
Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Kernel Methods and Support Vector
Machines

Oliver Schulte - CMPT 726

Bishop PRML Ch. 6

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Support Vector Machines

Defining Characteristics
• Like logistic regression, good for continuous input features,

discrete target variable.
• Like nearest neighbor, a kernel method: classification is

based on weighted similar instances. The kernel defines
similarity measure.

• Sparsity: Tries to find a few important instances, the
support vectors.

• Intuition: Netflix recommendation system.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

SVMs: Pros and Cons

Pros
• Very good classification performance, basically

unbeatable.
• Fast and scaleable learning.
• Pretty fast inference.

Cons
• No model is built, therefore black-box.
• Still need to specify kernel function (like specifying basis

functions).
• Issues with multiple classes, can use probabilistic version.

(Relevance Vector Machine).

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Two Views of SVMs

Theoretical View: linear separator
• SVM looks for linear separator but in new feature space.
• Uses a new criterion to choose a line separating classes:

max-margin.
User View: kernel-based classification
• User specifies a kernel function.
• SVM learns weights for instances.
• Classification is performed by taking average of the labels

of other instances, weighted by a) similarity b) instance
weight.

Nice demo on web
http://www.youtube.com/watch?v=3liCbRZPrZA.

http://www.youtube.com/watch?v=3liCbRZPrZA

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Two Views of SVMs

Theoretical View: linear separator
• SVM looks for linear separator but in new feature space.
• Uses a new criterion to choose a line separating classes:

max-margin.
User View: kernel-based classification
• User specifies a kernel function.
• SVM learns weights for instances.
• Classification is performed by taking average of the labels

of other instances, weighted by a) similarity b) instance
weight.

Nice demo on web
http://www.youtube.com/watch?v=3liCbRZPrZA.

http://www.youtube.com/watch?v=3liCbRZPrZA

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Two Views of SVMs

Theoretical View: linear separator
• SVM looks for linear separator but in new feature space.
• Uses a new criterion to choose a line separating classes:

max-margin.
User View: kernel-based classification
• User specifies a kernel function.
• SVM learns weights for instances.
• Classification is performed by taking average of the labels

of other instances, weighted by a) similarity b) instance
weight.

Nice demo on web
http://www.youtube.com/watch?v=3liCbRZPrZA.

http://www.youtube.com/watch?v=3liCbRZPrZA

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Two Views of SVMs

Theoretical View: linear separator
• SVM looks for linear separator but in new feature space.
• Uses a new criterion to choose a line separating classes:

max-margin.
User View: kernel-based classification
• User specifies a kernel function.
• SVM learns weights for instances.
• Classification is performed by taking average of the labels

of other instances, weighted by a) similarity b) instance
weight.

Nice demo on web
http://www.youtube.com/watch?v=3liCbRZPrZA.

http://www.youtube.com/watch?v=3liCbRZPrZA

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Outline

Theoretical View

User View

Building Kernels

Computing the Max-Margin Classifier

Non-Separable Data

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Linear Classification Revisited

• Consider a two class classification problem
• Use a linear model

y(x) = w • x + b

followed by a threshold function
• For now, let’s assume training data are linearly separable

(possibly after mapping to higher-dimensional space).
• Recall that the perceptron would converge to a perfect

classifier for such data
• But there are many such perfect classifiers

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Max Margin Classifiers

y = 1
y = 0

y = −1

margin

• We can define the margin of a classifier as the minimum
distance to any example

• In support vector machines the decision boundary which
maximizes the margin is chosen.

• Intuitively, this is the line “right in the middle” between the
two classes.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Support Vectors

y = 1

y = 0

y = −1

• The support vectors are the points at minimum distance to
the decision boundary.

• The max-margin boundary depends only on the support
vectors: other data points do not matter for classification
and need not be stored.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Outline

Theoretical View

User View

Building Kernels

Computing the Max-Margin Classifier

Non-Separable Data

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Example: X-OR

• X-OR problem: class of (x1, x2) is positive iff x1 · x2 > 0.
• Not linearly separable in input space, but linearly separable

if we add extra dimensions.
• Use 6 basis functions
φ(x1, x2) = (1,

√
2x1,
√

2x2, x2
1,
√

2x1x2, x2
2).

