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Learning Parameters to Probability Distributions

• We discussed probabilistic models at length
• Given fully observed training data, setting parameters θi

for Bayes nets is straight-forward
• However, in many settings not all variables are observed

(labelled) in the training data: xi = (xi,hi)
• e.g. Speech recognition: have speech signals, but not

phoneme labels
• e.g. Object recognition: have object labels (car, bicycle),

but not part labels (wheel, door, seat)
• Unobserved variables are called latent variables

Shape. The shape is represented by a joint Gaussian den-

sity of the locations of features within a hypothesis, once

they have been transformed into a scale-invariant space.

This is done using the scale information from the features

in the hypothesis, so avoiding an exhaustive search over

scale that other methods use. The density has parameters

θshape = {µ,Σ}. Note that, unlike appearance whose co-
variance matrices Vp, Vbg are diagonal, Σ is a full matrix.

All features not included in the hypothesis are considered

as arising from the background. The model for the back-

ground assumes features to be spread uniformly over the

image (which has area α), with locations independent of the
foreground locations. If a part is occluded it is integrated

out of the joint foreground density.

p(X|S,h, θ)
p(X|S,h, θbg)

= G(X(h)|µ,Σ)αf

Relative scale. The scale of each part p relative to a ref-
erence frame is modeled by a Gaussian density which has

parameters θscale = {tp, Up}. The parts are assumed to
be independent to one another. The background model as-

sumes a uniform distribution over scale (within a range r).

p(S|h, θ)
p(S|h, θbg)

=
P∏

p=1

G(S(hp)|tp, Up)dp rf

Occlusion and Statistics of the feature finder.

p(h|θ)
p(h|θbg)

=
pPoiss(n|M)
pPoiss(N |M)

1
nCr(N, f)

p(d|θ)

The first term models the number of features detected using

a Poisson distribution, which has a meanM . The second is

a book-keeping term for the hypothesis variable and the last

is a probability table (of size 2P ) for all possible occlusion

patterns and is a parameter of the model.

The model of Weber et al. contains the shape and oc-

clusion terms to which we have added the appearance and

relative scale terms. Since the model encompasses many of

the properties of an object, all in a probabilistic way, this

model can represent both geometrically constrained objects

(where the shape density would have a small covariance)

and objects with distinctive appearance but lacking geomet-

ric form (the appearance densities would be tight, but the

shape density would now be looser). From the equations

above we can now calculate the overall likelihood ratio from

a given set of X,S,A. The intuition is that the majority of
the hypotheses will be low scoring as they will be picking

up features from background junk on the image but hope-

fully a few features will genuinely be part of the object and

hypotheses using these will score highly. However, we must

be able to locate features over many different instances of

the object and over a range of scales in order for this ap-

proach to work.

2.2. Feature detection

Features are found using the detector of Kadir and

Brady [7]. This method finds regions that are salient over

both location and scale. For each point on the image a his-

togram P (I) is made of the intensities in a circular region
of radius (scale) s. The entropy H(s) of this histogram is

then calculated and the local maxima ofH(s) are candidate
scales for the region. The saliency of each of these candi-

dates is measured by H dP
ds (with appropriate normalization

for scale [7, 8]). The N regions with highest saliency over

the image provide the features for learning and recognition.

Each feature is defined by its centre and radius (the scale).

A good example illustrating the saliency principle is that

of a bright circle on a dark background. If the scale is too

small then only the white circle is seen, and there is no ex-

trema in entropy. There is an entropy extrema when the

scale is slightly larger than the radius of the bright circle,

and thereafter the entropy decreases as the scale increases.

In practice this method gives stable identification of fea-

tures over a variety of sizes and copes well with intra-class

variability. The saliency measure is designed to be invari-

ant to scaling, although experimental tests show that this is

not entirely the case due to aliasing and other effects. Note,

only monochrome information is used to detect and repre-

sent features.

2.3. Feature representation

The feature detector identifies regions of interest on each

image. The coordinates of the centre give usX and the size

of the region gives S. Figure 2 illustrates this on two typical
images from the motorbike dataset.
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Figure 2: Output of the feature detector

Once the regions are identified, they are cropped from

the image and rescaled to the size of a small (typically

11×11) pixel patch. Thus, each patch exists in a 121 dimen-
sional space. Since the appearance densities of the model

must also exist in this space, we must somehow reduce the

dimensionality of each patch whilst retaining its distinctive-

ness, since a 121-dimensional Gaussian is unmanageable

from a numerical point of view and also the number of pa-

rameters involved (242 per model part) are too many to be

estimated.

