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Learning Parameters to Probability Distributions

e We discussed probabilistic models at length

e Given fully observed training data, setting parameters 6;
for Bayes nets is straight-forward
e However, in many settings not all variables are observed
(labelled) in the training data: x; = (x;, h;)
¢ e.g. Speech recognition: have speech signals, but not
phoneme labels

¢ e.g. Object recognition: have object labels (car, bicycle),
but not part labels (wheel, door, seat)

figs from Fergus et al.
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Latent Variables and Simplicity

e Latent variables can explain observed correlations with a
simple model.
o Fewer parameters.
e Common in science: The heart, genes, energy, gravity, ....

54

HeartDisease

(2)

Fig. Russell and Norvig 20.10



Latent Variable Models: Pros

Statistically powerful, often good predictions. Many
applications:

Learning with missing data.
Clustering: “missing” cluster label for data points.

Principal Component Analysis: data points are
generated in linear fashion from a small set of unobserved
components. (more later)
Matrix Factorization, Recommender Systems:
e Assign users to unobserved “user types”, assign items to
unobserved “item types”.
o Use similarity between user type, item type to predict
preference of user for item.
e Winner of $1M Netflix challenge.
If latent variables have an intuitive interpretation (e.g.,

“action movies”, “factors”), discovers new features.



Latent Variable Models: Cons

From a user’s point of view, like a black box if latent
variables don’t have an intuitive interpretation.

Statistically, hard to guarantee convergence to a correct
model with more data (the identifiability problem).

Harder computationally, usually no closed form for
maximum likelihood estimates.

However, the Expectation-Maximization algorithm provides

a general-purpose local search algorithm for learning
parameters in probabilistic models with latent variables.



Key Applications

e Missing Data: think of unobserved attributes as latent
variables.

e Unsupervised Learning: Think of clusters as unobserved
class labels.

e Recommendation Systems: Latent variables specify a type
for each user, and a type for each item.
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Unsupervised Learning

o We will start with an unsupervised

: Ty learning (clustering) problem:
1o iﬁ o Given a dataset {x|,...,xy}, each
N x; € RP, partition the dataset into K
5 clusters
- — - e Intuitively, a cluster is a group of

points, which are close together and
far from others
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The Expectation Maximization Algorithm
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Distortion Measure

e Formally, introduce prototypes (or
cluster centers) p, € RP

e Use binary ry, 1 if point n is in cluster %,
0 otherwise (1-of-K coding scheme
again)

e Find {p}, {ru} to minimize distortion
measure:

N K
J = ernkan - NkHQ

n=1 k=1
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Minimizing Distortion Measure

e Minimizing J directly is hard

N K
J:ZZ’"nkan_NkHz

n=1 k=1
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Minimizing Distortion Measure

e Minimizing J directly is hard

N K
J=305" rul e — il

n=1 k=1

e However, two things are easy

o If we know g, minimizing J wrt r,
o |f we know r,,, minimizing J wrt g,
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Minimizing Distortion Measure

e Minimizing J directly is hard

N K
7= rlben — P

n=1 k=1

e However, two things are easy
o |f we know p,, minimizing J wrt r,
o |f we know r,,, minimizing J wrt g,
e This suggests an iterative procedure

o Start with initial guess for p,
o lteration of two steps:

e Minimize J wrt ry
e Minimize J wrt

¢ Rinse and repeat until convergence
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Determining Membership Variables

e Step 1 in an iteration of K-means is to
minimize distortion measure J wrt
21 @ cluster membership variables r,

n=1 k=1

N K
g,i. y J:ZZFnkan—HkHz
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Determining Membership Variables

e Step 1 in an iteration of K-means is to
minimize distortion measure J wrt
21 @ . cluster membership variables 7,

n=1 k=1

N K
. %
gs- § T=0 " rullen — pl P

e Terms for different data points x, are
independent, for each data point set r,;
to minimize:

K

> rucllen — pyl|* How?
k=1
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Determining Membership Variables

e Step 1 in an iteration of K-means is to
minimize distortion measure J wrt
21 @ . cluster membership variables 7,

n=1 k=1

N K
. %
ga- § T=0 " rullen — pl P

e Terms for different data points x, are
independent, for each data point set r,;
to minimize:

K

> rucllen — pyl|* How?
k=1

e Simply set r,,, = 1 for the cluster center
u; with smallest distance
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Determining Cluster Centers

e Step 2: fix r,, minimize J wrt the cluster
centers p;

K
J = Z Fuk| e — ] |* switch order of sums
k=1 n=1

e So we can minimize wrt each p, separately
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Determining Cluster Centers

e Step 2: fix r,, minimize J wrt the cluster
centers p;

K
J = Z Fuk| e — ] |* switch order of sums
k=1 n=1

e So we can minimize wrt each p, separately
o Take derivative, set to zero:

N
2Zrnk(xn — ) =0
n=1
Zn T'nkXn
= = =
-2 0 2 M Zn Fuk

i.e. mean of datapoints x,, assigned to
cluster k
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K-means Algorithm

o Start with initial guess for
e |teration of two steps:
e Minimize J wrt r
e Assign points to nearest cluster center
o Minimize J wrt p,
e Set cluster center as average of points in cluster

¢ Rinse and repeat until convergence
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K-means example
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K-means example
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K-means example
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K-means example
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K-means example

-2 0 2

Next step doesn’t change membership — stop
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K-means Convergence

Repeat steps until no change in cluster assignments
For each step, value of J either goes down, or we stop

Finite number of possible assignments of data points to
clusters, so we are guaranteed to converge eventually

Note it may be a local maximum rather than a global
maximum to which we converge
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K-means Example - Image Segmentation

Original image

e K-means clustering on pixel colour values
e Pixels in a cluster are coloured by cluster mean

» Represent each pixel (e.g. 24-bit colour value) by a cluster
number (e.g. 4 bits for K = 10), compressed version




K-Means

K-means Generalized: the set-up

Let’s generalize the idea. Suppose we have the following
set-up.
e X denotes all observed variables (e.g., data points).
e Z denotes all latent (hidden, unobserved) variables (e.qg.,
cluster means).

J(X,Z|0) where J measures the “goodness” of an
assignment of latent variable models given the data points
and parameters 6.

e e.g., J = -dispersion measure.
e parameters = assignment of points to clusters.

It's easy to maximize J(X,Z|6) wrt 6 for fixed Z.
It's easy to maximize J(X,Z|6) wrt Z for fixed 6.



K-Means

K-means Generalized: The Algorithm

The fact that conditional maximization is simple suggests an
iterative algorithm.

1. Guess an initial value for latent variables Z.
2. Repeat until convergence:
2.1 Find best parameter values 6 given the current guess for
the latent variables. Update the parameter values.
2.2 Find best value for latent variables Z given the current
parameter values. Update the latent variable values.
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The Expectation Maximization Algorithm

Hard EM Algorithm

¢ We assume a probabilistic model, specifically the
complete-data likelihood function p(X,Z|9).

e “Goodness” of the model is the log-likelihood Inp(X,Z|6).

e Guess the value for latent variables that is the expected
value given current parameter settings: E[Z] where
p = p(Z|X, 6°9) over latent variables.

e Given latent variable values, parameter values 6 are
evaluated by taking the expected “goodness” Inp(X, Z|9).



The Expectation Maximization Algorithm

Generalized EM Algorithm

¢ |In Bayesian fashion, do not guess a best value for the
latent variables Z.

« Instead, average over the distribution p(Z|X, 8°¥) given the
current hypothesis.

e Given a latent variable distribution, parameter values 6 are

evaluated by taking the expected “goodness” Inp(X, Z|0)
over all possible latent variable settings.
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EM Algorithm: The procedure

1. Guess an initial parameter setting 8°.
2. Repeat until convergence:
3. The E-step: Evaluate p(Z|X, §°9).
(Ideally, find a closed form as a function of Z).
4. The M-step:
4.1 Evaluate the function
Q(ea 00[d) = ZZ 1Hp(X7 Z|0) X p(Z‘X7 HOM)'
4.2 Maximize Q(8,6°“) wrt 6. Update 6°“.
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Log-likelihood L

The Expectation Maximization Algorithm EM Example: Gaussian Mixture Models

EM and Maximum Likelihood

. The EM procedure is guaranteed to increase at each step,

the data log-likelihood Inp(X|0) = >, Inp(X, Z|0).
Therefore converges to local log-likelihood maximum.
More theoretical analysis in text.

