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Neural Networks

• Neural networks arise from attempts to model
human/animal brains

• Many models, many claims of biological plausibility
• We will focus on multi-layer perceptrons

• Mathematical properties rather than plausibility
• Prof. Hadley CMPT418
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Uses of Neural Networks

• Pros
• Good for continuous input variables.
• General continuous function approximators.
• Highly non-linear.
• Learn feature functions.
• Good to use in continuous domains with little knowledge:

• When you don’t know good features.
• You don’t know the form of a good functional model.

• Cons
• Not interpretable, “black box”.
• Learning is slow.
• Good generalization can require many datapoints.
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Applications

There are many, many applications.
• World-Champion Backgammon Player.
http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon

• No Hands Across America Tour.
http://www.cs.cmu.edu/afs/cs/usr/tjochem/
www/nhaa/nhaa_home_page.html

• Digit Recognition with 99.26% accuracy.
• ...

http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
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Feed-forward Networks

• We have looked at generalized linear models of the form:

y(x,w) = f

 M∑
j=1

wjφj(x)


for fixed non-linear basis functions φ(·)

• We now extend this model by allowing adaptive basis
functions, and learning their parameters

• In feed-forward networks (a.k.a. multi-layer perceptrons)
we let each basis function be another non-linear function of
linear combination of the inputs:

φj(x) = f

 M∑
j=1

. . .


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Feed-forward Networks
• Starting with input x = (x1, . . . , xD), construct linear

combinations:

aj =

D∑
i=1

w(1)
ji xi + w(1)

j0

These aj are known as activations
• Pass through an activation function h(·) to get output

zj = h(aj)
• Model of an individual neuron

from Russell and Norvig, AIMA2e
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Activation Functions

• Can use a variety of activation functions
• Sigmoidal (S-shaped)

• Logistic sigmoid 1/(1 + exp(−a)) (useful for binary
classification)

• Hyperbolic tangent tanh
• Radial basis function zj =

∑
i(xi − wji)

2

• Softmax
• Useful for multi-class classification

• Hard Threshold
• . . .

• Should be differentiable for gradient-based learning (later)
• Can use different activation functions in each unit



Feed-forward Networks Network Training Error Backpropagation Applications

Feed-forward Networks

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

• Connect together a number of these units into a
feed-forward network (DAG)

• Above shows a network with one layer of hidden units
• Implements function:

yk(x,w) = h

 M∑
j=1

w(2)
kj h

(
D∑

i=1

w(1)
ji xi + w(1)

j0

)
+ w(2)

k0


• See http://aispace.org/neural/.

http://aispace.org/neural/
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A general network

wkj

z1

wji

z2 zk zc... ...

... ...

... ...

... ...

x1 x2 xi xd... ...

output z

x1 x2 xi xd

y1 y2 yj ynH

t1 t2 tk tctarget t

input x

output

hidden

input

FIGURE 6.4. A d-nH-c fully connected three-layer network and the notation we shall
use. During feedforward operation, a d-dimensional input pattern x is presented to the
input layer; each input unit then emits its corresponding component xi. Each of the nH

hidden units computes its net activation, netj, as the inner product of the input layer sig-
nals with weights wji at the hidden unit. The hidden unit emits yj = f (netj), where f (·)
is the nonlinear activation function, shown here as a sigmoid. Each of the c output units
functions in the same manner as the hidden units do, computing netk as the inner prod-
uct of the hidden unit signals and weights at the output unit. The final signals emitted by
the network, zk = f (netk), are used as discriminant functions for classification. During
network training, these output signals are compared with a teaching or target vector t,
and any difference is used in training the weights throughout the network. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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The XOR Problem Revisited
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FIGURE 6.1. The two-bit parity or exclusive-OR problem can be solved by a three-
layer network. At the bottom is the two-dimensional feature x1x2-space, along with the
four patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their feature values through multiplicative weights
to the hidden units. The hidden and output units here are linear threshold units, each
of which forms the linear sum of its inputs times their associated weight to yield net,
and emits a +1 if this net is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive or “excitatory” weights are denoted by solid lines, negative or
“inhibitory” weights by dashed lines; each weight magnitude is indicated by the line’s
thickness, and is labeled. The single output unit sums the weighted signals from the
hidden units and bias to form its net, and emits a +1 if its net is greater than or equal
to 0 and emits a −1 otherwise. Within each unit we show a graph of its input-output
or activation function—f (net) versus net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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The XOR Problem Solved
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of which forms the linear sum of its inputs times their associated weight to yield net,
and emits a +1 if this net is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive or “excitatory” weights are denoted by solid lines, negative or
“inhibitory” weights by dashed lines; each weight magnitude is indicated by the line’s
thickness, and is labeled. The single output unit sums the weighted signals from the
hidden units and bias to form its net, and emits a +1 if its net is greater than or equal
to 0 and emits a −1 otherwise. Within each unit we show a graph of its input-output
or activation function—f (net) versus net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
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bias) in successive layers. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Hidden Units Compute Basis Functions

