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Vector Space Model (ssos and 19709

Gerard Salton’s Information Retrieval System

turn n textual documents into n document vectors d;,d-, ..., d,
create term-by-document matrix A, = [dy|d2|---|d,, ]

to retrieve info., create query vector q, which is a pseudo-doc



Vector Space Model (ssos and 19709

Gerard Salton’s Information Retrieval System

turn n textual documents into n document vectors d;,d-, ..., d,
create term-by-document matrix A, = [dy|d2|---|d,, ]

to retrieve info., create query vector q, which is a pseudo-doc

GOAL: find doc. d; closest to g

angular cosine measure used: J; = cos6; = q'd;/(||q||z/|d;||2)



Susan Dumais’s improvement to VSM = LSI

A, ... rank r term-by-document matrix
SVD: A=UX VI =" ouv’
LSl: use A, =>_._, o;u;v; in place of A
Why?
reduce storage when k£ << r

filter out uncertainty, so that performance on text mining
tasks (e.g., query processing and clustering) improves



Properties of SVD

basis vectors u; are orthogonal

uij, vi; are mixed in sign
A, = U X VI

nonneg mized nonneg mixed

U, V are dense

uniqueness—while there are many SVD algorithms, they all
create the same (truncated) factorization

of all rank-k approximations, A, is optimal (in Frobenius norm)
HA — AkHF — minrcmk(B)Sk HA — BHF



Strengths and Weaknesses of LSI

using A; in place of A gives improved performance

dimension reduction considers only essential components of
term-by-document matrix, filters out noise

best rank-k approximation

storage—U; and V are usually completely dense

interpretation of basis vectors u; is impossible due to mixed
signs

good truncation point £ is hard to determine
orthogonality restriction



Other Low-Rank Approximations

QR decomposition
any URV' factorization

Semidiscrete decomposition (SDD)

A, = X;D.YL, where D;. is diagonal, and elements of X, Y € {—1,0,1}.



Other Low-Rank Approximations

QR decomposition
any URV' factorization

Semidiscrete decomposition (SDD)

A, = X;D.YL, where D;. is diagonal, and elements of X, Y € {—1,0,1}.

BUT

All create basis vectors that are mixed in sign. Negative elements
make interpretation difficult.



The Power of Positivity

Positive anything is better than negative nothing.—Eibert Hubbard

It takes but one positive thought when given a chance to survive
and thrive to overpower an entire army of negative thoughts.—
Robert H. Schuller

Learn to think like a winner. Think positive and visualize your
strengths.—vic Braden

Positive thinking will let you do everything better than negative
thinking will.—zig ziglar



The Power of Nonnegativity

Nonnegative anything is better than negative nothing.—Eibert Hubbard

It takes but one nonnegative thought when given a chance to
survive and thrive to overpower an entire army of negative
thoughts.—Robert H. Schuller

Learn to think like a winner. Think nonnegative and visualize your
strengths.—vic Braden

Nonnegative thinking will let you do everything better than
negative thinking will.—zig ziglar



Nonnegative Matrix Factorization oo

Daniel Lee and Sebastian Seung’s Nonnegative Matrix Factorization

— T
nonneg mized nonneg mixed
A, = W, H

nonneg nonneg  nonneg



Interpretation with NMF

columns of W are the underlying basis vectors, i.e., each of the
n columns of A can be built from k& columns of W.

columns of H give the weights associated with each basis vector.

Ares=WH, = |w; | hit+ |[Wy | hor+-+ | Wy | hpe

W., H. > 0 = immediate interpretation
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Image Mining Applications

Data compression
Find similar images

Cluster images

Original Image Reconstructed Images
r =400 k =100




Text Mining

Highest Weighted Terms in Basis Vector W1 Highest Weighted Terms in Basis Vector W2
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Text Mining

court president

government | served Encyclopedia entry:

council RLvETA Constitution of the

Cuiture secretary United States

supreme 2llel

constitutional | conar president (148)
congress (124)
power (120)
united (104)

flowers disease constitution (81)

leaves pehaviour
plant glands
perennial contact
symptoms
|I_Zl ol
In

In

metal process method paper

person exampie lime people ...

polysems broken across several basis vectors w;



Text Mining Applications

Data compression

Find similar terms

Find similar documents
Cluster documents

Topic detection and tracking



Text Mining Applications

Enron email messages 2001

Feature
Index (k)

Cluster
Slze

Topic
Description

Dominant
Terms

10

497

California

Louise Kitchen

named top
woman by
Fortune

Fantasy
foothall

Texas
longhorn
football
newsletter

Enron
collapse

Emails
about India

Enron
collapse

ca, cpuc,
gov, socalgas,
sempra, org,
sCe, EINSsT,
aelaw, ci

evp, fortune,
britain, woman,
ceo, avon,
fiorinai, cfo,
hewlett, packard

game, wr,
qb, play,

rb, season,
injury, updated,
fantasy, image

UT, orange,

longhorn[s], texas,

true, truorange,
recruiting,
oklahoma
defensive

partnership|s],
fastow, shares,
sec, stock,
shareholder,
investors,

equity, lay

dahhol, dpe,
india, mseb,
maharashtra,
indian, lenders,
delhi, foreign,
minister

dow, debt,
reserved, wall,
copyright jones,
cents, analysts,
reuters,
spokesman

B Dynegy bankruptcy
OFantasy football
OTexas football

B Dabhaol - India

B California

Number of Clusters




Recommendation Systems

User1 User2 ... Usern

h e ¢ ( 1 5 ... 0 )
PHIERASE tem2| O 0 1
history A = . : : .
matrix ltem m \ 0 1 e 2 )