This is done by using principal component analysis

(PCA). In the learning stage, we collect the patches from

Shape. The shape is represented by a joint Gaussian den-

sity of the locations of features within a hypothesis, once

they have been transformed into a scale-invariant space.

This is done using the scale information from the features

in the hypothesis, so avoiding an exhaustive search over

scale that other methods use. The density has parameters

θshape = {µ,Σ}. Note that, unlike appearance whose co-
variance matrices Vp, Vbg are diagonal, Σ is a full matrix.

All features not included in the hypothesis are considered

as arising from the background. The model for the back-

ground assumes features to be spread uniformly over the

image (which has area α), with locations independent of the
foreground locations. If a part is occluded it is integrated

out of the joint foreground density.

p(X|S,h, θ)
p(X|S,h, θbg)

= G(X(h)|µ,Σ)αf

Relative scale. The scale of each part p relative to a ref-
erence frame is modeled by a Gaussian density which has

parameters θscale = {tp, Up}. The parts are assumed to
be independent to one another. The background model as-

sumes a uniform distribution over scale (within a range r).

p(S|h, θ)
p(S|h, θbg)

=
P∏

p=1

G(S(hp)|tp, Up)dp rf

Occlusion and Statistics of the feature finder.

p(h|θ)
p(h|θbg)

=
pPoiss(n|M)
pPoiss(N |M)

1
nCr(N, f)

p(d|θ)

The first term models the number of features detected using

a Poisson distribution, which has a meanM . The second is

a book-keeping term for the hypothesis variable and the last

is a probability table (of size 2P ) for all possible occlusion

patterns and is a parameter of the model.

The model of Weber et al. contains the shape and oc-

clusion terms to which we have added the appearance and

relative scale terms. Since the model encompasses many of

the properties of an object, all in a probabilistic way, this

model can represent both geometrically constrained objects

(where the shape density would have a small covariance)

and objects with distinctive appearance but lacking geomet-

ric form (the appearance densities would be tight, but the

shape density would now be looser). From the equations

above we can now calculate the overall likelihood ratio from

a given set of X,S,A. The intuition is that the majority of
the hypotheses will be low scoring as they will be picking

up features from background junk on the image but hope-

fully a few features will genuinely be part of the object and

hypotheses using these will score highly. However, we must

be able to locate features over many different instances of

the object and over a range of scales in order for this ap-

proach to work.

2.2. Feature detection

Features are found using the detector of Kadir and

Brady [7]. This method finds regions that are salient over

both location and scale. For each point on the image a his-

togram P (I) is made of the intensities in a circular region
of radius (scale) s. The entropy H(s) of this histogram is

then calculated and the local maxima ofH(s) are candidate
scales for the region. The saliency of each of these candi-

dates is measured by H dP
ds (with appropriate normalization

for scale [7, 8]). The N regions with highest saliency over

the image provide the features for learning and recognition.

Each feature is defined by its centre and radius (the scale).

A good example illustrating the saliency principle is that

of a bright circle on a dark background. If the scale is too

small then only the white circle is seen, and there is no ex-

trema in entropy. There is an entropy extrema when the

scale is slightly larger than the radius of the bright circle,

and thereafter the entropy decreases as the scale increases.

In practice this method gives stable identification of fea-

tures over a variety of sizes and copes well with intra-class

variability. The saliency measure is designed to be invari-

ant to scaling, although experimental tests show that this is

not entirely the case due to aliasing and other effects. Note,

only monochrome information is used to detect and repre-

sent features.

2.3. Feature representation

The feature detector identifies regions of interest on each

image. The coordinates of the centre give usX and the size

of the region gives S. Figure 2 illustrates this on two typical
images from the motorbike dataset.
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Figure 2: Output of the feature detector

Once the regions are identified, they are cropped from

the image and rescaled to the size of a small (typically

11×11) pixel patch. Thus, each patch exists in a 121 dimen-
sional space. Since the appearance densities of the model

must also exist in this space, we must somehow reduce the

dimensionality of each patch whilst retaining its distinctive-

ness, since a 121-dimensional Gaussian is unmanageable

from a numerical point of view and also the number of pa-

rameters involved (242 per model part) are too many to be

estimated.

This is done by using principal component analysis

(PCA). In the learning stage, we collect the patches from

figs from Fergus et al.
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Latent Variables and Simplicity

• Latent variables can explain observed correlations with a
simple model.

• Fewer parameters.
• Common in science: The heart, genes, energy, gravity, ....