• Simple classifier y(x1, x2) = φ5(x1, x2) =
√

2x1x2.
• Linear in basis function space.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Example: X-OR

• X-OR problem: class of (x1, x2) is positive iff x1 · x2 > 0.
• Not linearly separable in input space, but linearly separable

if we add extra dimensions.
• Use 6 basis functions
φ(x1, x2) = (1,

√
2x1,
√

2x2, x2
1,
√

2x1x2, x2
2).

• Simple classifier y(x1, x2) = φ5(x1, x2) =
√

2x1x2.
• Linear in basis function space.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Linear Separability Example

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1 Decision Boundary x2
1 + x2

2 ≤ 1

0
0.5

1
1.5

2x1
2 0.5

1
1.5

2
2.5

x2
2

-3
-2
-1
0
1
2
3

32x1x2

3-D mapping (x2
1, x

2
2,
√

2x1x2).

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Linear Separability Example

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1 Decision Boundary x2
1 + x2

2 ≤ 1

0
0.5

1
1.5

2x1
2 0.5

1
1.5

2
2.5

x2
2

-3
-2
-1
0
1
2
3

32x1x2

3-D mapping (x2
1, x

2
2,
√

2x1x2).

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

The Kernel Trick

• There can be many extra dimensions, even infinite (see
assignment).

• Don’t want to compute basis function mapping φ(x).

• Key insight 1: Linear classification requires only the dot
product.

• Key insight 2: The high-dimensional dot product
φ(x) • φ(z) can often be computed as a kernel function of
the input vectors only:

φ(x) • φ(z) = k(x, z).

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Kernel Trick Example

• Consider again the X-OR 6 basis functions
φ(x1, x2) = (1,

√
2x1,
√

2x2, x2
1,
√

2x1x2, x2
2).

• Exercise: find a closed form expression for φ(x) • φ(z)
• Solution: Dot product φ(x) • φ(z) = (1 + x • z)2 = k(x, z).
• A quadratic kernel.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Kernel Trick Example

• Consider again the X-OR 6 basis functions
φ(x1, x2) = (1,

√
2x1,
√

2x2, x2
1,
√

2x1x2, x2
2).

• Exercise: find a closed form expression for φ(x) • φ(z)
• Solution: Dot product φ(x) • φ(z) = (1 + x • z)2 = k(x, z).
• A quadratic kernel.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

The Kernel Classification Formula

• Suppose we have a kernel function k and N labelled
instances with weights an ≥ 0, n = 1, . . . ,N.

• As with the perceptron, the target labels +1 are for positive
class, -1 for negative class.

• Then

y(x) =

N∑
n=1

antnk(x, xn) + b

• x is classified as positive if y(x) > 0, negative otherwise.
• If an > 0, then xn is a support vector.
• Don’t need to store other vectors.
• a will be sparse - many zeros.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Example1

• SVM with Gaussian kernel
• Support vectors circled.
• They are the closest to the other class.
• Note non-linear decision boundary in x space

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Example2

21

4.3. Some Examples of Nonlinear SVMs

The first kernels investigated for the pattern recognition problem were the following:

K(x,y) = (x · y + 1)p (74)

K(x,y) = e−‖x−y‖2/2σ2

(75)

K(x,y) = tanh(κx · y − δ) (76)

Eq. (74) results in a classifier that is a polynomial of degree p in the data; Eq. (75) gives
a Gaussian radial basis function classifier, and Eq. (76) gives a particular kind of two-layer
sigmoidal neural network. For the RBF case, the number of centers (NS in Eq. (61)),
the centers themselves (the si), the weights (αi), and the threshold (b) are all produced
automatically by the SVM training and give excellent results compared to classical RBFs,
for the case of Gaussian RBFs (Schölkopf et al, 1997). For the neural network case, the
first layer consists of NS sets of weights, each set consisting of dL (the dimension of the
data) weights, and the second layer consists of NS weights (the αi), so that an evaluation
simply requires taking a weighted sum of sigmoids, themselves evaluated on dot products of
the test data with the support vectors. Thus for the neural network case, the architecture
(number of weights) is determined by SVM training.

Note, however, that the hyperbolic tangent kernel only satisfies Mercer’s condition for
certain values of the parameters κ and δ (and of the data ‖x‖2). This was first noticed
experimentally (Vapnik, 1995); however some necessary conditions on these parameters for
positivity are now known14.

