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Probabilistic Models

• We now turn our focus to probabilistic models for pattern
recognition

• Probabilities express beliefs about uncertain events, useful
for decision making, combining sources of information

• Key quantity in probabilistic reasoning is the joint
distribution

p(x1, x2, . . . , xK)

where x1 to xK are all variables in model
• Address two problems

• Inference: answering queries given the joint distribution
• Learning: deciding what the joint distribution is (involves

inference)

• All inference and learning problems involve manipulations
of the joint distribution
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Reminder - Three Tricks
• Bayes’ rule:

p(Y|X) = p(X|Y)p(Y)
p(X)

= αp(X|Y)p(Y)

• Marginalization:

p(X) =
∑

y

p(X,Y = y) or p(X) =
∫

p(X,Y = y)dy

• Product rule:
p(X,Y) = p(X)p(Y|X)

• All 3 work with extra conditioning, e.g.:

p(X|Z) =
∑

y

p(X,Y = y|Z)

p(Y|X,Z) = αp(X|Y,Z)p(Y|Z)
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Joint Distribution
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• Consider model with 3 boolean random variables: cavity,
catch, toothache

• Can answer query such as

p(¬cavity|toothache)



Probabilistic Models Bayesian Networks Markov Random Fields Inference

Joint Distribution

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• Consider model with 3 boolean random variables: cavity,
catch, toothache

• Can answer query such as

p(¬cavity|toothache)



Probabilistic Models Bayesian Networks Markov Random Fields Inference

Joint Distribution

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• Consider model with 3 boolean random variables: cavity,
catch, toothache

• Can answer query such as

p(¬cavity|toothache) =
p(¬cavity, toothache)

p(toothache)

p(¬cavity|toothache) =
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4



Probabilistic Models Bayesian Networks Markov Random Fields Inference

Joint Distribution

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

• Consider model with 3 boolean random variables: cavity,
catch, toothache

• Can answer query such as

p(¬cavity|toothache) =
p(¬cavity, toothache)

p(toothache)

p(¬cavity|toothache) =
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4



Probabilistic Models Bayesian Networks Markov Random Fields Inference

Joint Distribution

• In general, to answer a query on random variables
Q = Q1, . . . ,QN given evidence E = e, E = E1, . . . ,EM,
e = e1, . . . , eM:

p(Q|E = e) =
p(Q,E = e)

p(E = e)

=

∑
h p(Q,E = e,H = h)∑

q,h p(Q = q,E = e,H = h)
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Problems

• The joint distribution is large
• e. g. with K boolean random variables, 2K entries

• Inference is slow, previous summations take O(2K) time
• Learning is difficult, data for 2K parameters
• Analogous problems for continuous random variables



Probabilistic Models Bayesian Networks Markov Random Fields Inference

Reminder - Independence

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

• A and B are independent iff
p(A|B) = p(A) or p(B|A) = p(B) or p(A,B) = p(A)p(B)

• p(Toothache,Catch,Cavity,Weather) =
p(Toothache,Catch,Cavity)p(Weather)

• 32 entries reduced to 12 (Weather takes one of 4 values)

• Absolute independence powerful but rare
• Dentistry is a large field with hundreds of variables, none of

which are independent. What to do?
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Reminder - Conditional Independence

• p(Toothache,Cavity,Catch) has 23 − 1 = 7 independent
entries

• If I have a cavity, the probability that the probe catches in it
doesn’t depend on whether I have a toothache:
(1) P(catch|toothache, cavity) = P(catch|cavity)

• The same independence holds if I haven’t got a cavity:
(2) P(catch|toothache,¬cavity) = P(catch|¬cavity)

• Catch is conditionally independent of Toothache given
Cavity: p(Catch|Toothache,Cavity) = p(Catch|Cavity)

• Equivalent statements:
• p(Toothache|Catch,Cavity) = p(Toothache|Cavity)
• p(Toothache,Catch|Cavity) =

p(Toothache|Cavity)p(Catch|Cavity)
• Toothache ⊥⊥ Catch|Cavity
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Conditional Independence contd.

• Write out full joint distribution using chain rule:
p(Toothache,Catch,Cavity)
= p(Toothache|Catch,Cavity)p(Catch,Cavity)
= p(Toothache|Catch,Cavity)p(Catch|Cavity)p(Cavity)
= p(Toothache|Cavity)p(Catch|Cavity)p(Cavity)
2 + 2 + 1 = 5 independent numbers

• In many cases, the use of conditional independence
greatly reduces the size of the representation of the joint
distribution
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Graphical Models

• Graphical Models provide a visual depiction of probabilistic
model

• Conditional indepence assumptions can be seen in graph
• Inference and learning algorithms can be expressed in

terms of graph operations
• We will look at 3 types of graph (can be combined)

• Directed graphs: Bayesian networks
• Undirected graphs: Markov Random Fields
• Factor graphs
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Bayesian Networks

• A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions

• Syntax:
• a set of nodes, one per variable
• a directed, acyclic graph (link ≈ “directly influences”)
• a conditional distribution for each node given its parents:

p(Xi|pa(Xi))

• In the simplest case, conditional distribution represented
as a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Example

Weather Cavity

Toothache Catch

• Topology of network encodes conditional independence
assertions:

• Weather is independent of the other variables
• Toothache and Catch are conditionally independent given

Cavity
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Example

• I’m at work, neighbor John calls to say my alarm is ringing,
but neighbor Mary doesn’t call. Sometimes it’s set off by
minor earthquakes. Is there a burglar?

• Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
• Network topology reflects causal knowledge:

• A burglar can set the alarm off
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause John to call

• (Causal models and conditional independence seem
hardwired for humans!)
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Example contd.
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Compactness

• A CPT for Boolean Xi with k Boolean parents
has 2k rows for the combinations of parent
values

• Each row requires one number p for Xi = true
(the number for Xi = false is just 1− p)

• If each variable has no more than k parents,
the complete network requires O(n · 2k)
numbers

• i.e., grows linearly with n, vs. O(2n) for the full
joint distribution

• For burglary net, ?? numbers

• 1 + 1 + 4 + 2 + 2 = 10 numbers
(vs. 25 − 1 = 31)

B E

J

A

M
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Global Semantics

• Global semantics defines the full joint
distribution as the product of the local
conditional distributions:

P(x1, . . . , xn) =

n∏
i=1

P(xi|pa(Xi))

e.g., P(j ∧ m ∧ a ∧ ¬b ∧ ¬e) =

P(j|a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063

B E

J

A

M
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Example - Car Insurance

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality
Antilock

Airbag CarValue HomeBase AntiTheft

Theft
OwnDamage

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

OtherCost OwnCost

http://aispace.org/bayes

http://aispace.org/bayes
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Specifying Distributions - Discrete Variables

• Earlier we saw the use of
conditional probability tables
(CPT) for specifying a distribution
over discrete random variables
with discrete-valued parents

• For a variable with no parents,
with K possible states:

p(x|µ) =
K∏

k=1

µxk
k

• e.g. p(B) = 0.001B1 0.999B2 ,
1-of-K representation

.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B

T
T
F
F

E

T
F
T
F

.95

.29

.001

.94

P(A|B,E)

A

T
F

.90

.05

P(J|A) A

T
F

.70

.01

P(M|A)
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Specifying Distributions - Discrete Variables cont.

• With two variables x1, x2 can have two cases

x1 x2

• Dependent

p(x1, x2|µ) = p(x1|µ)p(x2|x1,µ)

=

(
K∏

k=1

µx1k
k1

) K∏
k=1

K∏
j=1

µ
x1kx2j
kj2


• K2− 1 free parameters in µ

x1 x2

• Independent

p(x1, x2|µ) = p(x1|µ)p(x2|µ)

=

(
K∏

k=1

µx1k
k1

)(
K∏

k=1

µx2k
k2

)

• 2(K − 1) free parameters in
µ
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Chains of Nodes

x1 x2 xM

• With M nodes, could form a chain as shown above
• Number of parameters is:

(K − 1)︸ ︷︷ ︸
x1

+(M − 1)K(K − 1)︸ ︷︷ ︸
others

• Compare to:
• KM − 1 for fully connected graph
• M(K − 1) for graph with no edges (all independent)
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Sharing Parameters

x1 x2 xM

µ1 µ2 µM

x1 x2 xM

µ1 µ

• Another way to reduce number of parameters is sharing
parameters (a. k. a. tying of parameters)

• Lower graph reuses same µ for nodes 2-M
• µ is a random variable in this network, could also be

deterministic

• (K − 1) + K(K − 1) parameters
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Specifying Distributions - Continuous Variables

0 2 4 6 8 10 12Cost c 0
2

4
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Harvest h
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0.3
0.35

0.4
P(c | h, subsidy)

• One common type of conditional
distribution for continuous
variables is the linear-Gaussian

p(xi|pai) = N

xi;
∑
j∈pai

wijxj + bi, vi


• e.g. With one parent Harvest:

p(c|h) = N (c;−0.5h + 5, 1)

• For harvest h, mean cost is
−0.5h + 5, variance is 1
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Linear Gaussian
• Interesting fact: if all nodes in a Bayesian Network are

linear Gaussian, joint distribution is a multivariate
Gaussian.