• red dots = network function
• dashed line = hidden unit activation function.
• blue dots = data points

Network function is roughly the sum of activation functions.
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Hidden Units As Feature Extractors
sample training patterns

learned input-to-hidden weights

...

...

...

FIGURE 6.13. The top images represent patterns from a large training set used to train a
64-2-3 sigmoidal network for classifying three characters. The bottom figures show the
input-to-hidden weights, represented as patterns, at the two hidden units after training.
Note that these learned weights indeed describe feature groupings useful for the clas-
sification task. In large networks, such patterns of learned weights may be difficult to
interpret in this way. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

• 64 input nodes
• 2 hidden units
• learned weight matrix at hidden units
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Network Training

• Given a specified network structure, how do we set its
parameters (weights)?

• As usual, we define a criterion to measure how well our
network performs, optimize against it

• For regression, training data are (xn, t), tn ∈ R
• Squared error naturally arises:

E(w) =
N∑

n=1

{y(xn,w)− tn}2
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Parameter Optimization

w1

w2

E(w)

wA wB wC

∇E

• For either of these problems, the error function E(w) is
nasty

• Nasty = non-convex
• Non-convex = has local minima
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Descent Methods

• The typical strategy for optimization problems of this sort is
a descent method:

w(τ+1) = w(τ) + ηw(τ)

• These come in many flavours
• Gradient descent ∇E(w(τ))
• Stochastic gradient descent ∇En(w(τ))
• Newton-Raphson (second order) ∇2

• All of these can be used here, stochastic gradient descent
is particularly effective

• Redundancy in training data, escaping local minima
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Computing Gradients

• The function y(xn,w) implemented by a network is
complicated

• It isn’t obvious how to compute error function derivatives
with respect to hidden weights.

• The credit assignment problem.
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Error Backpropagation

• Backprop is an efficient method for computing error
derivatives ∂En

∂wji
for all nodes in the network. Intuition:

1. Calculating derivatives for weights connected to output
nodes is easy.

2. Treat the derivatives as virtual “error”, compute derivative of
error for nodes in previous layer.

3. Repeat until you reach input nodes.

• This procedure propagates backwards the output error
signal through the network.
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Error at the output nodes

• First, feed training example xn forward through the network,
storing all activations aj

• Calculating derivatives for weights connected to output
nodes is easy

• e.g. For output node with activation
yk = g(ak) = g(

∑
i wkizi):

∂En

∂wki
=

∂

∂wki

1
2
(tn − yk)

2 = −(tn − yk)g′(ak)zi

• 0 if no error, or if input zi from node i is 0.
• Useful notation: δk ≡ (tn − yk)g′(ak).
• Gradient Descent Update:

wki ← wki + ηδkzi.
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Error at the hidden nodes

• Consider a hidden node j connected to output nodes.
• Intuition: δk is node activation derivative, times output error.
• The error signal δj is node activation derivative, times the

weighted sum of contributions to the output errors.
• In symbols,

δj = g′(aj)
∑

k

wkjδk.

• Gradient Descent Update:

wji ← wji + ηδjzi.
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Backpropagation Picture

wkj

ω1

... ...

