Feed-forward Networks Network Training Error Backpropagation Applications

Artificial Neural Networks
Oliver Schulte - CMPT 726

Feed-forward Networks Network Training Error Backpropagation Applications

Neural Networks

¢ Neural networks arise from attempts to model
human/animal brains

¢ Many models, many claims of biological plausibility
e We will focus on multi-layer perceptrons
o Mathematical properties rather than plausibility
e Prof. Hadley CMPT418

Uses of Neural Networks

e Pros

Good for continuous input variables.

General continuous function approximators.

Highly non-linear.

Learn feature functions.

Good to use in continuous domains with little knowledge:
e When you don’t know good features.
e You don’t know the form of a good functional model.

e Cons

e Not interpretable, “black box”.
e Learning is slow.
e Good generalization can require many datapoints.

Applications

There are many, many applications.

e World-Champion Backgammon Player.
http://en.wikipedia.org/wiki/TD—-Gammon
http://en.wikipedia.org/wiki/Backgammon

e No Hands Across America Tour.
http://www.cs.cmu.edu/afs/cs/usr/tjochem/
www/nhaa/nhaa_home_page.html

¢ Digit Recognition with 99.26% accuracy.

http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html

Feed-forward Networks Network Training Error Backpropagation Applications

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Applications

Feed-forward Networks Network Training Error Backpropagation Applications

Outline

Feed-forward Networks

Feed-forward Networks

Feed-forward Networks

e We have looked at generalized linear models of the form:
M
yw) =1 Y wigi(x)
j=1

for fixed non-linear basis functions ¢(-)

¢ We now extend this model by allowing adaptive basis
functions, and learning their parameters

Feed-forward Networks

Feed-forward Networks

e We have looked at generalized linear models of the form:
M
yw) =1 Y wigi(x)
j=1

for fixed non-linear basis functions ¢(-)
¢ We now extend this model by allowing adaptive basis
functions, and learning their parameters
e In feed-forward networks (a.k.a. multi-layer perceptrons)
we let each basis function be another non-linear function of
linear combination of the inputs:

Feed-forward Networks Network Training Error Backpropagation Applications

Feed-forward Networks

e Starting with input x = (x1,...,xp), construct linear

combinations:
Y

These a; are known as activations

from Russell and Norvig, AIMA2e

Feed-forward Networks Network Training Error Backpropagation Applications

Feed-forward Networks

e Starting with input x = (x1,...,xp), construct linear

combinations:
Z w x, + w

These a; are known as activations
e Pass through an activation function i(-) to get output
zj = h(aj)
e Model of an individual neuron

from Russell and Norvig, AIMA2e

Feed-forward Networks

Feed-forward Networks

e Starting with input x = (x1,...,xp), construct linear
combinations:

D

1 1

aj= 3wy xi iy’
i=1

These a; are known as activations
e Pass through an activation function i(-) to get output
zj = h(aj)
e Model of an individual neuron

x_0=-1 DBias Weight

w_j0o
x_1 w_j1
\] h
a_j I
—A\x
D /
Input Input Activation Qutput
Links Function Function Output Links

from Russell and Norvig, AIMA2e

Feed-forward Networks

Activation Functions

e Can use a variety of activation functions
¢ Sigmoidal (S-shaped)
e Logistic sigmoid 1/(1 + exp(—a)) (useful for binary
classification)
e Hyperbolic tangent tanh
Radial basis function z; = >, (x; — w;)?
Softmax
e Useful for multi-class classification

Hard Threshold

¢ Should be differentiable for gradient-based learning (later)
e Can use different activation functions in each unit

Feed-forward Networks

Feed-forward Networks

hidden units

Connect together a number of these units into a
feed-forward network (DAG)

Above shows a network with one layer of hidden units
Implements function:

M
e, w) = h (Z wig (ZW Xi 4 W) + w%))
Jj=1

See http://aispace.org/neural/:

http://aispace.org/neural/

Feed-forward Networks Network Training Error Backpropagation Applications
A general network

target t 1 IR cee 1 cee 1,
output z

output

hidden

input

input x X; X coe X; cos Xy

Feed-forward Networks Network Training Error Backpropagation

The XOR Problem Revisited
X,

Applications

Feed-forward Networks Network Training Error Backpropagation Applications

The XOR Problem Solved

output k

hidden j

input i

X X

Feed-forward Networks Network Training Error Backpropagation Applications

Hidden Units Compute Basis Functions

e red dots = network function
e dashed line = hidden unit activation function.
e blue dots = data points
Network function is roughly the sum of activation functions.