Figure 9 shows results for the same pattern recognition problem as that shown in Figure
7, but where the kernel was chosen to be a cubic polynomial. Notice that, even though
the number of degrees of freedom is higher, for the linearly separable case (left panel), the
solution is roughly linear, indicating that the capacity is being controlled; and that the
linearly non-separable case (right panel) has become separable.

Figure 9. Degree 3 polynomial kernel. The background colour shows the shape of the decision surface.

Finally, note that although the SVM classifiers described above are binary classifiers, they
are easily combined to handle the multiclass case. A simple, effective combination trains

21

4.3. Some Examples of Nonlinear SVMs

The first kernels investigated for the pattern recognition problem were the following:

K(x,y) = (x · y + 1)p (74)

K(x,y) = e−‖x−y‖2/2σ2
(75)

K(x,y) = tanh(κx · y − δ) (76)

Eq. (74) results in a classifier that is a polynomial of degree p in the data; Eq. (75) gives
a Gaussian radial basis function classifier, and Eq. (76) gives a particular kind of two-layer
sigmoidal neural network. For the RBF case, the number of centers (NS in Eq. (61)),
the centers themselves (the si), the weights (αi), and the threshold (b) are all produced
automatically by the SVM training and give excellent results compared to classical RBFs,
for the case of Gaussian RBFs (Schölkopf et al, 1997). For the neural network case, the
first layer consists of NS sets of weights, each set consisting of dL (the dimension of the
data) weights, and the second layer consists of NS weights (the αi), so that an evaluation
simply requires taking a weighted sum of sigmoids, themselves evaluated on dot products of
the test data with the support vectors. Thus for the neural network case, the architecture
(number of weights) is determined by SVM training.

Note, however, that the hyperbolic tangent kernel only satisfies Mercer’s condition for
certain values of the parameters κ and δ (and of the data ‖x‖2). This was first noticed
experimentally (Vapnik, 1995); however some necessary conditions on these parameters for
positivity are now known14.

Figure 9 shows results for the same pattern recognition problem as that shown in Figure
7, but where the kernel was chosen to be a cubic polynomial. Notice that, even though
the number of degrees of freedom is higher, for the linearly separable case (left panel), the
solution is roughly linear, indicating that the capacity is being controlled; and that the
linearly non-separable case (right panel) has become separable.

Figure 9. Degree 3 polynomial kernel. The background colour shows the shape of the decision surface.

Finally, note that although the SVM classifiers described above are binary classifiers, they
are easily combined to handle the multiclass case. A simple, effective combination trains

• From Burges, A Tutorial on Support Vector Machines for
Pattern Recognition (1998)

• SVM trained using cubic polynomial kernel
k(x1, x2) = (x1 • x2 + 1)3

• Left is linearly separable
• Note decision boundary is almost linear, even using cubic

polynomial kernel
• Right is not linearly separable

• But is separable using polynomial kernel

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Learning the Instance Weights
• The max-margin classifier is found by solving the following

problem:
• Maximize wrt a

L̃(a) =
N∑

n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm)

subject to the constraints
• an ≥ 0, n = 1, . . . ,N
•
∑N

n=1 antn = 0

• It is quadratic, with linear constraints, convex in a
• Optimal a can be found

• With large datasets, local search strategies employed

let’s check SVM demo
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Learning the Instance Weights
• The max-margin classifier is found by solving the following

problem:
• Maximize wrt a

L̃(a) =
N∑

n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm)

subject to the constraints
• an ≥ 0, n = 1, . . . ,N
•
∑N

n=1 antn = 0

• It is quadratic, with linear constraints, convex in a
• Optimal a can be found

• With large datasets, local search strategies employed

let’s check SVM demo
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Outline

Theoretical View

User View

Building Kernels

Computing the Max-Margin Classifier

Non-Separable Data

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Valid Kernels

• Valid kernels: if k(·, ·) satisfies:
• Symmetric; k(xi, xj) = k(xj, xi)
• Positive definite; for any x1, . . . , xN , the Gram matrix K must

be positive semi-definite:

K =

 k(x1, x1) k(x1, x2) . . . k(x1, xN)
...

...
. . .

...
k(xN , x1) k(xN , x2) . . . k(xN , xN)

• Positive semi-definite means x • Kx ≥ 0 for all x (like metric)

then k(·, ·) corresponds to a dot product in some space φ
• a.k.a. Mercer kernel, admissible kernel, reproducing kernel
• Theorem of Mercer’s 1909!

