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Kernel Methods and Support Vector
Machines
Oliver Schulte - CMPT 726

Bishop PRML Ch. 6



Support Vector Machines

Defining Characteristics

e Like logistic regression, good for continuous input features,
discrete target variable.

e Like nearest neighbor, a kernel method. classification is
based on weighted similar instances. The kernel defines
similarity measure.

e Sparsity: Tries to find a few important instances, the
support vectors.

e Intuition: Netflix recommendation system.



SVMs: Pros and Cons

Pros
e Very good classification performance, basically
unbeatable.
e Fast and scaleable learning.
e Pretty fast inference.
Cons
e No model is built, therefore black-box.
o Still need to specify kernel function (like specifying basis
functions).
e Issues with multiple classes, can use probabilistic version.
(Relevance Vector Machine).



Two Views of SVMs

Theoretical View: linear separator
e SVM looks for linear separator but in new feature space.

e Uses a new criterion to choose a line separating classes:
max-margin.


http://www.youtube.com/watch?v=3liCbRZPrZA
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Two Views of SVMs

Theoretical View: linear separator
e SVM looks for linear separator but in new feature space.
e Uses a new criterion to choose a line separating classes:
max-margin.
User View: kernel-based classification
e User specifies a kernel function.
e SVM learns weights for instances.

¢ Classification is performed by taking average of the labels
of other instances, weighted by a) similarity b) instance
weight.
Nice demo on web
http://www.youtube.com/watch?v=31iCbRZPrZA.


http://www.youtube.com/watch?v=3liCbRZPrZA
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Theoretical View

Linear Classification Revisited

e Consider a two class classification problem
e Use a linear model

yx) =wex+b

followed by a threshold function
e For now, let’s assume training data are linearly separable
(possibly after mapping to higher-dimensional space).
¢ Recall that the perceptron would converge to a perfect
classifier for such data
o But there are many such perfect classifiers
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Max Margin Classifiers

margin

e We can define the margin of a classifier as the minimum
distance to any example

e In support vector machines the decision boundary which
maximizes the margin is chosen.

e Intuitively, this is the line “right in the middle” between the
two classes.



Theoretical View

Support Vectors

e The support vectors are the points at minimum distance to
the decision boundary.

e The max-margin boundary depends only on the support
vectors: other data points do not matter for classification
and need not be stored.
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User View

Example: X-OR

e X-OR problem: class of (x;, xy) is positive iff x; - x, > 0.
¢ Not linearly separable in input space, but linearly separable
if we add extra dimensions.
e Use 6 basis functions
o(x1,x2) = (1, V2x1, \@xg,x%, \@xlxz,x%).
o Simple classifier y(x1,x;) = ¢s5(x1,x2) = V2x1x;.
e Linearin basis function space.
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Linear Separability Example

<" " Decision Boundary x? 4+ x3 < 1
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Linear Separability Example

. " " Decision Boundary x? + x3 < 1

3-D mapping (x?, x3, V2x1x3).



User View

The Kernel Trick

e There can be many extra dimensions, even infinite (see
assignment).

e Don’t want to compute basis function mapping ¢(x).

e Key insight 1: Linear classification requires only the dot
product.
e Key insight 2: The high-dimensional dot product

¢(x) ® ¢(z) can often be computed as a kernel function of
the input vectors only:

b(x) @ p(z) = k(x,2).



Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Kernel Trick Example

e Consider again the X-OR 6 basis functions
B (x1,x2) = (1,V2x1, V2x2,x3, V2x122, 23).

» Exercise: find a closed form expression for ¢(x) e ¢(z)
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Kernel Trick Example

e Consider again the X-OR 6 basis functions
B(x1,x2) = (1, V2x1, V2x2, %3, V2x1x2, 33).
o Exercise: find a closed form expression for ¢(x) e ¢(z)
o Solution: Dot product ¢(x) @ ¢(z) = (1 +x z)> = k(x,z).
e A quadratic kernel.



User View

The Kernel Classification Formula

Suppose we have a kernel function k and N labelled
instances with weights a,, > 0,n=1,... N.