Feed-forward Networks Network Training Error Backpropagation Applications

Hidden Units As Feature Extractors

sEsEs
E &R

]

learned input-to-hidden weights

[T T

5

o

e
;

e 64 input nodes
¢ 2 hidden units
¢ |learned weight matrix at hidden units

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Applications

«O>» «F»r « =)

<

DA

Network Training

Network Training

e Given a specified network structure, how do we set its
parameters (weights)?
e As usual, we define a criterion to measure how well our
network performs, optimize against it

Network Training

Network Training

e Given a specified network structure, how do we set its
parameters (weights)?

e As usual, we define a criterion to measure how well our
network performs, optimize against it

e For regression, training data are (x,,t), t, € R
e Squared error naturally arises:

Z{y Xn, W tn}z

Feed-forward Networks Network Training Error Backpropagation Applications

Parameter Optimization
E(w)

L] "
W7 WpR

Wc

w2 VE

o For either of these problems, the error function E(w) is
nasty
¢ Nasty = non-convex
¢ Non-convex = has local minima

Feed-forward Networks Network Training Error Backpropagation Applications

Descent Methods

e The typical strategy for optimization problems of this sort is
a descent method:

Feed-forward Networks Network Training Error Backpropagation Applications

Descent Methods

e The typical strategy for optimization problems of this sort is
a descent method:

e These come in many flavours
o Gradient descent VE(w(™))
« Stochastic gradient descent VE,(w(™))
o Newton-Raphson (second order) V>

Network Training

Descent Methods

e The typical strategy for optimization problems of this sort is
a descent method:

e These come in many flavours
o Gradient descent VE(w(™))
« Stochastic gradient descent VE,(w(™))
» Newton-Raphson (second order) V>
¢ All of these can be used here, stochastic gradient descent
is particularly effective
e Redundancy in training data, escaping local minima

Network Training

Computing Gradients

¢ The function y(x,, w) implemented by a network is
complicated

e |tisn’t obvious how to compute error function derivatives
with respect to hidden weights.

¢ The credit assignment problem.

Feed-forward Networks Network Training Error Backpropagation Applications

Outline

Error Backpropagation

Error Backpropagation

Error Backpropagation

e Backprop is an efficient method for computing error
derivatives gﬁ? for all nodes in the network. Intuition:
J

i

1. Calculating derivatives for weights connected to output
nodes is easy.

2. Treat the derivatives as virtual “error”, compute derivative of
error for nodes in previous layer.

3. Repeat until you reach input nodes.

e This procedure propagates backwards the output error
signal through the network.

Feed-forward Networks Network Training Error Backpropagation Applications

Error at the output nodes

¢ First, feed training example x,, forward through the network,
storing all activations g,

Error Backpropagation

Error at the output nodes

First, feed training example x, forward through the network,
storing all activations g,
Calculating derivatives for weights connected to output
nodes is easy
e.g. For output node with activation
i = glax) = g(>_; wiizi):

OE, 0 1

owe 6wk-§(t” —)% = —(tn — y)g' (ax)z

0 if no error, or if input z; from node i is 0.
Useful notation: oy = (1, — yx)g (ax).
Gradient Descent Update:

Wii < Wi + 10xZi.

Error Backpropagation

Error at the hidden nodes

Consider a hidden node j connected to output nodes.
Intuition: ¢§; is node activation derivative, times output error.

The error signal ¢; is node activation derivative, times the
weighted sum of contributions to the output errors.

In symbols,
0= &' (@)) Y wijd.
k

Gradient Descent Update:

Wji = wji + 10;z;.

Feed-forward Networks Network Training Error Backpropagation Applications

Backpropagation Picture

hidden

w OO O

The error signal at a hidden unit is proportional to the error
signals at the units it influences:

6 = g'(a)) Zwkjék

Error Backpropagation

The Backpropagation Algorithm

1. Apply input vector x,, and forward propagate to find all
activation levels @; and output levels z;.

2. Evaluate the error signals ¢ for all output nodes.

3. Backpropagate the d; to obtain error signals ¢; for each
hidden node.

4. Perform the gradient descent updates for each weight
vector Wii.

Demo Alspace http://aispace.org/neural/.

http://aispace.org/neural/

Error Backpropagation

The Backpropagation Algorithm

1. Apply input vector x,, and forward propgate to find all
activation levels @; and output levels z;.

2. Evaluate the error signals ¢ for all output nodes.

3. Backpropagate the d; to obtain error signals ¢; for each
hidden node.

4. Perform the gradient descent updates for each weight
vector Wii.

Demo Alspace http://aispace.org/neural/.

http://aispace.org/neural/

Feed-forward Networks Network Training Error Backpropagation Applications

Correctness Proof for Backpropagation Algorithm.

w

ak
OEx _

e We need to show that — o iZis

e This follows easily given the following result

Theorem
For each node j, we have §; = —%x.
; . OE, _ _0E, 04 _ ¢ _
e Proof given theorem: — < = — e - 500 = §; - ;.

¢ Next we prove the theorem.