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Examples of Kernels

• Some kernels:
• Linear kernel k(x1, x2) = x1 • x2
• Polynomial kernel k(x1, x2) = (1 + x1 • x2)

d

• Contains all polynomial terms up to degree d
• Gaussian kernel k(x1, x2) = exp(−||x1 − x2||2/2σ2)

• Infinite dimension feature space

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Constructing Kernels

• Can build new valid kernels from existing valid ones:
• k(x1, x2) = ck1(x1, x2), c > 0
• k(x1, x2) = k1(x1, x2) + k2(x1, x2)
• k(x1, x2) = k1(x1, x2)k2(x1, x2)
• k(x1, x2) = exp(k1(x1, x2))

• Table on p. 296 gives many such rules

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

More Kernels

• Stationary kernels are only a function of the difference
between arguments: k(x1, x2) = k(x1 − x2)

• Translation invariant in input space:
k(x1, x2) = k(x1 + c, x2 + c)

• Homogeneous kernels, a. k. a. radial basis functions only a
function of magnitude of difference: k(x1, x2) = k(||x1 − x2||)

• Set subsets k(A1,A2) = 2|A1∩A2|, where |A| denotes number
of elements in A

• Domain-specific: think hard about your problem, figure out
what it means to be similar, define as k(·, ·), prove positive
definite.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Outline

Theoretical View

User View

Building Kernels

Computing the Max-Margin Classifier

Non-Separable Data

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Marginal Geometry
x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1

• See assignment.
• Projection of x in w dir. is w•x

||w||

• y(x) = 0 when w • x = −b, or w•x
||w|| =

−b
||w||

• So w•x
||w|| − −b

||w|| =
y(x)
||w|| is signed distance to decision

boundary

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Support Vectors

y = 1

y = 0

y = −1

• Assuming data are separated by the hyperplane, distance
to decision boundary is tny(xn)

||w||
• The maximum margin criterion chooses w, b by:

arg max
w,b

{
1
||w|| min

n
[tn(w • xn + b)]

}
• Points with this min value are known as support vectors

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Canonical Representation
• This optimization problem is complex:

arg max
w,b

{
1
||w|| min

n
[tn(w • xn) + b)]

}
• Exercise: Prove that rescaling w→ κw and b→ κb does

not change distance tny(xn)
||w|| (many equiv. answers)

• So for x∗ closest to surface, can set (how?):

t∗(w • x∗ + b) = 1

• All other points are at least this far away:

∀n , tn(w • xn + b) ≥ 1

• Knowing that min distance = 1, the optimization becomes:

arg max
w,b

1
||w|| = arg min

w,b

1
2
||w||2

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Canonical Representation
• This optimization problem is complex:

arg max
w,b

{
1
||w|| min

n
[tn(w • xn) + b)]

}
• Exercise: Prove that rescaling w→ κw and b→ κb does

not change distance tny(xn)
||w|| (many equiv. answers)

• So for x∗ closest to surface, can set (how?):

t∗(w • x∗ + b) = 1

• All other points are at least this far away:

∀n , tn(w • xn + b) ≥ 1

• Knowing that min distance = 1, the optimization becomes:

arg max
w,b

1
||w|| = arg min

w,b

1
2
||w||2

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Canonical Representation
• This optimization problem is complex:

arg max
w,b

{
1
||w|| min

n
[tn(w • xn) + b)]

}
• Exercise: Prove that rescaling w→ κw and b→ κb does

not change distance tny(xn)
||w|| (many equiv. answers)

• So for x∗ closest to surface, can set (how?):

t∗(w • x∗ + b) = 1

• All other points are at least this far away:

∀n , tn(w • xn + b) ≥ 1

• Knowing that min distance = 1, the optimization becomes:

arg max
w,b

1
||w|| = arg min

w,b

1
2
||w||2

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Canonical Representation
• This optimization problem is complex:

arg max
w,b

{
1
||w|| min

n
[tn(w • xn) + b)]

}
• Exercise: Prove that rescaling w→ κw and b→ κb does

not change distance tny(xn)
||w|| (many equiv. answers)

• So for x∗ closest to surface, can set (how?):

t∗(w • x∗ + b) = 1

• All other points are at least this far away:

∀n , tn(w • xn + b) ≥ 1

• Knowing that min distance = 1, the optimization becomes:

arg max
w,b

1
||w|| = arg min

w,b

1
2
||w||2

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Canonical Representation

• So the optimization problem is now a constrained
optimization problem:

arg min
w,b

1
2
||w||2

s.t. ∀n , tn(w • xn + b) ≥ 1

• To solve this, we need to use Lagrange multipliers

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Lagrange Multipliers - Inequality Constraints
rf(x)

rg(x)

xA

xB

g(x) = 0
g(x) > 0

Consider the problem:

min
x

f (x)

s.t. g1(x) ≥ 0, . . . , gN(x) ≥ 0

Solutions are stationary points of the Lagrangian

L(x, a) = f (x)−
N∑

n=1

angn(x)

where for each n we have the KKT conditions,
• an ≥ 0
• gn(x) ≥ 0
• angn(x) = 0

Therefore an = 0 (inactive constraint) or gn(x) = 0 (active
constraint).

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Lagrange Multipliers - Inequality Constraints
rf(x)

rg(x)

xA

xB

g(x) = 0
g(x) > 0

Consider the problem:

min
x

f (x)

s.t. g1(x) ≥ 0, . . . , gN(x) ≥ 0

Solutions are stationary points of the Lagrangian

L(x, a) = f (x)−
N∑

n=1

angn(x)

where for each n we have the KKT conditions,
• an ≥ 0
• gn(x) ≥ 0
• angn(x) = 0

Therefore an = 0 (inactive constraint) or gn(x) = 0 (active
constraint).

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Now Where Were We
• So the optimization problem is now a constrained

optimization problem:

arg min
w,b

||w||2
2

s.t. ∀n , tn(w • xn + b) ≥ 1

• For this problem, the Lagrangian (with N multipliers an) is:

L(w, b, a) =
||w||2

2
−

N∑
n=1

an {tn(w • xn + b)− 1}

• We can find the derivatives of L wrt w, b and set to 0:

w =

N∑
n=1

antnxn

0 =

N∑
n=1

antn

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

The Dual Formulation

• Recall the condition:

w =

N∑
n=1

antnxn

• Exercise: Show that ||w||
2

2 = 1
2
∑N

n=1
∑N

m=1 anamtntm(xn • xm).
• Exercise: Show that

N∑
n=1

an {tn(w • xn + b)− 1} =

N∑
n=1

N∑
m=1

anamtntm(xn • xm) + b
N∑

n=1

antn −
N∑

n=1

an

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Solving The Dual Formulation
• Combining the exercise results, we obtain the dual

Lagrangian as a function of the Lagrange multipliers only:

L̃(a) =
N∑

n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntm(xn • xm)

• The stationary points of L̃ provide lower bounds on the
original problem, so we want to maximize L̃ (see http:
//en.wikipedia.org/wiki/Lagrange_duality).

• Apply the kernel trick to replace • with kernel k, and
remember the constraints on the Lagrange multipliers, to
arrive at the following problem:

• Maximize L̃(a) =
∑N

n=1 an − 1
2
∑N

n=1
∑N

m=1 anamtntmk(xn, xm)
subject to the constraints that

• an ≥ 0, n = 1, . . . ,N
•
∑N

n=1 antn = 0

http://en.wikipedia.org/wiki/Lagrange_duality
http://en.wikipedia.org/wiki/Lagrange_duality

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

From The Dual Solution a to a Classifier

• Given the solution a, we have formulas for w and for b
(omitted). Then classify as follows:

w =

N∑
n=1

antnφ(xn)

y(x) = w • φ(x) + b =

N∑
n=1

antnk(x, xn) + b

• Recall that every constraint is either inactive (an = 0) or
active (an > 0 and tny(xn) = 1).

• If an > 0, then xn is a support vector.
• a will be sparse - many zeros.