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

(a) (b)

HeartDisease

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

2 2 2

54

6 6 6

2 2 2

54 162 486

Fig. Russell and Norvig 20.10
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Latent Variable Models: Pros

• Statistically powerful, often good predictions. Many
applications:

• Learning with missing data.
• Clustering: “missing” cluster label for data points.
• Principal Component Analysis: data points are

generated in linear fashion from a small set of unobserved
components. (more later)

• Matrix Factorization, Recommender Systems:
• Assign users to unobserved “user types”, assign items to

unobserved “item types”.
• Use similarity between user type, item type to predict

preference of user for item.
• Winner of $1M Netflix challenge.

• If latent variables have an intuitive interpretation (e.g.,
“action movies”, “factors”), discovers new features.
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Latent Variable Models: Cons

• From a user’s point of view, like a black box if latent
variables don’t have an intuitive interpretation.

• Statistically, hard to guarantee convergence to a correct
model with more data (the identifiability problem).

• Harder computationally, usually no closed form for
maximum likelihood estimates.

• However, the Expectation-Maximization algorithm provides
a general-purpose local search algorithm for learning
parameters in probabilistic models with latent variables.
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Key Applications

• Missing Data: think of unobserved attributes as latent
variables.

• Unsupervised Learning: Think of clusters as unobserved
class labels.

• Recommendation Systems: Latent variables specify a type
for each user, and a type for each item.
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Unsupervised Learning

(a)

−2 0 2

−2

0

2

• We will start with an unsupervised
learning (clustering) problem:

• Given a dataset {x1, . . . , xN}, each
xi ∈ RD, partition the dataset into K
clusters

• Intuitively, a cluster is a group of
points, which are close together and
far from others
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Distortion Measure

(a)

−2 0 2

−2

0

2

(i)

−2 0 2

−2

0

2

• Formally, introduce prototypes (or
cluster centers) µk ∈ RD

• Use binary rnk, 1 if point n is in cluster k,
0 otherwise (1-of-K coding scheme
again)

• Find {µk}, {rnk} to minimize distortion
measure:

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2
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Minimizing Distortion Measure

• Minimizing J directly is hard

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2

• However, two things are easy
• If we know µk, minimizing J wrt rnk
• If we know rnk, minimizing J wrt µk

• This suggests an iterative procedure
• Start with initial guess for µk
• Iteration of two steps:

• Minimize J wrt rnk

• Minimize J wrt µk

• Rinse and repeat until convergence
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Determining Membership Variables

(a)

−2 0 2

−2

0

2

(b)

−2 0 2

−2

0

2

• Step 1 in an iteration of K-means is to
minimize distortion measure J wrt
cluster membership variables rnk

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2

• Terms for different data points xn are
independent, for each data point set rnk

to minimize:

K∑
k=1

rnk||xn − µk||2 How?

• Simply set rnk = 1 for the cluster center
µk with smallest distance
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Determining Membership Variables
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Determining Cluster Centers

(b)
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• Step 2: fix rnk, minimize J wrt the cluster
centers µk

J =

K∑
k=1

N∑
n=1

rnk||xn−µk||2 switch order of sums

• So we can minimize wrt each µk separately
• Take derivative, set to zero:

2
N∑

n=1

rnk(xn − µk) = 0

⇔ µk =

∑
n rnkxn∑

n rnk

i.e. mean of datapoints xn assigned to
cluster k
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Determining Cluster Centers
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K-means Algorithm

• Start with initial guess for µk
• Iteration of two steps:

• Minimize J wrt rnk

• Assign points to nearest cluster center
• Minimize J wrt µk

• Set cluster center as average of points in cluster

• Rinse and repeat until convergence
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K-means example
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K-means example

(b)
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K-means example

(c)
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K-means example
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K-means example

(e)
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K-means example

(f)
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K-means example

(g)
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K-means example

(h)
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K-means example

(i)

−2 0 2

−2

0

2

Next step doesn’t change membership – stop
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K-means Convergence

• Repeat steps until no change in cluster assignments
• For each step, value of J either goes down, or we stop
• Finite number of possible assignments of data points to

clusters, so we are guaranteed to converge eventually
• Note it may be a local maximum rather than a global

maximum to which we converge
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K-means Example - Image Segmentation

����� ����� ������� Original image

• K-means clustering on pixel colour values
• Pixels in a cluster are coloured by cluster mean
• Represent each pixel (e.g. 24-bit colour value) by a cluster

number (e.g. 4 bits for K = 10), compressed version
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K-means Generalized: the set-up

Let’s generalize the idea. Suppose we have the following
set-up.
• X denotes all observed variables (e.g., data points).
• Z denotes all latent (hidden, unobserved) variables (e.g.,

cluster means).
• J(X,Z|θ) where J measures the “goodness” of an

assignment of latent variable models given the data points
and parameters θ.