Feed-forward Networks Network Training Error Backpropagation

Multi-variate Chain Rule

Wk

e For f(x,y), with f differentiable wrt x and y, and x and y
differentiable wrt u and v:

o _ oo ooy

ou OxOu Oyodu
and

of of ox | Of 9y

ov Ox Ov 87)/8\/

Applications

Error Backpropagation

Proof of Theorem, |

 We want to show that ¢; = — %=,
e Think of the error as a function of the activation levels of
the nodes after node j.

4o OE, _ O
e Formally, we can write = %E,,(ajl,ajz, ...,a;,) Where

{ji} are the indices of the nodes that receive input from ;.

‘ z=g(a) &‘ak ‘

Error Backpropagation

Proof of Theorem, |

« We want to show that §; = — 2=

e Think of the error as a function of the activation levels of
the nodes after node j.

e Formally, we can write = 3q 9 F,(aj,,aj,,--.,a;,) where
{ji} are the indices of the nodes that receive input from j.
e Now using the multi-variate chain rule, we have

Z aE 8ak
8a, day. da;
o ltis easy to see that 5% = wy; - ¢'(z)).

‘ z=g(a) %‘ak ‘

aE OLp

Error Backpropagation

Proof of Theorem, I

We want to show that §; = — %%
Proof by backward induction. Easy to see that the claim is
true for output nodes. (Exercise).

Inductive step: Consider node j and suppose that
O = —aa—f" for all nodes k that receive input from j.

Using the multivariate chain rule, we have

m

8En 8En 8ak
B 8aj kz B 8ak 87%

= Z(Skaik = Z 51<ijg/(Zj) = (5j.
= %Y =

where step 1 applies the inductive hypothesis, step 2 the
result from the previous slide, and step 3 the definition of 6;.

Error Backpropagation

Other Learning Topics

e Regularization: L2-regularizer (weight decay).
e Prune Weights: the Optimal Brain Method.
e Experimenting with Network Architectures is often key.

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Applications

«O>» «F»r « =)

<

DA

Feed-forward Networks Network Training Error Backpropagation Applications

Applications of Neural Networks

e Many success stories for neural networks
e Credit card fraud detection
¢ Hand-written digit recognition
e Face detection
e Autonomous driving (CMU ALVINN)

Applications

Hand-written Digit Recognition

FJ e/ 979066 a\
6757 863458
2790/ a3 6
Wyl 90| ¢ 8% 9d
T 6l ¥4 415 E0
1759265 %\ 97
AZ22I2dd4Y §O
a3 073657
Ol «bq bo2y¢3

77 28n6cq 8 b/

e MNIST - standard dataset for hand-written digit recognition
e 60000 training, 10000 test images

Feed-forward Networks Network Training Error Backpropagation Applications

LeNet-5

C1: feat C3:f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 ?

Bl |-r e
—'r
|T_

G5:layer e layer OUTPUT
120 o 0 10

|
Full coanection ‘ Gaussian connections

Subsampling Convolutions Subsampling Full connection

Convolutions

e LeNet developed by Yann LeCun et al.
e Convolutional neural network
e Local receptive fields (5x5 connectivity)
Subsampling (2x2)
Shared weights (reuse same 5x5 “filter”)
Breaking symmetry

e See
http://www.codeproject.com/KB/library/NeuralNetRecognition.aspx

Applications

ol
J\

1 % » 8 3 &
3 > 5 b & <« ¥

4
L

¢ v 5> F 07223 %
2

9->4 8->0 7->8 5->3 8->7 0->6 3—>7 2-—>7 8->3 9->4
8->2 5->3 4->8 3->9 6—>0 9->8 4->9 6—>1 9->4 9-—>1

& 5 ¢ 3 U0 2 9q9 (U

4->6 3->5 8-—>2 2->1 5->3 4->8 2->8 3->5 6—>5 7-—2>3

4 B

§

7 9 49
& &

D ¢ 7 2
%

1->5 9->8 6->3 0->2 6->5 9->5 0->7 1->6 4->9 2->1

¥
g

b &8 489

-
/
/

o

2->8 8->5 4->9 7->2 7->2 6->5 9->7 6-—>1 5->6 5—>0

Fl
-
w

3->5 3->2 9->5 6->0 6—>0 6->0 6—>8

6—>1
Aoz 9

9->4 4->6 2->7 9->7 4->3 9->4 9->4 9->4
5 %
0

/
o

2->0
7->3
a <

8->7 4->2 8->4 3->5 8->4 6->5 8->5 3->8 3->8 9->8

4
6

4
I 9
2 = & 2 7

o <«

2->8

&

A

4

e The 82 errors made by LeNet5 (0.82% test error rate)

Conclusion

Feed-forward networks can be used for regression or
classification

o Similar to linear models, except with adaptive non-linear
basis functions
e These allow us to do more than e.g. linear decision
boundaries
Different error functions
Learning is more difficult, error function not convex
¢ Use stochastic gradient descent, obtain (good?) local
minimum
Backpropagation for efficient gradient computation

Applications

	Feed-forward Networks
	Network Training
	Error Backpropagation
	Applications