• Don’t need to store xn for which an = 0

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Outline

Theoretical View

User View

Building Kernels

Computing the Max-Margin Classifier

Non-Separable Data

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Non-Separable Data

y = 1

y = 0

y = �1

⇠ > 1

⇠ < 1

⇠ = 0

⇠ = 0

• For most problems, data will not be linearly separable
(even in feature space φ)

• Can relax the constraints from

tny(xn) ≥ 1 to tny(xn) ≥ 1− ξn

• The ξn ≥ 0 are called slack variables
• ξn = 0, satisfy original problem, so xn is on margin or correct

side of margin
• 0 < ξn < 1, inside margin, but still correctly classifed
• ξn > 1, mis-classified

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Loss Function For Non-separable Data

y = 1

y = 0

y = �1

⇠ > 1

⇠ < 1

⇠ = 0

⇠ = 0

• Non-zero slack variables are bad, penalize while
maximizing the margin:

min C
N∑

n=1

ξn +
1
2
||w||2

• Constant C > 0 controls importance of large margin versus
incorrect (non-zero slack)

• Set using cross-validation
• Optimization is same quadratic, different constraints,

convex

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

SVM Loss Function
• The SVM for the separable case solved the problem:

arg min
w

1
2
||w||2

s.t. ∀n , tnyn ≥ 1

• Can write this as:

arg min
w

N∑
n=1

E∞(tnyn) + λ||w||2

where E∞(z) = 0 if z ≥ 1,∞ otherwise
• Non-separable case relaxes this to be:

arg min
w

N∑
n=1

ESV(tnyn) + λ||w||2

where ESV(z) = [z]+ hinge loss
• [z]+ = z if u ≤ 1, 0 otherwise

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

SVM Loss Function
• The SVM for the separable case solved the problem:

arg min
w

1
2
||w||2

s.t. ∀n , tnyn ≥ 1

• Can write this as:

arg min
w

N∑
n=1

E∞(tnyn) + λ||w||2

where E∞(z) = 0 if z ≥ 1,∞ otherwise
• Non-separable case relaxes this to be:

arg min
w

N∑
n=1

ESV(tnyn) + λ||w||2

where ESV(z) = [z]+ hinge loss
• [z]+ = z if u ≤ 1, 0 otherwise

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

SVM Loss Function
• The SVM for the separable case solved the problem:

arg min
w

1
2
||w||2

s.t. ∀n , tnyn ≥ 1

• Can write this as:

arg min
w

N∑
n=1

E∞(tnyn) + λ||w||2

where E∞(z) = 0 if z ≥ 1,∞ otherwise
• Non-separable case relaxes this to be:

arg min
w

N∑
n=1

ESV(tnyn) + λ||w||2

where ESV(z) = [z]+ hinge loss
• [z]+ = z if u ≤ 1, 0 otherwise

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Loss Functions

�2 �1 0 1 2
z

E(z)

• Linear classifiers, compare loss function used for learning
• z = yntn ≤ 0 iff there is an error (with tn ∈ {+1,−1}).
• z = yntn ≥ 1 iff the point is on the right side of the margin

boundary.
• Black is misclassification error
• Transformed simple linear classifier, squared error:

(yn − tn)2

• Transformed logistic regression, cross-entropy error: tn ln yn
• SVM, hinge loss:

• positive only if the point is on the wrong side of the margin
boundary. Sparse solutions.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Two Views of Learning as Optimization

• The original SVM goal was of the form:
• Find the simplest hypothesis that is consistent with the

data, or
• Maximize simplicity, given a consistency constraint.

• This general idea appears in much scientific model
building, in image processing, and other applications.

• Bayesian methods use a criterion of the form
• Find a trade-off between simplicity and data fit, or
• Maximize sum of the type (data fit - λ simplicity)
• e.g., ln(P(D|M))− λln(P(M)) where the model prior M is

higher for simpler models.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Pros and Cons of Learning Criteria

• The Bayesian approach has a solid probabilistic foundation
in Bayes’ theorem.

• Seems to be especially suitable for noisy data.
• The constraint-based approach is often easy for users to

understand.
• Often leads to sparser simpler models.
• Suitable for “clean” data.

Theoretical View User View Building Kernels Computing the Max-Margin Classifier Non-Separable Data

Conclusion

• Readings: Ch. 6.1-6.2 (pp. 291-297)
• Non-linear features, or domain-specific similarity

measurements are useful
• Dot products of non-linear features, or similarity

measurements, can be written as kernel functions
• Validity by positive semi-definiteness of kernel function

• Can have algorithm work in non-linear feature space
without actually mapping inputs to feature space

• Advantageous when feature space is high-dimensional

	Theoretical View
	User View
	Building Kernels
	Computing the Max-Margin Classifier
	Non-Separable Data

