The Nonnegative Matrix Factorization in Data Mining

Amy Langville langvillea@cofc.edu

Mathematics Department College of Charleston Charleston, SC

Yahoo! Research 10/18/2005

Outline

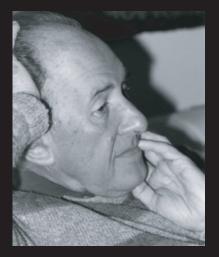
Part 1: Historical Developments in Data Mining

- Vector Space Model (1960s-1970s)
- Latent Semantic Indexing (1990s)
- Other VSM decompositions (1990s)

Part 2: Nonnegative Matrix Factorization (2000)

- Applications in Image and Text Mining
- Algorithms
- Current and Future Work

Vector Space Model (1960s and 1970s)



Gerard Salton's Information Retrieval System

SMART: System for the Mechanical Analysis and Retrieval of Text (Salton's Magical Automatic Retriever of Text)

- turn n textual documents into n document vectors d_1, d_2, \ldots, d_n
- create term-by-document matrix $\mathbf{A}_{m \times n} = [\mathbf{d}_1 | \mathbf{d}_2 | \cdots | \mathbf{d}_n]$
- to retrieve info., create query vector **q**, which is a pseudo-doc

Vector Space Model (1960s and 1970s)

Gerard Salton's Information Retrieval System

SMART: System for the Mechanical Analysis and Retrieval of Text (Salton's Magical Automatic Retriever of Text)

- turn n textual documents into n document vectors d_1, d_2, \ldots, d_n
- create term-by-document matrix $\mathbf{A}_{m \times n} = [\mathbf{d}_1 | \mathbf{d}_2 | \cdots | \mathbf{d}_n]$
- to retrieve info., create query vector **q**, which is a pseudo-doc

GOAL: find doc. d_i closest to q

- angular cosine measure used: $\delta_i = \cos \theta_i = \mathbf{q}^T \mathbf{d}_i / (\|\mathbf{q}\|_2 \|\mathbf{d}_i\|_2)$

Latent Semantic Indexing (1990s)

Susan Dumais's improvement to VSM = LSI Idea: use low-rank approximation to **A** to filter out noise

 $A_{m \times n}$: rank r term-by-document matrix

- SVD: $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$
- LSI: use $\mathbf{A}_{k} = \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ in place of \mathbf{A}
- Why?
 - reduce storage when $k \ll r$
 - filter out uncertainty, so that performance on text mining tasks (e.g., query processing and clustering) improves

Properties of SVD

- basis vectors \mathbf{u}_i are orthogonal
- u_{ij} , v_{ij} are mixed in sign $\mathbf{A}_k = \mathbf{U}_k \quad \boldsymbol{\Sigma}_k \quad \mathbf{V}_k^T$

nonneg mixed nonneg mixed

- **U**, **V** are dense
- uniqueness—while there are many SVD algorithms, they all create the same (truncated) factorization
- of all rank-k approximations, A_k is optimal (in Frobenius norm) $\|\mathbf{A} - \mathbf{A}_k\|_F = \min_{rank(\mathbf{B}) \leq k} \|\mathbf{A} - \mathbf{B}\|_F$

Strengths and Weaknesses of LSI

Strengths

- using \mathbf{A}_k in place of \mathbf{A} gives improved performance
- dimension reduction considers only essential components of term-by-document matrix, filters out noise
- best rank-k approximation

Weaknesses

- storage— \mathbf{U}_k and \mathbf{V}_k are usually completely dense
- interpretation of basis vectors u_i is impossible due to mixed signs
- good truncation point k is hard to determine
- orthogonality restriction

Other Low-Rank Approximations

- **QR** decomposition
- any **URV**^T factorization
- Semidiscrete decomposition (SDD)

 $\mathbf{A}_k = \mathbf{X}_k \mathbf{D}_k \mathbf{Y}_k^T$, where \mathbf{D}_k is diagonal, and elements of $\mathbf{X}_k, \mathbf{Y}_k \in \{-1, 0, 1\}$.

Other Low-Rank Approximations

- **QR** decomposition
- any **URV**^T factorization
- Semidiscrete decomposition (SDD) $\mathbf{A}_k = \mathbf{X}_k \mathbf{D}_k \mathbf{Y}_k^T$, where \mathbf{D}_k is diagonal, and elements of $\mathbf{X}_k, \mathbf{Y}_k \in \{-1, 0, 1\}$.

BUT

All create basis vectors that are mixed in sign. Negative elements make interpretation difficult.

