*pa_i*) separately
- When some random variables not observed, it's tricky
 - This is a common case
 - Expectation-maximization (later) is a method for this

Markov Random Fields

Inference

Probabilistic Models

Bayesian Networks

Markov Random Fields

Inference

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Markov Random Fields

Inference

Probabilistic Models

Bayesian Networks

Markov Random Fields

Inference

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