
The

Nonnegative Matrix Factorization
in

Data Mining

Amy Langville
langvillea@cofc.edu

Mathematics Department
College of Charleston
Charleston, SC

Yahoo! Research

10/18/2005

Outline
Part 1: Historical Developments in Data Mining

• Vector Space Model (1960s-1970s)

• Latent Semantic Indexing (1990s)

• Other VSM decompositions (1990s)

Part 2: Nonnegative Matrix Factorization (2000)

• Applications in Image and Text Mining

• Algorithms

• Current and Future Work

Vector Space Model (1960s and 1970s)

Gerard Salton’s Information Retrieval System
SMART: System for the Mechanical Analysis and Retrieval of Text

(Salton’s Magical Automatic Retriever of Text)

• turn n textual documents into n document vectors d1, d2, . . ., dn

• create term-by-document matrix Am×n = [d1|d2|. . .|dn]

• to retrieve info., create query vector q, which is a pseudo-doc

Vector Space Model (1960s and 1970s)

Gerard Salton’s Information Retrieval System
SMART: System for the Mechanical Analysis and Retrieval of Text

(Salton’s Magical Automatic Retriever of Text)

• turn n textual documents into n document vectors d1, d2, . . ., dn

• create term-by-document matrix Am×n = [d1|d2|. . .|dn]

• to retrieve info., create query vector q, which is a pseudo-doc

GOAL: find doc. di closest to q

— angular cosine measure used: δi = cos θi = qTdi/(‖q‖2‖di‖2)

Latent Semantic Indexing (1990s)

Susan Dumais’s improvement to VSM = LSI
Idea: use low-rank approximation to A to filter out noise

Am×n: rank r term-by-document matrix

• SVD: A = UΣ VT =
∑r

i=1 σiuivT
i

• LSI: use Ak =
∑k

i=1 σiuivT
i in place of A

• Why?

— reduce storage when k << r

— filter out uncertainty, so that performance on text mining
tasks (e.g., query processing and clustering) improves

Properties of SVD

• basis vectors ui are orthogonal

• uij, vij are mixed in sign
Ak = Uk Σk VT

k
nonneg mixed nonneg mixed

• U, V are dense

• uniqueness—while there are many SVD algorithms, they all
create the same (truncated) factorization

• of all rank-k approximations, Ak is optimal (in Frobenius norm)
‖A − Ak‖F = minrank(B)≤k ‖A − B‖F

Strengths and Weaknesses of LSI

Strengths

• using Ak in place of A gives improved performance

• dimension reduction considers only essential components of
term-by-document matrix, filters out noise

• best rank-k approximation

Weaknesses

• storage—Uk and Vk are usually completely dense

• interpretation of basis vectors ui is impossible due to mixed
signs

• good truncation point k is hard to determine
• orthogonality restriction

Other Low-Rank Approximations

• QR decomposition

• any URVT factorization

• Semidiscrete decomposition (SDD)

Ak = XkDkYT
k , where Dk is diagonal, and elements of Xk, Yk ∈ {−1,0,1}.

Other Low-Rank Approximations

• QR decomposition

• any URVT factorization

• Semidiscrete decomposition (SDD)

Ak = XkDkYT
k , where Dk is diagonal, and elements of Xk, Yk ∈ {−1,0,1}.

BUT

All create basis vectors that are mixed in sign. Negative elements
make interpretation difficult.

The Power of Positivity

• Positive anything is better than negative nothing.—Elbert Hubbard

• It takes but one positive thought when given a chance to survive
and thrive to overpower an entire army of negative thoughts.—
Robert H. Schuller

• Learn to think like a winner. Think positive and visualize your
strengths.—Vic Braden

• Positive thinking will let you do everything better than negative
thinking will.—Zig Ziglar

The Power of Nonnegativity

• Nonnegative anything is better than negative nothing.—Elbert Hubbard

• It takes but one nonnegative thought when given a chance to
survive and thrive to overpower an entire army of negative
thoughts.—Robert H. Schuller

• Learn to think like a winner. Think nonnegative and visualize your
strengths.—Vic Braden

• Nonnegative thinking will let you do everything better than
negative thinking will.—Zig Ziglar

Nonnegative Matrix Factorization (2000)

Daniel Lee and Sebastian Seung’s Nonnegative Matrix Factorization
Idea: use low-rank approximation with nonnegative factors to improve LSI

Ak = Uk Σk VT
k

nonneg mixed nonneg mixed

Ak = Wk Hk

nonneg nonneg nonneg

Interpretation with NMF

• columns of W are the underlying basis vectors, i.e., each of the
n columns of A can be built from k columns of W.