Create profiles for classes of users from basis vectors w;
Find similar users

Find similar items



Properties of NMF

basis vectors w; are not L. = can have overlap of topics
can restrict W, H to be sparse
W., H, > 0 = immediate interpretation

large w;;'s = basis vector w; is mostly about terms ;

h;1 how much doc; is pointing in the “direction” of topic
vector w;

Are;=WH, = |w; | hia+ | We | hor+- 4+ | W, | hga

NMF is algorithm-dependent: W, H not unique



Computation of NMF

MEAN SQUARED ERROR OBJECTIVE FUNCTION

min|A — WH|2 s.t. W,H>0

convex in W or H, but not both =- tough to get global min

huge # unknowns: mk for W and kn for H
(EX: A7oxx1x and k=10 topics = 800K unknowns)

above objective is one of many possible

convergence to local min NOT guaranteed for any algorithm



NMF Algorithms

Multiplicative update rules
Lee-Seung 2000
Hoyer 2002

Gradient Descent
Hoyer 2004
Berry-Plemmons 2004

Alternating Least Squares
Paatero 1994
ACLS
AHCLS



NMF Algorithm: Lee and Seung 2000

MEAN SQUARED ERROR OBJECTIVE FUNCTION
min ||[A — WH]||%
st. W,H>0

W = abs(randn(m,k));
H = abs(randn(k,n));
fori =1 : maxiter
H=H .*(W'A) ./ (W/WH + 10?);
W =W .* (AH") ./ (WHH! + 107°);
end

Many parameters affect performance (k, obj. function, sparsity constraints, algorithm, etc.).

— NMF is not unique!

(proof of convergence to based on E-M convergence proof)



NMF Algorithm: Lee and Seung 2000

DIVERGENCE OBJECTIVE FUNCTION

A,
min Z(Aw log [WHy]@'j — A;; + [WH];;)
5]
st. WH>O0

W = abs(randn(m,k));
H = abs(randn(k,n));
for i = 1 : maxiter
H=H.* (W/(A./(WH+107?)) ./ Wlee;
W=W.*((A./(WH+10?)H?) ./ ee"HT;
end

(proof of convergence to based on E-M convergence proof)

(objective function tails off after 50-100 iterations)



Multiplicative Update Summary

convergence theory: guaranteed to converge to fixed point

good initialization W H®©® speeds convergence and gets to
better fixed point

fixed point may be local min or saddle point

good initialization W H®©® speeds convergence and gets to
better fixed point

slow: many M-M multiplications at each iteration
hundreds/thousands of iterations until convergence

no sparsity of W and H incorporated into mathematical setup
O elements locked



Multiplicative Update and Locking

During iterations of mult. update algorithms, once an element
in W or H becomes 0, it can never become positive.

Implications for W: In order to improve objective function, algo-
rithm can only take terms out, not add terms, to topic vectors.

Very inflexible: once algorithm starts down a path for a topic
vector, it must continue in that vein.

ALS-type algorithms do not lock elements, greater flexibility al-
lows them to escape from path heading towards poor local min



Sparsity Measures

Berry etal.  [|x||5

v—|[X|1 /1|2

Hoyer  spar(X,x1) = 1

Diversity measure E@(x)=>"", |z;]’), 0<p<1
E®(x) = = >0 |z, p <0

Rao and Kreutz-Delgado: algorithms for minimizing E®)(x)
s.t. Ax = b, but expensive iterative procedure

ldeal nnz(x) not continuous, NP-hard to use this in optim.



NMF Algorithm: Berry et al. 2004

GRADIENT DESCENT-CONSTRAINED LEAST SQUARES

W = abs(randn(m,k)); (scale cols of W to unit norm)
H = zeros(k,n);
for i = 1 : maxiter
cLs forj=1: #docs, solve
ming,, [|[A; — WH,[|3 + A[H,;||3
st H, >0

co W =W .*(AH') / (WHH! + 107?); (scale cols of W)
end



NMF Algorithm: Berry et al. 2004

GRADIENT DESCENT—CONSTRAINED LEAST SQUARES

W = abs(randn(m,k)); (scale cols of W to unit norm)
H = zeros(k,n);
for i = 1 : maxiter

cs forj=1: #docs, solve

minu,; [| Ay — WH;{[3 + Al[Hy; 13
st H, >0
solve for H: (W/W + X 1) H=W'A; (small matrix solve)

eco W =W .* (AH") ./ (WHH" + 1079); (scale cols of W)

end

(objective function tails off after 15-30 iterations)