600 1
500 1
400 1
300 1
200 1
100 1
0 4
-100 1
-200 1
0 5 10 15 20

Iteration number Fig. Russell and Norvig 20.12
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Hard Assignment vs. Soft Assignment

) . ¢ In the K-means algorithm, a hard
22 2 assignment of points to clusters is made
0 . o e However, for points near the decision
oo ¥ boundary, this may not be such a good
e :
S < idea
> 5 > e Instead, we could think about making a

soft assignment of points to clusters
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Gaussian Mixture Model

0.5

e The Gaussian mixture model (or mixture of Gaussians
MoG) models the data as a combination of Gaussians.

e a: constant density contours. b: marginal probability p(x).
c: surface plot.

e Widely used general approximation for multi-modal
distributions.
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Gaussian Mixture Model

e Above shows a dataset generated by drawing samples
from three different Gaussians
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Generative Model

e The mixture of Gaussians is a generative model

e To generate a datapoint x,,, we first generate a value for a
discrete variable z, € {1,...,K}

e We then generate a value x,, ~ N (x|, X¢) for the
corresponding Gaussian.
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Graphical Model

K-Means

Xn

N o 05 1
—

e Full graphical model using plate notation
¢ Note z, is a latent variable, unobserved

e BN needs distributions p(z,) and p(x,|z,)
e The one-of-K representation is helpful here: z,; € {0, 1},
in = (an cee aZnK)
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Graphical Model - Latent Component Variable

Zn, 1
Te— ]
05
.
Xn s‘,-
H —e ) 0
N 0 05 1

e Use a Bernoulli distribution for p(z,)

o i plzu=1)=m
o Parameters to this distribution {7}
e Musthave 0 < m <land S5 m =1

* p(za) = Hf:l Flfnk
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Graphical Model - Observed Variable

ZTL
T e—o
Xn
% — X
N 0 05 1
——

e Use a Gaussian distribution for p(x,|z,)
o Parameters to this distribution {g;, 3}

pEalz = 1) = N(xa|pyy, Zi)

K
plalen) = TN Cealpag Se)

k=1
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Graphical Model - Joint distribution

Zn
Toe—|
0.5
Xn
Hoo——ro — 3 0
N 0 05 1

e The full joint distribution is given by:

N
p(x,z) = Hp(zn)p(xn|zn)
n=1

N K
= TITI 7N el S

n=1k=1
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MoG Marginal over Observed Variables

e The marginal distribution p(x,) for this model is:

p(xn) = Z xmzn szn xn|zn
Zn

= Z?ka\/(xn\uk,zk)

k=1

e A mixture of Gaussians
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MoG Conditional over Latent Variable

1

1

0.5 0.5

e To apply EM, need the conditional distribution
p(zw = 1|x,,0) where 0 are the model parameters.

e Itis denoted by (z«) and can be computed as:
Exercise—how?



K-Means The Expectation Maximization Algorithm EM Example: Gaussian Mixture Models

MoG Conditional over Latent Variable

1

1

0.5 0.5

e To apply EM, need the conditional distribution
p(zw = 1|x,,0) where 0 are the model parameters.
e Itis denoted by (z«) and can be computed as:
Exercise—how?
P(zak = D)p(xXp|zan = 1)
Zszlp(an = l)p(xn’an = 1)
TN (X 1y, Zic)
S TN (el g, )

V(znk) = plak = 1x,) =
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MoG Conditional over Latent Variable

1 1

0.5 0.5

e To apply EM, need the conditional distribution
p(zu = 1|x,, @) where 0 are the model parameters.
e Itis denoted by (z«) and can be computed as:
Exercise—how?
P(zak = D)p(xXp|zan = 1)
ijzlp(znj = 1)p(xn’an = 1)
TN (X 1y, Zic)
S TN (el g, )