• columns of H give the weights associated with each basis vector.

Ake1 = WkH∗1 =





...
w1...



 h11 +





...
w2...



 h21 + . . . +





...
wk...



 hk1

• Wk, Hk ≥ 0 ⇒ immediate interpretation (additive parts-based rep.)

Image Mining

SVD

W H

Ai

i

U V
iΣ

Image Mining Applications

Original Image Reconstructed Images
 r = 400 k = 100

• Data compression

• Find similar images

• Cluster images

Text Mining
MED dataset (k = 10)

0 1 2 3 4

10
9
8
7
6
5
4
3
2
1 ventricular

aortic
septal
left
defect
regurgitation
ventricle
valve
cardiac
pressure

Highest Weighted Terms in Basis Vector W
*1

weight

te
rm

0 0.5 1 1.5 2 2.5

10
9
8
7
6
5
4
3
2
1 oxygen

flow
pressure
blood
cerebral
hypothermia
fluid
venous
arterial
perfusion

Highest Weighted Terms in Basis Vector W
*2

weight

te
rm

0 1 2 3 4

10
9
8
7
6
5
4
3
2
1 children

child
autistic
speech
group
early
visual
anxiety
emotional
autism

Highest Weighted Terms in Basis Vector W
*5

weight

te
rm

0 0.5 1 1.5 2 2.5

10
9
8
7
6
5
4
3
2
1 kidney

marrow
dna
cells
nephrectomy
unilateral
lymphocytes
bone
thymidine
rats

Highest Weighted Terms in Basis Vector W
*6

weight

te
rm

Text Mining

• polysems broken across several basis vectors wi

Text Mining Applications

• Data compression

• Find similar terms

• Find similar documents

• Cluster documents

• Topic detection and tracking

Text Mining Applications
Enron email messages 2001

Recommendation Systems

purchase

history

matrix
A =





User 1 User 2 . . . User n

Item 1 1 5 .. . 0
Item 2 0 0 .. . 1...

...
...

. . .
...

Item m 0 1 .. . 2





• Create profiles for classes of users from basis vectors wi

• Find similar users

• Find similar items

Properties of NMF

• basis vectors wi are not ⊥ ⇒ can have overlap of topics

• can restrict W, H to be sparse

• Wk, Hk ≥ 0 ⇒ immediate interpretation (additive parts-based rep.)

EX: large wij’s ⇒ basis vector wi is mostly about terms j

EX: hi1 how much doc1 is pointing in the “direction” of topic
vector wi

Ake1 = WkH∗1 =





...
w1...



 h11 +





...
w2...



 h21 + . . . +





...
wk...



 hk1

• NMF is algorithm-dependent: W, H not unique

Computation of NMF
(Lee and Seung 2000)

Mean squared error objective function

min ‖A − WH‖2
F s.t. W, H ≥ 0

Nonlinear Optimization Problem

— convex in W or H, but not both ⇒ tough to get global min

— huge # unknowns: mk for W and kn for H
(EX: A70K×1K and k=10 topics ⇒ 800K unknowns)

— above objective is one of many possible

— convergence to local min NOT guaranteed for any algorithm

NMF Algorithms

• Multiplicative update rules

— Lee-Seung 2000

— Hoyer 2002

• Gradient Descent

— Hoyer 2004

— Berry-Plemmons 2004

• Alternating Least Squares

— Paatero 1994

— ACLS

— AHCLS

NMF Algorithm: Lee and Seung 2000
Mean Squared Error objective function

min ‖A − WH‖2
F

s.t. W, H ≥ 0

————————————————————————
W = abs(randn(m,k));

H = abs(randn(k,n));

for i = 1 : maxiter

H = H .* (WTA) ./ (WTWH + 10−9);

W = W .* (AHT) ./ (WHHT + 10−9);

end
————————————————————————

Many parameters affect performance (k, obj. function, sparsity constraints, algorithm, etc.).

— NMF is not unique!