As with the perceptron, the target labels +1 are for positive
class, -1 for negative class.

Then
N
YE) =D antak(x,x,) + b
n=1

x is classified as positive if y(x) > 0, negative otherwise.
If @, > 0, then x,, is a support vector.

Don’t need to store other vectors.

a will be sparse - many zeros.



User View

Example1

SVM with Gaussian kernel

Support vectors circled.

They are the closest to the other class.

Note non-linear decision boundary in x space
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~ Example2

From Burges, A Tutorial on Support Vector Machines for
Pattern Recognition (1998)

SVM trained using cubic polynomial kernel

k(x1,x2) = (x; exy + 1)

Left is linearly separable

¢ Note decision boundary is almost linear, even using cubic
polynomial kernel

Right is not linearly separable
o But is separable using polynomial kernel
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User View

Learning the Instance Weights

e The max-margin classifier is found by solving the following
problem:

e Maximize wrt a

N N

N
L(a) = Z a, — % Z Z AnQmtntmk (X, Xm)
n=1

n=1 m=1

subject to the constraints
e a,>0,n=1,...,N
° Ziv:l apt, =0

e |t is quadratic, with linear constraints, convex in a
e Optimal a can be found
o With large datasets, local search strategies employed


http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

User View

Learning the Instance Weights
e The max-margin classifier is found by solving the following
problem:
e Maximize wrt a

N N

N
L(a) = Z a, — % Z Z AnQmtntmk (X, Xm)
n=1

n=1 m=1

subject to the constraints
e a,>0,n=1,...,N
° Ziv:l apt, =0

e |t is quadratic, with linear constraints, convex in a
e Optimal a can be found
o With large datasets, local search strategies employed

let’s check SVM demo
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat .shtml


http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
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Building Kernels

Valid Kernels

e Valid kernels: if k(-, -) satisfies:
o Symmetric; k(x;,x;) = k(x;,x;)
o Positive definite; for any x4, ..., xy, the Gram matrix K must
be positive semi-definite:

k(xy,x1)  k(xp,x2) ... k(xi,xy)

k(xn,x1) k(xn,x2) ... k(xn,xy)
¢ Positive semi-definite means x ¢ Kx > 0 for all x (like metric)
then k(-,-) corresponds to a dot product in some space ¢

¢ a.k.a. Mercer kernel, admissible kernel, reproducing kernel
e Theorem of Mercer’s 1909!
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Examples of Kernels

e Some kernels:
o Linear kernel k(x;,x;) =x; ex;
e Polynomial kernel k(x;,x;) = (1 + x| e x,)¢
e Contains all polynomial terms up to degree d
o Gaussian kernel k(x;,x;) = exp(—|[x; — x2|[*/20?)
¢ Infinite dimension feature space
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Constructing Kernels

e Can build new valid kernels from existing valid ones:
(] k(xl,xg):ckl(xl,xz),c>0
° k(xl,xg)zkl(xl,xz)—i—kz(xl,xz)
° k(xl,xz) = kl (X],XQ)kz(xl,xZ)
o k(xi,x2) = exp(ki(x1,x2))

e Table on p. 296 gives many such rules



Building Kernels

More Kernels

Stationary kernels are only a function of the difference
between arguments: k(x;,x2) = k(x| — x2)

¢ Translation invariant in input space:

k(x1,x2) = k(x; +¢,x2 +¢)

Homogeneous kernels, a. k. a. radial basis functions only a
function of magnitude of difference: k(x1,x2) = k(||x1 —x2|)
Set subsets k(A;,A,) = 2M1™:l where |A| denotes number
of elements in A
Domain-specific: think hard about your problem, figure out
what it means to be similar, define as (-, -), prove positive
definite.
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Marginal Geometry

y>0 T2

y=0

y <0 Ri
R2

e See assignment.
e Projection of x in w dir. is ﬁ
— — wex __ —b
e y(x) =0whenwex = —b, or Tl = Tl
o So e _ —b _ ) s gigned distance to decision

