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Outline

 Maximum Likelihood Estimation
* Smoothed Frequencies, Laplace Correction.
* Bayesian Approach.

— Conjugate Prior.
— Uniform Prior.
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Coin Tossing

Coin Tossing

Let’s say you're given a coin, and you want to find out
P(heads), the probability that if you flip it it lands as “heads”.

Flipitafewtimes: HHT
P(heads) = 2/3, no need for CMPT726
Hmm... is this rigorous? Does this make sense?



Coin Tossing

Coin Tossing - Model

e Bernoulli distribution P(heads) = p, P(tails) =1 — p
¢ Assume coin flips are independent and identically
distributed (i.i.d.)
e i.e. All are separate samples from the Bernoulli distribution
e Givendata D = {xi,...,xn}, heads: x; = 1, tails: x; = 0,
the likelihood of the data is:

p(D|p) = prnlu H (1= p)' ™

n=1



Maximum Likelihood Estimation

Given D with & heads and t tails
What should p be?

Maximum Likelihood Estimation (MLE): choose . which
maximizes the likelihood of the data

fimr, = arg mgxp(Dlu)
Since In(-) is monotone increasing:

. = arg max Inp(D) )

Coin Tossing
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Maximum Likelihood Estimation
o Likelihood:

p(Dlp) = [T (1 = p)'
e Log-likelihood:
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e Take derivative, set to 0:
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Coin Tossing

Maximum Likelihood Estimation
o Likelihood:

p(Dlp) = [T (1 = p)'
e Log-likelihood:

N
Inp(Dlp) = xulnp+ (1 —x,) In(1 — p)

n=1

e Take derivative, set to 0:

d 1 1 1
d—lnpD],u an—— 1 —xp) l—u_ﬁh l—u[



MLE Estimate: The O problem.

* h heads, t tails, n = h+t.
* Practical problems with using the MLE h
n

»If hor t are O, the O prob may be multiplied
with other nonzero probs (singularity).

» If n =0, no estimate at all. This happens quite
often in high-dimensional spaces.



Smoothing Frequency Estimates

h heads, t tails, n = h+t.
Prior probability estimate p.
Equivalent Sample Size m.

m-estimate = s + mp

n+m

Interpretation: we started with a “virtua
with mp heads.
P h+1

n+?2

IH

sample of m tosses

P = %,m=2 =» Laplace correction =



Bayesian Approach

* Key idea: don’t even try to pick specific
parameter value pn — use a probability
distribution over parameter values.

e Learning = use Bayes’ theorem to update
probability distribution.

* Prediction = model averaging.



Prior Distribution over Parameters

e Could use uniform distribution.
— Exercise: what does uniform over [0,1] look like?
 What if we don’t think prior distribution is
uniform?
* Use conjugate prior.
— Prior has parameters a, b — “hyperparameters”.

— Prior P(p]a,b) = f(a,b) is some function of
hyperparameters.

— Posterior has same functional form f(a’,b’) where a’,b’
are updated by Bayes’ theorem.



Coin Tossing

Beta Distribution

e We will use the Beta distribution to express our prior
knowledge about coins:

Beta(pla,b) =

normalization

e Parameters a and b control the shape of this distribution

3 T

=01 b=01
—= 1 b= 1
— =0 b=2
=10, b= 10
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P(u|D)

Coin Tossing

Posterior

N
| G ) T (e
—_——

prior

[ikel;ZOOd
(U= ) (1= )P
Mh—&-a—l(] o N)H_b_l
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Posterior

N
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prior

likel;Zood
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o Mh—&-a—l (1 o N)H_b_l

e Simple form for posterior is due to use of conjugate prior
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Posterior

N
oo JIwm(r =)t (1= P!
—_——

prior

likel;Zood
o< (1= p)'p=H (1= )Pt
o Mh—&-a—l (1 o N)H_b_l

e Simple form for posterior is due to use of conjugate prior
e Parameters a and b act as extra observations
e Note thatas N = h + r — oo, prior is ignored



Bayesian Point Estimation

What if a Bayesian had to guess a single
parameter value given hyperdistribution P?

Use expected value E,(u).

— E.g., for P = Beta(u|a,b) we have E,(u) = a/a+b.
If we use uniform prior P, what is E,(u/D)?
The Laplace correction!