ω2 ω3 ωk ωc

output

hidden

input

wij

δ1 δ2 δ3 δk δc

δj

FIGURE 6.5. The sensitivity at a hidden unit is proportional to the weighted sum of the
sensitivities at the output units: δj = f ′(netj)

∑c
k=1 wkjδk . The output unit sensitivities are

thus propagated “back” to the hidden units. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

The error signal at a hidden unit is proportional to the error
signals at the units it influences:

δj = g′(aj)×
∑

k

wkjδk
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The Backpropagation Algorithm

1. Apply input vector xn and forward propagate to find all
activation levels ai and output levels zi.

2. Evaluate the error signals δk for all output nodes.
3. Backpropagate the δk to obtain error signals δj for each

hidden node.
4. Perform the gradient descent updates for each weight

vector wji.

Demo AIspace http://aispace.org/neural/.

http://aispace.org/neural/
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Correctness Proof for Backpropagation Algorithm.

aj#
#

zi=#g(ai)#ai#
wji#

• We need to show that −∂En
wji

= δjzi.

• This follows easily given the following result

Theorem
For each node j, we have δj = −∂En

aj
.

• Proof given theorem: −∂En
wji

= −∂En
aj
· ∂aj
∂wji

= δj · zi.

• Next we prove the theorem.
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Multi-variate Chain Rule

f"

x"
u"

y"

• For f (x, y), with f differentiable wrt x and y, and x and y
differentiable wrt u and v:

∂f
∂u

=
∂f
∂x
∂x
∂u

+
∂f
∂y
∂y
∂u

and

∂f
∂v

=
∂f
∂x
∂x
∂v

+
∂f
∂y
∂y
∂v
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Proof of Theorem, I

• We want to show that δj = −∂En
aj

.

• Think of the error as a function of the activation levels of
the nodes after node j.

• Formally, we can write ∂En
∂aj

= ∂
∂aj

En(aj1 , aj2 , . . . , ajm) where
{ji} are the indices of the nodes that receive input from j.

• Now using the multi-variate chain rule, we have

∂En

∂aj
=

m∑
k=1

∂En

∂ak

∂ak

∂aj

• It is easy to see that ∂ak
∂aj

= wkj · g′(zj).

ak#zj=#g(aj)#aj#
wkj#
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Proof of Theorem, II

• We want to show that δj = −∂En
aj

.

• Proof by backward induction. Easy to see that the claim is
true for output nodes. (Exercise).

• Inductive step: Consider node j and suppose that
δk = −∂En

ak
for all nodes k that receive input from j.

• Using the multivariate chain rule, we have

−∂En

∂aj
=

m∑
k=1

−∂En

∂ak

∂ak

∂aj

=

m∑
k=1

δk
∂ak

∂aj
=

m∑
k=1

δkwkjg′(zj) = δj.

where step 1 applies the inductive hypothesis, step 2 the
result from the previous slide, and step 3 the definition of δj.
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Other Learning Topics

• Regularization: L2-regularizer (weight decay).
• Prune Weights: the Optimal Brain Method.
• Experimenting with Network Architectures is often key.
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Applications of Neural Networks

• Many success stories for neural networks
• Credit card fraud detection
• Hand-written digit recognition
• Face detection
• Autonomous driving (CMU ALVINN)
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Hand-written Digit Recognition

• MNIST - standard dataset for hand-written digit recognition
• 60000 training, 10000 test images
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LeNet-5

INPUT 

32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT

 10

• LeNet developed by Yann LeCun et al.
• Convolutional neural network

• Local receptive fields (5x5 connectivity)
• Subsampling (2x2)
• Shared weights (reuse same 5x5 “filter”)
• Breaking symmetry

• See
http://www.codeproject.com/KB/library/NeuralNetRecognition.aspx
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• The 82 errors made by LeNet5 (0.82% test error rate)
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Conclusion

• Feed-forward networks can be used for regression or
classification

• Similar to linear models, except with adaptive non-linear
basis functions

• These allow us to do more than e.g. linear decision
boundaries

• Different error functions
• Learning is more difficult, error function not convex

• Use stochastic gradient descent, obtain (good?) local
minimum

• Backpropagation for efficient gradient computation


	Feed-forward Networks
	Network Training
	Error Backpropagation
	Applications

