▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Artificial Neural Networks Oliver Schulte - CMPT 726

Neural Networks

- Neural networks arise from attempts to model human/animal brains
 - Many models, many claims of biological plausibility
- We will focus on multi-layer perceptrons
 - Mathematical properties rather than plausibility
 - Prof. Hadley CMPT418

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Uses of Neural Networks

Pros

- Good for continuous input variables.
- General continuous function approximators.
- Highly non-linear.
- Learn feature functions.
- Good to use in continuous domains with little knowledge:
 - When you don't know good features.
 - You don't know the form of a good functional model.

Cons

- Not interpretable, "black box".
- Learning is slow.
- Good generalization can require many datapoints.

Applications

There are many, many applications.

- World-Champion Backgammon Player. http://en.wikipedia.org/wiki/TD-Gammon http://en.wikipedia.org/wiki/Backgammon
- No Hands Across America Tour. http://www.cs.cmu.edu/afs/cs/usr/tjochem/ www/nhaa/nhaa_home_page.html
- Digit Recognition with 99.26% accuracy.

• ...

Network Training

Error Backpropagation

Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Feed-forward Networks

Network Training

Error Backpropagation

Applications

Network Training

Error Backpropagation

Applications

Feed-forward Networks

Network Training

Error Backpropagation

Applications

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Feed-forward Networks

• We have looked at generalized linear models of the form:

$$y(\boldsymbol{x}, \boldsymbol{w}) = f\left(\sum_{j=1}^{M} w_j \phi_j(\boldsymbol{x})\right)$$

for fixed non-linear basis functions $\phi(\cdot)$

- We now extend this model by allowing adaptive basis functions, and learning their parameters
- In feed-forward networks (a.k.a. multi-layer perceptrons) we let each basis function be another non-linear function of linear combination of the inputs:

$$\phi_j(\boldsymbol{x}) = f\left(\sum_{j=1}^M \ldots\right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Feed-forward Networks

• We have looked at generalized linear models of the form:

$$y(\boldsymbol{x}, \boldsymbol{w}) = f\left(\sum_{j=1}^{M} w_j \phi_j(\boldsymbol{x})\right)$$

for fixed non-linear basis functions $\phi(\cdot)$

- We now extend this model by allowing adaptive basis functions, and learning their parameters
- In feed-forward networks (a.k.a. multi-layer perceptrons) we let each basis function be another non-linear function of linear combination of the inputs:

$$\phi_j(\mathbf{x}) = f\left(\sum_{j=1}^M \ldots\right)$$

Feed-forward Networks

• Starting with input *x* = (*x*₁,...,*x*_D), construct linear combinations:

$$a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}$$

These a_j are known as activations

- Pass through an activation function $h(\cdot)$ to get output $z_j = h(a_j)$
 - Model of an individual neuron

Feed-forward Networks

• Starting with input *x* = (*x*₁,...,*x*_D), construct linear combinations:

$$a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}$$

These a_j are known as activations

- Pass through an activation function $h(\cdot)$ to get output $z_j = h(a_j)$
 - Model of an individual neuron

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Feed-forward Networks

• Starting with input *x* = (*x*₁,...,*x*_D), construct linear combinations:

$$a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}$$

These a_j are known as activations

- Pass through an activation function $h(\cdot)$ to get output $z_j = h(a_j)$
 - Model of an individual neuron

Activation Functions

- Can use a variety of activation functions
 - Sigmoidal (S-shaped)
 - Logistic sigmoid $1/(1 + \exp(-a))$ (useful for binary classification)
 - Hyperbolic tangent tanh
 - Radial basis function $z_j = \sum_i (x_i w_{ji})^2$
 - Softmax
 - Useful for multi-class classification
 - Hard Threshold
 - ...
- Should be differentiable for gradient-based learning (later)
- Can use different activation functions in each unit

Applications

- Connect together a number of these units into a feed-forward network (DAG)
- Above shows a network with one layer of hidden units
- Implements function:

$$y_k(\mathbf{x}, \mathbf{w}) = h\left(\sum_{j=1}^M w_{kj}^{(2)} h\left(\sum_{i=1}^D w_{ji}^{(1)} x_i + w_{j0}^{(1)}\right) + w_{k0}^{(2)}\right)$$

• See http://aispace.org/neural/....

