Machine Learning CMPT 726 Simon Fraser University

Binomial Parameter Estimation

Outline

- Maximum Likelihood Estimation
- Smoothed Frequencies, Laplace Correction.
- Bayesian Approach.
 - Conjugate Prior.
 - Uniform Prior.

- Let's say you're given a coin, and you want to find out P(heads), the probability that if you flip it it lands as "heads".
- Flip it a few times: H H T
- P(heads) = 2/3, no need for CMPT726
- Hmm... is this rigorous? Does this make sense?

- Let's say you're given a coin, and you want to find out
 P(heads), the probability that if you flip it it lands as "heads".
- Flip it a few times: H H T
- P(heads) = 2/3, no need for CMPT726
- Hmm... is this rigorous? Does this make sense?

- Let's say you're given a coin, and you want to find out P(heads), the probability that if you flip it it lands as "heads".
- Flip it a few times: H H T
- P(heads) = 2/3, no need for CMPT726
- Hmm... is this rigorous? Does this make sense?

- Let's say you're given a coin, and you want to find out P(heads), the probability that if you flip it it lands as "heads".
- Flip it a few times: H H T
- P(heads) = 2/3, no need for CMPT726
- Hmm... is this rigorous? Does this make sense?

Coin Tossing - Model

- Bernoulli distribution $P(heads) = \mu$, $P(tails) = 1 \mu$
- Assume coin flips are independent and identically distributed (i.i.d.)
 - i.e. All are separate samples from the Bernoulli distribution
- Given data $\mathcal{D} = \{x_1, \dots, x_N\}$, heads: $x_i = 1$, tails: $x_i = 0$, the likelihood of the data is:

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

- Given D with h heads and t tails
- What should μ be?
- Maximum Likelihood Estimation (MLE): choose μ which maximizes the likelihood of the data

$$\mu_{\mathit{ML}} = \arg\max_{\mu} p(\mathcal{D}|\mu)$$

• Since $ln(\cdot)$ is monotone increasing:

$$\mu_{\mathit{ML}} = \arg\max_{\mu} \ln p(\mathcal{D}|\mu)$$

Likelihood:

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

Log-likelihood:

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} x_n \ln \mu + (1 - x_n) \ln(1 - \mu)$$

$$\frac{d}{d\mu}\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} x_n \frac{1}{\mu} - (1 - x_n) \frac{1}{1 - \mu} = \frac{1}{\mu} h - \frac{1}{1 - \mu}$$

$$\Rightarrow \mu = \frac{h}{t+1}$$

Likelihood:

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

Log-likelihood:

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} x_n \ln \mu + (1 - x_n) \ln(1 - \mu)$$

$$\frac{d}{d\mu}\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} x_n \frac{1}{\mu} - (1 - x_n) \frac{1}{1 - \mu} = \frac{1}{\mu} h - \frac{1}{1 - \mu} h$$

$$\Rightarrow \mu = \frac{h}{t+1}$$

Likelihood:

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

Log-likelihood:

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} x_n \ln \mu + (1 - x_n) \ln(1 - \mu)$$

$$\frac{d}{d\mu}\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} x_n \frac{1}{\mu} - (1 - x_n) \frac{1}{1 - \mu} = \frac{1}{\mu} h - \frac{1}{1 - \mu} t$$

$$\Rightarrow \mu = \frac{h}{t+1}$$

Likelihood:

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

Log-likelihood:

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} x_n \ln \mu + (1 - x_n) \ln(1 - \mu)$$

$$\frac{d}{d\mu}\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} x_n \frac{1}{\mu} - (1 - x_n) \frac{1}{1 - \mu} = \frac{1}{\mu} h - \frac{1}{1 - \mu} t$$

$$\Rightarrow \mu = \frac{h}{t+1}$$

Likelihood:

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

Log-likelihood:

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} x_n \ln \mu + (1 - x_n) \ln(1 - \mu)$$

$$\frac{d}{d\mu}\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} x_n \frac{1}{\mu} - (1 - x_n) \frac{1}{1 - \mu} = \frac{1}{\mu} h - \frac{1}{1 - \mu} t$$

$$\Rightarrow \mu = \frac{h}{t+h}$$

MLE Estimate: The 0 problem.