V(znk) = plak = 1x,) =

e v(zx) is the responsibility of component k for datapoint
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EM Algorithm for Gaussian Mixtures: Notation
Exercise

1. The E-step: Evaluate p(Z|X, 68°19).
2. In the Gaussian mixture model, what are the Z. X, °/¢?

Zyn

Xn
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EM for Gaussian Mixtures: E-step

e The complete-data log-likelihood is

K
Inp(X,Z|0) = Z Zan In i + InN (n| by, i)
n=1 k=1

o E step: Calculate responsibilities using current parameters
Bold:

TN (X g, 2i)
S N (e, )

« Under the posterior distribution p(z,x = 1|x,, 8°) the
expected value of z, is y(zu)-

p(znk = 1|xn7 OOId) = ’Y(an) =
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EM for Gaussian Mixtures: M-step |

e Because the log-likelihood

N K

Inp(X,Z|0) = ZZZ”" In 7 + InN (x| g, Xie)]
n=1 k=1

is a linear function of the z,; component assignments, we
can calculate the expectation wrt the component
assignments by using the expectations of the component
assignments.

o Exercise: Write out a closed form for the function
Q(0,0°) = 3, Inp(X, Z|6) x p(Z|X,6°).

* S0 Q(6,67) = Y7, Sy V(@) [+ InN (e, Bi)].

» Maximizing Q(8, 8°') with respect to the model
parameters is more or less straightforward.
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EM for Gaussian Mixtures: M-step

e We saw that

N K
9 eold Z Z 7(an)[ln Tk + lnN(Xn|p’ka zk)
n=1 k=1

o Write down the maximization problems for the M-step. (You
don’t need to solve them.)
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EM for Gaussian Mixtures

e Initialize parameters, then iterate:
o E step: Calculate responsibilities using current parameters

TN (%, |y, i)
S TN (b, 5)

’Y(an) =

Think of N, as effective number of points in component k.
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EM for Gaussian Mixtures

e Initialize parameters, then iterate:
o E step: Calculate responsibilities using current parameters

TN (%, |y, i)
S TN (b, 5)

o M step: Re-estimate parameters using these v(z.)

’Y(an) =

N
N, = ZW(an)
n=1
N
B = ﬁkZ'Y(an)xn
n=1
1 N
X = Ne Z'Y(an)(xn — ) (e — )"
n=1
Ny
T o= —
, N

e Think of N as effective number of points in component .
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MoG EM - Example

EM Example: Gaussian Mixture Models

2
2%
igitat
N )
0 . ° o :=o~ ¢
Yih'e T
o lo~
-2 1
-2 0 (a) 2

e Same initialization as with K-means before
o Often, K-means is actually used to initialize EM
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MoG EM - Example

2 [ ]
o SN
.. A
0 . ° o . 3.. o
U3 SR
) (O
-2 1
-2 0 (b 2

o Calculate responsibilities v(zux)
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MoG EM - Example

e Calculate model parameters {m, p;, X} using these
responsibilities
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MoG EM - Example

e |teration 2
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MoG EM - Example

e lteration 5
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MoG EM - Example

2 )
— ® o0
L=20 o:;;;.:}
°e v )
:.\.“
0 KR
Yo h'e T
L7/
()"
2 &E
-2 0 (f) 2

e lteration 20 - converged
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EM - Summary

e EM finds local maximum to likelihood

p(X|60) = p(X,Z|6)
z

e |terates two steps:
o E step calculates the distribution of the missing variables Z
e (Hard EM ills in” the variables).
o M step maximizes expected complete log likelihood
(expectation wrt E step distribution)
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Conclusion

Readings: Ch. 9.1,9.2,9.4
K-means clustering
Gaussian mixture model
What about K?

¢ Model selection: either cross-validation or Bayesian version
(average over all values for K)

Expectation-maximization, a general method for learning
parameters of models when not all variables are observed
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