(proof of convergence to fixed point based on E-M convergence proof)

NMF Algorithm: Lee and Seung 2000
Divergence objective function

min
∑

i,j

(Aij log
Aij

[WH]ij
− Aij + [WH]ij)

s.t. W, H ≥ 0

————————————————————————
W = abs(randn(m,k));

H = abs(randn(k,n));

for i = 1 : maxiter

H = H .* (WT (A ./ (WH + 10−9))) ./ WTeeT ;

W = W .* ((A ./ (WH + 10−9))HT) ./ eeTHT ;

end
————————————————————————

(proof of convergence to fixed point based on E-M convergence proof)

(objective function tails off after 50-100 iterations)

Multiplicative Update Summary

Pros

+ convergence theory: guaranteed to converge to fixed point

+ good initialization W(0), H(0) speeds convergence and gets to
better fixed point

Cons

– fixed point may be local min or saddle point

– good initialization W(0), H(0) speeds convergence and gets to
better fixed point

– slow: many M-M multiplications at each iteration

– hundreds/thousands of iterations until convergence

– no sparsity of W and H incorporated into mathematical setup

– 0 elements locked

Multiplicative Update and Locking
During iterations of mult. update algorithms, once an element

in W or H becomes 0, it can never become positive.

• Implications for W: In order to improve objective function, algo-
rithm can only take terms out, not add terms, to topic vectors.

• Very inflexible: once algorithm starts down a path for a topic
vector, it must continue in that vein.

• ALS-type algorithms do not lock elements, greater flexibility al-
lows them to escape from path heading towards poor local min

Sparsity Measures

• Berry et al. ‖x‖2
2

• Hoyer spar(xn×1) =
√

n−‖x‖1/‖x‖2√
n−1

• Diversity measure E(p)(x) =
∑n

i=1 |xi|p, 0 ≤ p ≤ 1

E(p)(x) = −
∑n

i=1 |xi|p, p < 0

Rao and Kreutz-Delgado: algorithms for minimizing E(p)(x)
s.t. Ax = b, but expensive iterative procedure

• Ideal nnz(x) not continuous, NP-hard to use this in optim.

NMF Algorithm: Berry et al. 2004
Gradient Descent–Constrained Least Squares

————————————————————————————
W = abs(randn(m,k)); (scale cols of W to unit norm)

H = zeros(k,n);

for i = 1 : maxiter

CLS for j = 1 : #docs, solve

minH∗j ‖A∗j − WH∗j‖2
2 + λ‖H∗j‖2

2

s.t. H∗j ≥ 0

GD W = W .* (AHT) ./ (WHHT + 10−9); (scale cols of W)

end
————————————————————————————

NMF Algorithm: Berry et al. 2004
Gradient Descent–Constrained Least Squares

————————————————————————————
W = abs(randn(m,k)); (scale cols of W to unit norm)

H = zeros(k,n);

for i = 1 : maxiter

CLS for j = 1 : #docs, solve

minH∗j ‖A∗j − WH∗j‖2
2 + λ‖H∗j‖2

2

s.t. H∗j ≥ 0

solve for H: (WTW + λ I) H = WTA; (small matrix solve)

GD W = W .* (AHT) ./ (WHHT + 10−9); (scale cols of W)

end
————————————————————————————

(objective function tails off after 15-30 iterations)

Berry et al. 2004 Summary

Pros

+ fast: less work per iteration than most other NMF algorithms

+ fast: small # of iterations until convergence

+ sparsity parameter for H

Cons

– 0 elements in W are locked
– no sparsity parameter for W

– ad hoc nonnegativity: negative elements in H are set to 0,
could run lsqnonneg or snnls instead

– no convergence theory

PMF Algorithm: Paatero & Tapper 1994
Mean Squared Error—Alternating Least Squares

min ‖A − WH‖2
F

s.t. W, H ≥ 0

————————————————————————
W = abs(randn(m,k));

for i = 1 : maxiter

LS for j = 1 : #docs, solve

minH∗j ‖A∗j − WH∗j‖2
2

s.t. H∗j ≥ 0

LS for j = 1 : #terms, solve

minWj∗ ‖Aj∗ − Wj∗H‖2
2

s.t. Wj∗ ≥ 0

end
————————————————————————

ALS Algorithm
—————————————————————————

W = abs(randn(m,k));

for i = 1 : maxiter

LS solve matrix equation WTWH = WTA for H

nonneg H = H. ∗ (H >= 0)

LS solve matrix equation HHTWT = HAT for W

nonneg W = W. ∗ (W >= 0)

end
—————————————————————————

ALS Summary

Pros

+ fast

+ works well in practice

+ speedy convergence

+ only need to initialize W(0)

+ 0 elements not locked

Cons

– no sparsity of W and H incorporated into mathematical setup

– ad hoc nonnegativity: negative elements are set to 0

– ad hoc sparsity: negative elements are set to 0

– no convergence theory

Alternating Constrained Least Squares
If the very fast ALS works well in practice and no NMF algorithms guarantee

convergence to local min, why not use ALS?