A general network

Applications

The XOR Problem Revisited

Applications

The XOR Problem Solved

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hidden Units Compute Basis Functions

- red dots = network function
- dashed line = hidden unit activation function.
- blue dots = data points

Network function is roughly the sum of activation functions.

ヘロト 人間 とくほとくほとう

3

Hidden Units As Feature Extractors

sample training patterns

learned input-to-hidden weights

- 64 input nodes
- 2 hidden units
- learned weight matrix at hidden units

Feed-forward Networks

Network Training

Error Backpropagation

Applications

Feed-forward Networks

Network Training

Error Backpropagation

Applications

Network Training

- Given a specified network structure, how do we set its parameters (weights)?
 - As usual, we define a criterion to measure how well our network performs, optimize against it
- For regression, training data are $(x_n, t), t_n \in \mathbb{R}$

• Squared error naturally arises:

$$E(\boldsymbol{w}) = \sum_{n=1}^{N} \{y(\boldsymbol{x}_n, \boldsymbol{w}) - t_n\}^2$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Network Training

- Given a specified network structure, how do we set its parameters (weights)?
 - As usual, we define a criterion to measure how well our network performs, optimize against it
- For regression, training data are $(x_n, t), t_n \in \mathbb{R}$
- Squared error naturally arises:

$$E(\boldsymbol{w}) = \sum_{n=1}^{N} \{y(\boldsymbol{x}_n, \boldsymbol{w}) - t_n\}^2$$

Applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Parameter Optimization

- For either of these problems, the error function *E*(*w*) is nasty
 - Nasty = non-convex
 - Non-convex = has local minima

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Descent Methods

 The typical strategy for optimization problems of this sort is a descent method:

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} + \eta \boldsymbol{w}^{(\tau)}$$

- These come in many flavours
 - Gradient descent $\nabla E(w^{(\tau)})$
 - Stochastic gradient descent $\nabla E_n(w^{(\tau)})$
 - Newton-Raphson (second order) ∇^2
- All of these can be used here, stochastic gradient descent is particularly effective
 - Redundancy in training data, escaping local minima

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Descent Methods

 The typical strategy for optimization problems of this sort is a descent method:

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} + \eta \boldsymbol{w}^{(\tau)}$$

- These come in many flavours
 - Gradient descent $\nabla E(\boldsymbol{w}^{(\tau)})$
 - Stochastic gradient descent $\nabla E_n(w^{(\tau)})$
 - Newton-Raphson (second order) ∇²
- All of these can be used here, stochastic gradient descent is particularly effective
 - Redundancy in training data, escaping local minima

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Descent Methods

 The typical strategy for optimization problems of this sort is a descent method:

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} + \eta \boldsymbol{w}^{(\tau)}$$

- These come in many flavours
 - Gradient descent $\nabla E(\mathbf{w}^{(\tau)})$
 - Stochastic gradient descent $\nabla E_n(\boldsymbol{w}^{(\tau)})$
 - Newton-Raphson (second order) ∇^2
- All of these can be used here, stochastic gradient descent is particularly effective
 - Redundancy in training data, escaping local minima

Computing Gradients

- The function *y*(*x_n*, *w*) implemented by a network is complicated
- It isn't obvious how to compute error function derivatives with respect to *hidden* weights.
- The credit assignment problem.