• Converse is true as well, see Ch.2.3.

p(xi|pai) = N

xi;
∑
j∈pai

wijxj + bi, vi


p(x1, . . . , xN) =

N∏
i=1

N

xi;
∑
j∈pai

wijxj + bi, vi


• Each factor looks like exp((xi − (wT

i xpai)
2), this product will

be another quadratic form of the components of x.
• With no links in graph, end up with diagonal covariance

matrix
• With fully connected graph, end up with full covariance

matrix
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Conditional Independence in Bayesian Networks

• Recall again that a and b are conditionally independent
given c (a ⊥⊥ b|c) if

• p(a|b, c) = p(a|c) or equivalently
• p(a, b|c) = p(a|c)p(b|c)

• Before we stated that links in a graph are ≈ “direct
influences”

• We now develop a correct notion of links, in terms of the
conditional independences they represent

• This will be useful for general-purpose inference methods
• It provides a fast solution to the relevance problem:

determine whether X is relevant to Y given knowledge of Z.
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A Tale of Three Graphs - Part 1

c

a b

• The graph above means

p(a, b, c) = p(a|c)p(b|c)p(c)
p(a, b) =

∑
c

p(a|c)p(b|c)p(c)

6= p(a)p(b) in general

• So a and b not independent
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A Tale of Three Graphs - Part 1

c

a b

• However, conditioned on c

p(a, b|c) = p(a, b, c)
p(c)

=
p(a|c)p(b|c)p(c)

p(c)
= p(a|c)p(b|c)

• So a ⊥⊥ b|c
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A Tale of Three Graphs - Part 1

c

a b

c

a b

• Note the path from a to b in the graph
• When c is not observed, path is open, a and b not

independent
• When c is observed, path is blocked, a and b independent

• In this case c is tail-to-tail with respect to this path
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A Tale of Three Graphs - Part 2

a c b

• The graph above means

p(a, b, c) = p(a)p(b|c)p(c|a)

• Again a and b not independent
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A Tale of Three Graphs - Part 2

a c b

• However, conditioned on c

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a)p(b|c)
p(c)

p(c|a)

=
p(a)p(b|c)

p(c)
p(a|c)p(c)

p(a)︸ ︷︷ ︸
Bayes’ Rule

= p(a|c)p(b|c)

• So a ⊥⊥ b|c
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A Tale of Three Graphs - Part 2

a c b a c b

• As before, the path from a to b in the graph
• When c is not observed, path is open, a and b not

independent
• When c is observed, path is blocked, a and b independent

• In this case c is head-to-tail with respect to this path
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A Tale of Three Graphs - Part 3

c

a b

• The graph above means

p(a, b, c) = p(a)p(b)p(c|a, b)
p(a, b) =

∑
c

p(a)p(b)p(c|a, b)

= p(a)p(b)

• This time a and b are independent
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A Tale of Three Graphs - Part 3

c

a b

• However, conditioned on c

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a)p(b)p(c|a, b)
p(c)

6= p(a|c)p(b|c) in general

• So a is dependent on b given c
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A Tale of Three Graphs - Part 3

c

a b

c

a b

• The behaviour here is different
• When c is not observed, path is blocked, a and b

independent
• When c is observed, path is unblocked, a and b not

independent

• In this case c is head-to-head with respect to this path
• Situation is in fact more complex, path is unblocked if any

descendent of c is observed
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Part 3 - Intuition

G

B F

G

B F

G

B F

• Binary random variables B (battery charged), F (fuel tank
full), G (fuel gauge reads full)

• B and F independent
• But if we observe G = 0 (false) things change

• e.g. p(F = 0|G = 0,B = 0) could be less than
p(F = 0|G = 0), as B = 0 explains away the fact that the
gauge reads empty

• Recall that p(F|G,B) = p(F|G) is another F ⊥⊥ B|G
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D-separation

• A general statement of conditional independence
• For sets of nodes A, B, C, check all paths from A to B in

graph
• If all paths are blocked, then A ⊥⊥ B|C
• Path is blocked if:

• Arrows meet head-to-tail or tail-to-tail at a node in C
• Arrows meet head-to-head at a node, and neither node nor

any descendent is in C
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Naive Bayes

z

x1 xD

• Commonly used naive Bayes classification model
• Class label z, features x1, . . . , xD

• Model assumes features independent given class label
• Tail-to-tail at z, blocks path between features
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Markov Blanket

xi

• What is the minimal set of nodes which makes a node xi
conditionally independent from the rest of the graph?

• xi’s parents, children, and children’s parents (co-parents)

• Define this set MB, and consider:

p(xi|x{j 6=i}) =
p(x1, . . . , xD)∫
p(x1, . . . , xD)dxi

=

∏
k p(xk|pak)∫ ∏
k p(xk|pak)dxi

• All factors other than those for which xi is xk or in pak cancel
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Learning Parameters

• When all random variables are observed in training data,
relatively straight-forward

• Distribution factors, all factors observed
• e.g. Maximum likelihood used to set parameters of each

distribution p(xi|pai) separately
• When some random variables not observed, it’s tricky

• This is a common case
• Expectation-maximization (later) is a method for this
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