—————————————————————————
W = abs(randn(m,k));

for i = 1 : maxiter

CLS for j = 1 : #docs, solve

minH∗j ‖A∗j − WH∗j‖2
2 + λH‖H∗j‖2

2

s.t. H∗j ≥ 0

CLS for j = 1 : #terms, solve

minWj∗ ‖Aj∗ − Wj∗H‖2
2 + λW‖Wj∗‖2

2

s.t. Wj∗ ≥ 0

end
—————————————————————————

Alternating Constrained Least Squares
If the very fast ALS works well in practice and no NMF algorithms guarantee

convergence to local min, why not use ALS?

—————————————————————————
W = abs(randn(m,k));

for i = 1 : maxiter

cls solve for H: (WTW + λHI) H = WTA

nonneg H = H. ∗ (H >= 0)

cls solve for W: (HHT + λW I) WT = HAT

nonneg W = W. ∗ (W >= 0)

end
—————————————————————————

ACLS Summary

Pros

+ fast: 6.6 sec vs. 9.8 sec (gd-cls)

+ works well in practice

+ speedy convergence

+ only need to initialize W(0)

+ 0 elements not locked
+ allows for sparsity in both W and H

Cons

– ad hoc nonnegativity: after LS, negative elements set to 0,
could run lsqnonneg or snnls instead (doesn’t improve accuracy much)

– no convergence theory

ACLS + spar(x)
Is there a better way to measure sparsity and still maintain speed of ACLS?

spar(xn×1) =
√

n−‖x‖1/‖x‖2√
n−1

⇔ ((1−spar(x))
√

n+spar(x))‖x‖2−‖x‖1=0

(spar(Wj∗)=αW and spar(H∗j)=αH)

——————————————————————————————
W = abs(randn(m,k));

for i = 1 : maxiter

cls for j = 1 : #docs, solve

minH∗j ‖A∗j − WH∗j‖2
2 + λH(((1 − αH)

√
k + αH)‖H∗j‖2

2 − ‖H∗j‖2
1)

s.t. H∗j ≥ 0

cls for j = 1 : #terms, solve

minWj∗ ‖Aj∗ − Wj∗H‖2
2 + λW (((1− αW)

√
k + αW)‖Wj∗‖2

2 − ‖Wj∗‖2
1)

s.t. Wj∗ ≥ 0

end
——————————————————————————————

AHCLS
(spar(Wj∗)=αW and spar(H∗j)=αH)

————————————————————————————
W = abs(randn(m,k));

βH = ((1 − αH)
√

k + αH)2

βW = ((1 − αW)
√

k + αW)2

for i = 1 : maxiter

cls solve for H: (WTW + λHβH I − λHE) H = WTA

nonneg H = H. ∗ (H >= 0)

cls solve for W: (HHT + λWβW I − λWE) WT = HAT

nonneg W = W. ∗ (W >= 0)

end
————————————————————————————

AHCLS Summary

Pros

+ fast: 6.8 vs. 9.8 sec (gd-cls)

+ works well in practice

+ speedy convergence

+ only need to initialize W(0)

+ 0 elements not locked
+ allows for more explicit sparsity in both W and H

Cons

– ad hoc nonnegativity: after LS, negative elements set to 0,
could run lsqnonneg or snnls instead (doesn’t improve accuracy much)

– no convergence theory

Strengths and Weaknesses of NMF
Strengths

• Great Interpretability

• Performance for data mining tasks comparable to LSI

• Sparsity of factorization allows for significant storage savings

• Scalability good as k, m, n increase

• possibly faster computation time than SVD

Weaknesses

• Factorization is not unique ⇒ dependency on algorithm and
parameters

• Unable to reduce the size of the basis without recomputing the
NMF

Current NMF Research

• Algorithms

• Alternative Objective Functions

• Convergence Criterion

• Updating NMF

• Initializing NMF

• Choosing k

Extensions for NMF
Tensor NMF

p−way factorization A = A1A2. . .Ap A, Ai ≥ 0

Embedded NMF

A =
(topic

term A1

) (doc

topic A2

)
, then A1 =

(subtopic

term B1

) (doc

subtopic B2

)
.

NMF on Web’s hyperlink matrix — terms from anchor text create A

A =





node 1 node 2 . . . node n

term 1 1 5 .. . 0
term 2 0 0 .. . 1...

...
...

. . .
...

term m 0 1 .. . 2