• e.g., J = -dispersion measure.
• parameters = assignment of points to clusters.

• It’s easy to maximize J(X,Z|θ) wrt θ for fixed Z.
• It’s easy to maximize J(X,Z|θ) wrt Z for fixed θ.
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K-means Generalized: The Algorithm

The fact that conditional maximization is simple suggests an
iterative algorithm.

1. Guess an initial value for latent variables Z.
2. Repeat until convergence:

2.1 Find best parameter values θ given the current guess for
the latent variables. Update the parameter values.

2.2 Find best value for latent variables Z given the current
parameter values. Update the latent variable values.
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Hard EM Algorithm

• We assume a probabilistic model, specifically the
complete-data likelihood function p(X,Z|θ).

• “Goodness” of the model is the log-likelihood ln p(X,Z|θ).
• Guess the value for latent variables that is the expected

value given current parameter settings: E[Z] where
p = p(Z|X,θold) over latent variables.

• Given latent variable values, parameter values θ are
evaluated by taking the expected “goodness” ln p(X,Z|θ).
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Generalized EM Algorithm

• In Bayesian fashion, do not guess a best value for the
latent variables Z.

• Instead, average over the distribution p(Z|X,θold) given the
current hypothesis.

• Given a latent variable distribution, parameter values θ are
evaluated by taking the expected “goodness” ln p(X,Z|θ)
over all possible latent variable settings.
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EM Algorithm: The procedure

1. Guess an initial parameter setting θold.
2. Repeat until convergence:
3. The E-step: Evaluate p(Z|X,θold).

(Ideally, find a closed form as a function of Z).
4. The M-step:

4.1 Evaluate the function
Q(θ,θold) ≡

∑
Z ln p(X,Z|θ)× p(Z|X,θold).

4.2 Maximize Q(θ,θold) wrt θ. Update θold.
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EM and Maximum Likelihood

1. The EM procedure is guaranteed to increase at each step,
the data log-likelihood ln p(X|θ) =

∑
Z ln p(X,Z|θ).

2. Therefore converges to local log-likelihood maximum.
More theoretical analysis in text.
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Hard Assignment vs. Soft Assignment

(i)

−2 0 2

−2

0

2 • In the K-means algorithm, a hard
assignment of points to clusters is made

• However, for points near the decision
boundary, this may not be such a good
idea

• Instead, we could think about making a
soft assignment of points to clusters
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Gaussian Mixture Model

0.5 0.3

0.2

(a)

0 0.5 1
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1 (b)

0 0.5 1
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1

• The Gaussian mixture model (or mixture of Gaussians
MoG) models the data as a combination of Gaussians.

• a: constant density contours. b: marginal probability p(x).
c: surface plot.

• Widely used general approximation for multi-modal
distributions.
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Gaussian Mixture Model

(b)
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• Above shows a dataset generated by drawing samples
from three different Gaussians
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Generative Model

x

z (c)

0 0.5 1
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• The mixture of Gaussians is a generative model
• To generate a datapoint xn, we first generate a value for a

discrete variable zn ∈ {1, . . . ,K}
• We then generate a value xn ∼ N (x|µk,Σk) for the

corresponding Gaussian.
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Graphical Model

xn

zn

N

µ Σ

π

(a)

0 0.5 1

0

0.5

1

• Full graphical model using plate notation
• Note zn is a latent variable, unobserved

• BN needs distributions p(zn) and p(xn|zn)

• The one-of-K representation is helpful here: znk ∈ {0, 1},
zn = (zn1, . . . , znK)
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Graphical Model - Latent Component Variable

xn

zn

N

µ Σ

π

(a)

0 0.5 1

0

0.5

1

• Use a Bernoulli distribution for p(zn)
• i.e. p(znk = 1) = πk
• Parameters to this distribution {πk}
• Must have 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1

• p(zn) =
∏K

k=1 π
znk
k
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Graphical Model - Observed Variable

xn

zn

N

µ Σ

π

(a)

0 0.5 1

0

0.5

1

• Use a Gaussian distribution for p(xn|zn)
• Parameters to this distribution {µk,Σk}

p(xn|znk = 1) = N (xn|µk,Σk)

p(xn|zn) =

K∏
k=1

N (xn|µk,Σk)
znk
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Graphical Model - Joint distribution

xn

zn

N

µ Σ

π

(a)