Network Training

Error Backpropagation

Applications

Feed-forward Networks

Network Training

Error Backpropagation

Applications

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Error Backpropagation

- Backprop is an efficient method for computing error derivatives
 <u>∂En</u> for all nodes in the network. Intuition:
 - 1. Calculating derivatives for weights connected to output nodes is easy.
 - 2. Treat the derivatives as virtual "error", compute derivative of error for nodes in previous layer.
 - 3. Repeat until you reach input nodes.
- This procedure propagates backwards the output error signal through the network.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Error at the output nodes

- First, feed training example *x_n* forward through the network, storing all activations *a_j*
- Calculating derivatives for weights connected to output nodes is easy
- e.g. For output node with activation $y_k = g(a_k) = g(\sum_i w_{ki}z_i)$:

$$\frac{\partial E_n}{\partial w_{ki}} = \frac{\partial}{\partial w_{ki}} \frac{1}{2} (t_n - y_k)^2 = -(t_n - y_k)g'(a_k)z_i$$

- 0 if no error, or if input z_i from node i is 0.
- Useful notation: $\delta_k \equiv (t_n y_k)g'(a_k)$.
- Gradient Descent Update:

$$w_{ki} \leftarrow w_{ki} + \eta \delta_k z_i.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Error at the output nodes

- First, feed training example *x_n* forward through the network, storing all activations *a_j*
- Calculating derivatives for weights connected to output nodes is easy
- e.g. For output node with activation $y_k = g(a_k) = g(\sum_i w_{ki}z_i)$:

$$\frac{\partial E_n}{\partial w_{ki}} = \frac{\partial}{\partial w_{ki}} \frac{1}{2} (t_n - y_k)^2 = -(t_n - y_k)g'(a_k)z_i$$

- 0 if no error, or if input z_i from node *i* is 0.
- Useful notation: $\delta_k \equiv (t_n y_k)g'(a_k)$.
- Gradient Descent Update:

$$w_{ki} \leftarrow w_{ki} + \eta \delta_k z_i.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Error at the hidden nodes

- Consider a hidden node *j* connected to output nodes.
- Intuition: δ_k is node activation derivative, times output error.
- The error signal δ_j is node activation derivative, times the weighted sum of contributions to the output errors.
- In symbols,

$$\delta_j = g'(a_j) \sum_k w_{kj} \delta_k.$$

Gradient Descent Update:

$$w_{ji} \leftarrow w_{ji} + \eta \delta_j z_i.$$

Backpropagation Picture

The error signal at a hidden unit is proportional to the error signals at the units it influences:

$$\delta_j = g'(a_j) \times \sum_k w_{kj} \delta_k$$

The Backpropagation Algorithm

- 1. Apply input vector x_n and forward propagate to find all activation levels a_i and output levels z_i .
- **2**. Evaluate the error signals δ_k for all output nodes.
- 3. Backpropagate the δ_k to obtain error signals δ_j for each hidden node.
- Perform the gradient descent updates for each weight vector w_{ji}.

Demo Alspace http://aispace.org/neural/.

The Backpropagation Algorithm

- 1. Apply input vector x_n and forward propgate to find all activation levels a_i and output levels z_i .
- **2**. Evaluate the error signals δ_k for all output nodes.
- 3. Backpropagate the δ_k to obtain error signals δ_j for each hidden node.
- Perform the gradient descent updates for each weight vector w_{ji}.

Demo Alspace http://aispace.org/neural/.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Correctness Proof for Backpropagation Algorithm.

$$a_i \xrightarrow{V_i = g(a_i)} a_j$$

- We need to show that $-\frac{\partial E_n}{w_{ii}} = \delta_j z_i$.
- · This follows easily given the following result

Theorem

For each node *j*, we have $\delta_j = -\frac{\partial E_n}{a_i}$.