Twll — Twll = 1wl

boundary

Non-Separable Data
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Support Vectors

e Assuming data are separated by the hyperplane, distance
to decision boundary is fn‘y‘(xﬂ)

e The maximum margin criterion chooses w, b by:

arg max { ™ min[t, (w @ x, + b)]}

¢ Points with this min value are known as support vectors
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Canonical Representation
e This optimization problem is complex:

1

Tl mln[t,,(w ox,) + b)]}

arg max {

Non-Separable Data
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Canonical Representation
e This optimization problem is complex:

g { L minly 0o 3,) 4]

e Exercise: Prove that rescaling w — «w and b — b does
not change distance ’”|y|("|'|’> (many equiv. answers)



Computing the Max-Margin Classifier

Canonical Representation
This optimization problem is complex:

g { L minly 0o 3,) 4]

Exercise: Prove that rescaling w — xw and b — kb does
not change distance ’”|y|("|'|’) (many equiv. answers)
So for x, closest to surface, can set (how?):

t(wex,+b)=1
All other points are at least this far away:
Vn,ty(wex,+b)>1



Computing the Max-Margin Classifier

Canonical Representation
This optimization problem is complex:

g { L minly 0o 3,) 4]

Exercise: Prove that rescaling w — xw and b — kb does
not change distance ’”|y|("|'|1) (many equiv. answers)
So for x, closest to surface, can set (how?):

t(wex,+b)=1
All other points are at least this far away:
Vn,ty(wex,+b)>1

Knowing that min distance = 1, the optimization becomes:

N NS
argmax 1 = arg min EHWH

wh ||wl|
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Canonical Representation

¢ So the optimization problem is now a constrained
optimization problem:

1
arg min = ||w||?

)

s.t. Vn, t,(wex, +b)>1

¢ To solve this, we need to use Lagrange multipliers

Non-Separable Data
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Lagrange Multipliers - Inequality Constraints

VI Consider the problem:
Vo(x) n}cinf(x)
o st g1(x)>0,...,8n(x) >0
g(x)=0

g(x) >0
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Lagrange Multipliers - Inequality Constraints
VI Consider the problem:

minf(x)
X
st g1(x)>0,...,8n(x) >0

9(x) >0 g(x)=0

Solutions are stationary points of the Lagrangian

L( Zangn

n=1

where for each n we have the KKT conditions,

°®a, >0

* gnlx) 20

° angn(x) =0
Therefore a,, = 0 (inactive constraint) or g,(x) = 0 (active
constraint).



Computing the Max-Margin Classifier

Now Where Were We

e So the optimization problem is now a constrained
optimization problem:

I
g min
w,b

s.t. Vn,t,(wex,+b)>1
e For this problem, the Lagrangian (with N multipliers a,) is:

[Iw]l®
2

N
L(w,b,a) = =) an{ta(wex, +b)— 1}
n=1

e We can find the derivatives of L wrt w, b and set to 0:

N
W= > antux,
n=1
N
0 = Zantn
n=1
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The Dual Formulation

e Recall the condition:
N
Z aptaX
n=1

e Exercise: Show that ”w” 22,1 lZm | AnGmtyti (X, ® Xp,).
e Exercise: Show that

N
Zan{tn(w ex,+b)—1} =

N N
Z Z AnAmtpty (X, @ Xp) + bZanz‘n Zan
n=1 m=1



Computing the Max-Margin Classifier

Solving The Dual Formulation

Combining the exercise results, we obtain the dual
Lagrangian as a function of the Lagrange multipliers only:

Z ap — = Z Z anamtntm Xp ® xm)

nlml

The stationary points of L provide lower bounds on the
original problem, so we want to maximize L (see http:
//en.wikipedia.org/wiki/Lagrange_duality).
Apply the kernel trick to replace e with kernel k, and
remember the constraints on the Lagrange multipliers, to
arrive at the following problem:
Maximize L(a) = S0 ay — L SN SV auamtutik (X, %)
subject to the constraints that

e q,>0,n=1,...,N

° Ziv:l apt, =0


http://en.wikipedia.org/wiki/Lagrange_duality
http://en.wikipedia.org/wiki/Lagrange_duality