Berry et al. 2004 Summary

fast: less work per iteration than most other NMF algorithms
fast: small # of iterations until convergence
sparsity parameter for H

O elements in W are locked
no sparsity parameter for W

ad hoc nonnegativity: negative elements in H are set to 0,
could run Isgnonneg Or snnis INStead

NO convergence theory



PMF Algorithm: Paatero & Tapper 1994

MEAN SQUARED ERROR—ALTERNATING LEAST SQUARES
min ||A — WH||%
st. WH>0

W = abs(randn(m,k));
for i = 1 : maxiter
s forj=1: #docs, solve
miny,, [|A.; — WH. |13
st H, >0
Ls forj=1: #terms, solve
minw;, [|A;. — W HIJ3
st W,, >0
end



ALS Algorithm

W = abs(randn(m,k));

for i = 1 : maxiter
s solve matrix equation W/WH = W'A for H
womse H=H. % (H>= 0)
s solve matrix equation HH' W' = HA! for W
voxsee W =W, x (W >=0)

end



ALS Summary

fast

works well in practice
speedy convergence

only need to initialize W©
0 elements not [ocked

no sparsity of W and H incorporated into mathematical setup
ad hoc nonnegativity: negative elements are setto 0

ad hoc sparsity: negative elements are setto 0

no convergence theory



Alternating Constrained Least Squares

If the very fast ALS works well in practice and no NMF algorithms guarantee
convergence to local min, why not use ALS?

W = abs(randn(m,k));
for i =1 : maxiter
cs forj=1: #docs, solve
Minu,, [|As; — WH (13 + Ar|[Hyl3
st H, >0
cs forj=1: #terms, solve
minw,, [|Aj: — W H|[3 + Aw|[W.[[3
st W,,>0
end



Alternating Constrained Least Squares

If the very fast ALS works well in practice and no NMF algorithms guarantee
convergence to local min, why not use ALS?

W = abs(randn(m,k));

for i =1 : maxiter
as  solve for H: (W/W + \gl) H=W'A
vossee H = H. x (H >= 0)
cLs solve for W: (HH' + \jl) W/ = HA!
voonee W =W, % (W >= 0)

end



ACLS Summary

fast: 6.6 sec vs. 9.8 sec (gd-cls)
works well in practice

speedy convergence

only need to initialize W(©

0 elements not [ocked

allows for sparsity in both W and H

ad hoc nonnegativity: after LS, negative elements set to 0O,
could run isgnonneg Or snnis instead  (doesn’t improve accuracy much)

no convergence theory



ACLS + spar(x)

Is there a better way to measure sparsity and still maintain speed of ACLS?

spar(x,.i) = Y IXI/ X2 g sparga))ymespar(x)]|xlo—[x]|:=0

vn—1
(spar(Wj*)=on and spar(H*j)=aH)

W = abs(randn(m,k));
for i = 1 : maxiter
as forj=1: #docs, solve
ming,, |Asy — WHL[[3 + Aa((1 — an)VE + am)|[Hl3 — [|H.l13)
st H,; >0
as forj=1: #terms, solve
minw,, [|A;. — W H|IZ+ A (1 — aw)VE + o) [[W. |3 — [[W,.|2)
st W,,>0
end



AHCLS

(spar(Wj*)=on and spar(H*j)=ozH)

W = abs(randn(m,k));

Br = ((1 — ap)Vk + ag)?

Bw = ((1 — aw)Vk + aw)?

fori =1 : maxiter
as  solve for H:  (WTW + Ay By | — AyE) H= W'A
voosee H=H. x (H >= 0)
o solve for W: (HH” + \iy 8w | — \wE) W' = HAT
oxsee W = W, % (W >= 0)

end



AHCLS Summary

fast: 6.8 vs. 9.8 sec (gd-cls)

works well in practice

speedy convergence

only need to initialize W(®

0 elements not [ocked

allows for more explicit sparsity in both W and H

ad hoc nonnegativity: after LS, negative elements set to 0,
could run Isgnonneg Or snnis instead (doesn’t improve accuracy much)

no convergence theory



Strengths and Weaknesses of NMF

Great Interpretability

Performance for data mining tasks comparable to LSI
Sparsity of factorization allows for significant storage savings
Scalability good as k£, m, n increase

possibly faster computation time than SVD

Factorization is not unique =- dependency on algorithm and
parameters

Unable to reduce the size of the basis without recomputing the
NMF



Current NMF Research

Algorithms

Alternative Objective Functions
Convergence Criterion
Updating NMF

Initializing NMF

Choosing &



Extensions for NMF

p—way factorization A =A;A;...A, AA; >0

topic doc subtopic doc

A = term( A ) topic(Az), then A1 — term( B, ) subtopic(Bz)_

— terms from anchor text create A
node 1 node?2 ... noden
term 1 ( 1 5 e 0 \
term 2 0 0 e 1

terrr.1m\ 0 1 2 )