- Proof given theorem: $-\frac{\partial E_n}{w_{ii}} = -\frac{\partial E_n}{a_i} \cdot \frac{\partial a_j}{\partial w_{ii}} = \delta_j \cdot z_i$.
- Next we prove the theorem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Multi-variate Chain Rule

• For *f*(*x*, *y*), with *f* differentiable wrt *x* and *y*, and *x* and *y* differentiable wrt *u* and *v*:

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$$

and
$$\frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proof of Theorem, I

- We want to show that $\delta_j = -\frac{\partial E_n}{a_j}$.
- Think of the error as a function of the activation levels of the nodes *after* node *j*.
- Formally, we can write $\frac{\partial E_n}{\partial a_j} = \frac{\partial}{\partial a_j} E_n(a_{j_1}, a_{j_2}, \dots, a_{j_m})$ where $\{j_i\}$ are the indices of the nodes that receive input from *j*.
- Now using the multi-variate chain rule, we have

$$\frac{\partial E_n}{\partial a_j} = \sum_{k=1}^m \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial a_j}$$

• It is easy to see that $\frac{\partial a_k}{\partial a_i} = w_{kj} \cdot g'(z_j)$.

$$a_j \rightarrow z_j = g(a_j) \rightarrow a_k$$

Proof of Theorem, I

- We want to show that $\delta_j = -\frac{\partial E_n}{a_i}$.
- Think of the error as a function of the activation levels of the nodes *after* node *j*.
- Formally, we can write $\frac{\partial E_n}{\partial a_j} = \frac{\partial}{\partial a_j} E_n(a_{j_1}, a_{j_2}, \dots, a_{j_m})$ where $\{j_i\}$ are the indices of the nodes that receive input from *j*.
- Now using the multi-variate chain rule, we have

$$\frac{\partial E_n}{\partial a_j} = \sum_{k=1}^m \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial a_j}$$

• It is easy to see that $\frac{\partial a_k}{\partial a_j} = w_{kj} \cdot g'(z_j)$.

$$a_j \rightarrow z_j = g(a_j) \rightarrow a_k$$

Proof of Theorem, II

- We want to show that $\delta_j = -\frac{\partial E_n}{a_j}$.
- Proof by backward induction. Easy to see that the claim is true for output nodes. (Exercise).
- Inductive step: Consider node *j* and suppose that $\delta_k = -\frac{\partial E_n}{a_k}$ for all nodes *k* that receive input from *j*.
- Using the multivariate chain rule, we have

$$-\frac{\partial E_n}{\partial a_j} = \sum_{k=1}^m -\frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial a_j}$$
$$= \sum_{k=1}^m \delta_k \frac{\partial a_k}{\partial a_j} = \sum_{k=1}^m \delta_k w_{kj} g'(z_j) = \delta_j.$$

where step 1 applies the inductive hypothesis, step 2 the result from the previous slide, and step 3 the definition of δ_i .

Other Learning Topics

- Regularization: L2-regularizer (weight decay).
- Prune Weights: the Optimal Brain Method.
- Experimenting with Network Architectures is often key.

Network Training

Error Backpropagation

Applications

Feed-forward Networks

Network Training

Error Backpropagation

Applications

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Applications of Neural Networks

- Many success stories for neural networks
 - Credit card fraud detection
 - Hand-written digit recognition
 - Face detection
 - Autonomous driving (CMU ALVINN)

Applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hand-written Digit Recognition

- MNIST standard dataset for hand-written digit recognition
 - 60000 training, 10000 test images

LeNet-5

- LeNet developed by Yann LeCun et al.
 - Convolutional neural network
 - Local receptive fields (5x5 connectivity)
 - Subsampling (2x2)
 - Shared weights (reuse same 5x5 "filter")
 - · Breaking symmetry
- See

http://www.codeproject.com/KB/library/NeuralNetRecognition.aspx

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The 82 errors made by LeNet5 (0.82% test error rate)

Conclusion

- Feed-forward networks can be used for regression or classification
 - Similar to linear models, except with adaptive non-linear basis functions
 - These allow us to do more than e.g. linear decision boundaries
- Different error functions
- Learning is more difficult, error function not convex
 - Use stochastic gradient descent, obtain (good?) local minimum
- Backpropagation for efficient gradient computation