- *h* heads, *t* tails, *n* = *h*+*t*.
- Practical problems with using the MLE $\frac{h}{n}$
- ➤ If h or t are 0, the 0 prob may be multiplied with other nonzero probs (singularity).
- If n = 0, no estimate at all. This happens quite often in high-dimensional spaces.

Smoothing Frequency Estimates

- h heads, t tails, n = h+t.
- Prior probability estimate *p*.
- Equivalent Sample Size *m*.
- m-estimate = $\frac{h + mp}{n + m}$
- Interpretation: we started with a "virtual" sample of m tosses with mp heads.
- $P = \frac{1}{n}, m=2$ \Rightarrow Laplace correction = $\frac{h+1}{n+2}$

Bayesian Approach

- Key idea: don't even try to pick specific parameter value μ – use a probability distribution over parameter values.
- Learning = use Bayes' theorem to update probability distribution.
- Prediction = model averaging.

Prior Distribution over Parameters

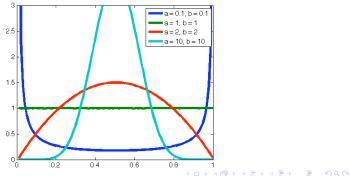
- Could use uniform distribution.
 - Exercise: what does uniform over [0,1] look like?
- What if we don't think prior distribution is uniform?
- Use conjugate prior.
 - Prior has parameters a, b "hyperparameters".
 - Prior $P(\mu|a,b) = f(a,b)$ is some function of hyperparameters.
 - Posterior has same functional form f(a',b') where a',b' are updated by Bayes' theorem.

Beta Distribution

 We will use the Beta distribution to express our prior knowledge about coins:

$$Beta(\mu|a,b) = \underbrace{\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}}_{normalization} \mu^{a-1} (1-\mu)^{b-1}$$

Parameters a and b control the shape of this distribution



Posterior

$$P(\mu|\mathcal{D}) \propto P(\mathcal{D}|\mu)P(\mu)$$

$$\propto \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n} \underbrace{\mu^{a-1} (1-\mu)^{b-1}}_{prior}$$

$$\propto \mu^h (1-\mu)^t \mu^{a-1} (1-\mu)^{b-1}$$

$$\propto \mu^{h+a-1} (1-\mu)^{t+b-1}$$

- Simple form for posterior is due to use of conjugate prior
- Parameters a and b act as extra observations
- Note that as $N = h + t \to \infty$, prior is ignored

Posterior

$$P(\mu|\mathcal{D}) \propto P(\mathcal{D}|\mu)P(\mu)$$

$$\propto \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n} \underbrace{\mu^{a-1} (1-\mu)^{b-1}}_{prior}$$

$$\propto \mu^h (1-\mu)^t \mu^{a-1} (1-\mu)^{b-1}$$

$$\propto \mu^{h+a-1} (1-\mu)^{t+b-1}$$

- Simple form for posterior is due to use of conjugate prior
- Parameters a and b act as extra observations
- Note that as $N = h + t \to \infty$, prior is ignored

Posterior

$$P(\mu|\mathcal{D}) \propto P(\mathcal{D}|\mu)P(\mu)$$

$$\propto \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n} \underbrace{\mu^{a-1} (1-\mu)^{b-1}}_{prior}$$

$$\propto \mu^h (1-\mu)^t \mu^{a-1} (1-\mu)^{b-1}$$

$$\propto \mu^{h+a-1} (1-\mu)^{t+b-1}$$

- Simple form for posterior is due to use of conjugate prior
- Parameters a and b act as extra observations
- Note that as $N = h + t \rightarrow \infty$, prior is ignored

Bayesian Point Estimation

- What if a Bayesian had to guess a single parameter value given hyperdistribution P?
- Use expected value $E_p(\mu)$.
 - E.g., for P = Beta(μ | a,b) we have $E_p(\mu) = a/a+b$.
- If we use uniform prior P, what is $E_P(\mu|D)$?
- The Laplace correction!