Computing the Max-Margin Classifier

From The Dual Solution a to a Classifier

e Given the solution a, we have formulas for w and for b
(omitted). Then classify as follows:

N
w = Z antn¢(xn)
n=1

N
yx) = weop(x)+b= Z antyk(x,x,) + b
n=1
¢ Recall that every constraint is either inactive (a, = 0) or
active (a, > 0 and ,,y(x,) = 1).
e If a, > 0, then x, is a support vector.

e a will be sparse - many zeros.
e Don’t need to store x,, for which a, = 0
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Non-Separable Data

Non-Separable Data

y=-1

y=0

e For most problems, data will not be linearly separable
(even in feature space ¢)
e Can relax the constraints from

tny(xn) 2 1 to tny(xn) Z 1 - En

e The &, > 0 are called slack variables
o &, =0, satisfy original problem, so x, is on margin or correct
side of margin
e 0 <&, < 1,inside margin, but still correctly classifed
e &, > 1, mis-classified
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Loss Function For Non-separable Data

y=-1

¢ Non-zero slack variables are bad, penalize while
maximizing the margin:

N
. 1
mmCZlfn + EHWHZ
n—

e Constant C > 0 controls importance of large margin versus
incorrect (non-zero slack)
e Set using cross-validation
e Optimization is same quadratic, different constraints,
convex
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SVM Loss Function

e The SVM for the separable case solved the problem:
arg min ||

s.t. Vi, ty, > 1
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SVM Loss Function

e The SVM for the separable case solved the problem:
arg min ||

s.t. Vi, ty, > 1

e Can write this as:
N

argrrEnZEm(tnYn) + /\HWHZ

n=1

where Eo(z) = 0if z > 1, co otherwise



Non-Separable Data

SVM Loss Function

e The SVM for the separable case solved the problem:
arg min ||

s.t. Vi, ty, > 1

e Can write this as:
N
arg rrEnZEoo(tnyn) + Aw||?
n=1
where Eo(z) = 0if z > 1, co otherwise
e Non-separable case relaxes this to be:
N
arg H}vin Z Esy (tayn) + N |wl>
n=1
where Esy(z) = [z]+ hinge loss
e [7]4 =zifu <1, 0 otherwise



Non-Separable Data

Loss Functions

E(z)

~—
-2 -1 0 1 2

e Linear classifiers, compare loss function used for learning
e 7 =yut, < 0iff there is an error (with z, € {+1,—1}).
e 7 = y,t, > 1 iff the point is on the right side of the margin
boundary.
e Black is misclassification error
o Transformed simple linear classifier, squared error:
(Yn - tn)z
o Transformed logistic regression, cross-entropy error: ¢, 1ny,

e SVM, hinge loss:
e positive only if the point is on the wrong side of the margin

boundary. Sparse solutions.

2




Non-Separable Data

Two Views of Learning as Optimization

e The original SVM goal was of the form:
o Find the simplest hypothesis that is consistent with the
data, or
e Maximize simplicity, given a consistency constraint.
e This general idea appears in much scientific model
building, in image processing, and other applications.
e Bayesian methods use a criterion of the form
e Find a trade-off between simplicity and data fit, or
o Maximize sum of the type (data fit - A simplicity)
e e.9., In(P(D|M)) — Ain(P(M)) where the model prior M is
higher for simpler models.



Non-Separable Data

Pros and Cons of Learning Criteria

The Bayesian approach has a solid probabilistic foundation
in Bayes’ theorem.

Seems to be especially suitable for noisy data.

The constraint-based approach is often easy for users to
understand.

Often leads to sparser simpler models.
Suitable for “clean” data.



Non-Separable Data

Conclusion

Readings: Ch. 6.1-6.2 (pp. 291-297)
Non-linear features, or domain-specific similarity
measurements are useful

Dot products of non-linear features, or similarity
measurements, can be written as kernel functions

¢ Validity by positive semi-definiteness of kernel function

Can have algorithm work in non-linear feature space
without actually mapping inputs to feature space

¢ Advantageous when feature space is high-dimensional
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