0 0.5 1

0

0.5

1

• The full joint distribution is given by:

p(x, z) =

N∏
n=1

p(zn)p(xn|zn)

=
N∏

n=1

K∏
k=1

πznk
k N (xn|µk,Σk)

znk
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MoG Marginal over Observed Variables

• The marginal distribution p(xn) for this model is:

p(xn) =
∑

zn

p(xn, zn) =
∑

zn

p(zn)p(xn|zn)

=

K∑
k=1

πkN (xn|µk,Σk)

• A mixture of Gaussians
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MoG Conditional over Latent Variable
(b)
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• To apply EM, need the conditional distribution
p(znk = 1|xn,θ) where θ are the model parameters.

• It is denoted by γ(znk) and can be computed as:
Exercise—how?

γ(znk) ≡ p(znk = 1|xn) =
p(znk = 1)p(xn|znk = 1)∑K
j=1 p(znj = 1)p(xn|znj = 1)

=
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

• γ(znk) is the responsibility of component k for datapoint n
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MoG Conditional over Latent Variable
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EM Algorithm for Gaussian Mixtures: Notation
Exercise

1. The E-step: Evaluate p(Z|X,θold).
2. In the Gaussian mixture model, what are the Z,X,θold?

xn

zn

N

µ Σ

π
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EM for Gaussian Mixtures: E-step

• The complete-data log-likelihood is

ln p(X,Z|θ) =
N∑

n=1

K∑
k=1

znk[lnπk + lnN (xn|µk,Σk)].

• E step: Calculate responsibilities using current parameters
θold:

p(znk = 1|xn,θ
old) ≡ γ(znk) =

πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

• Under the posterior distribution p(znk = 1|xn,θ
old) the

expected value of znk is γ(znk).
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EM for Gaussian Mixtures: M-step I

• Because the log-likelihood

ln p(X,Z|θ) =
N∑

n=1

K∑
k=1

znk[lnπk + lnN (xn|µk,Σk)]

is a linear function of the znk component assignments, we
can calculate the expectation wrt the component
assignments by using the expectations of the component
assignments.

• Exercise: Write out a closed form for the function
Q(θ,θold) ≡

∑
Z ln p(X,Z|θ)× p(Z|X,θold).

• So Q(θ,θold) =
∑N

n=1
∑K

k=1 γ(znk)[lnπk + lnN (xn|µk,Σk)].
• Maximizing Q(θ,θold) with respect to the model

parameters is more or less straightforward.
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EM for Gaussian Mixtures: M-step II

• We saw that

Q(θ,θold) =

N∑
n=1

K∑
k=1

γ(znk)[lnπk + lnN (xn|µk,Σk).

• Write down the maximization problems for the M-step. (You
don’t need to solve them.)
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EM for Gaussian Mixtures
• Initialize parameters, then iterate:

• E step: Calculate responsibilities using current parameters

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

• M step: Re-estimate parameters using these γ(znk)

Nk ≡
N∑

n=1

γ(znk)

µk =
1

Nk

N∑
n=1

γ(znk)xn

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)
T

πk =
Nk

N
• Think of Nk as effective number of points in component k.
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EM for Gaussian Mixtures
• Initialize parameters, then iterate:

• E step: Calculate responsibilities using current parameters
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1
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• Think of Nk as effective number of points in component k.
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MoG EM - Example

(a)−2 0 2
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2

• Same initialization as with K-means before
• Often, K-means is actually used to initialize EM
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MoG EM - Example

(b)−2 0 2
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• Calculate responsibilities γ(znk)
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MoG EM - Example

(c)

�����
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• Calculate model parameters {πk,µk,Σk} using these
responsibilities
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MoG EM - Example

(d)
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• Iteration 2
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MoG EM - Example

(e)
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• Iteration 5



K-Means The Expectation Maximization Algorithm EM Example: Gaussian Mixture Models

MoG EM - Example

(f)
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• Iteration 20 - converged
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EM - Summary

• EM finds local maximum to likelihood

p(X|θ) =
∑

Z

p(X,Z|θ)

• Iterates two steps:
• E step calculates the distribution of the missing variables Z
• (Hard EM “fills in” the variables).
• M step maximizes expected complete log likelihood

(expectation wrt E step distribution)
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Conclusion

• Readings: Ch. 9.1, 9.2, 9.4
• K-means clustering
• Gaussian mixture model
• What about K?

• Model selection: either cross-validation or Bayesian version
(average over all values for K)

• Expectation-maximization, a general method for learning
parameters of models when not all variables are observed
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