The Power of Positivity

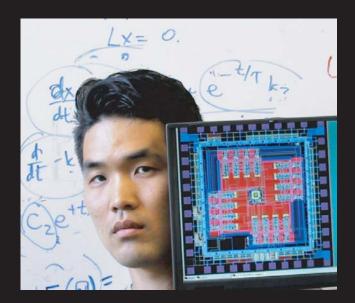
• Positive anything is better than negative nothing.—Elbert Hubbard

- It takes but one positive thought when given a chance to survive and thrive to overpower an entire army of negative thoughts.—
 Robert H. Schuller
- Learn to think like a winner. Think positive and visualize your strengths.—Vic Braden
- Positive thinking will let you do everything better than negative thinking will.—zig Ziglar

The Power of Nonnegativity

- Nonnegative anything is better than negative nothing.—Elbert Hubbard
- It takes but one nonnegative thought when given a chance to survive and thrive to overpower an entire army of negative thoughts.—Robert H. Schuller
- Learn to think like a winner. Think nonnegative and visualize your strengths.—Vic Braden
- Nonnegative thinking will let you do everything better than negative thinking will.—zig ziglar

Nonnegative Matrix Factorization (2000)



Daniel Lee and Sebastian Seung's Nonnegative Matrix Factorization

Idea: use low-rank approximation with nonnegative factors to improve LSI

 V_{ι}^{T} = **U**_k \mathbf{A}_k Σ_k nonneg

mixed mixed nonneq

 $\mathbf{A}_k = \mathbf{W}_k$ H_k

nonneg nonneg nonneg

Interpretation with NMF

 columns of W are the underlying basis vectors, i.e., each of the n columns of A can be built from k columns of W.

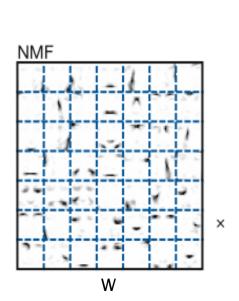
columns of H give the weights associated with each basis vector.

$$\mathbf{A}_{k}\mathbf{e}_{1} = \mathbf{W}_{k}\mathbf{H}_{*1} = \begin{bmatrix} \mathbf{i} \\ \mathbf{w}_{1} \\ \mathbf{i} \end{bmatrix} h_{11} + \begin{bmatrix} \mathbf{i} \\ \mathbf{w}_{2} \\ \mathbf{i} \end{bmatrix} h_{21} + \dots + \begin{bmatrix} \mathbf{i} \\ \mathbf{w}_{k} \\ \mathbf{i} \end{bmatrix} h_{k1}$$

• \mathbf{W}_k , $\mathbf{H}_k \ge \mathbf{0} \Rightarrow$ immediate interpretation

(additive parts-based rep.)

Image Mining



U

H

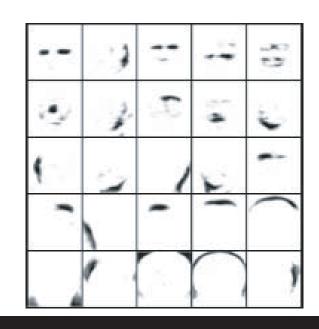
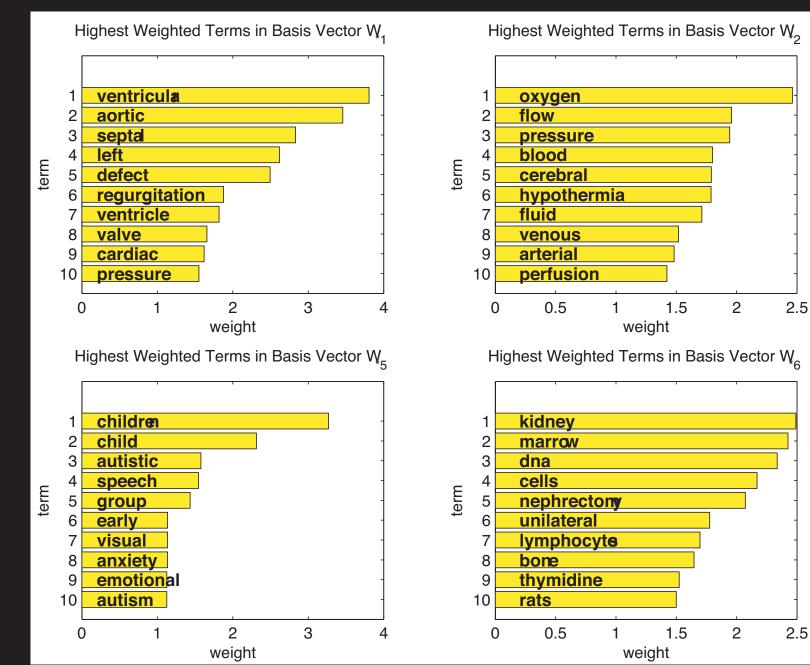


Image Mining Applications

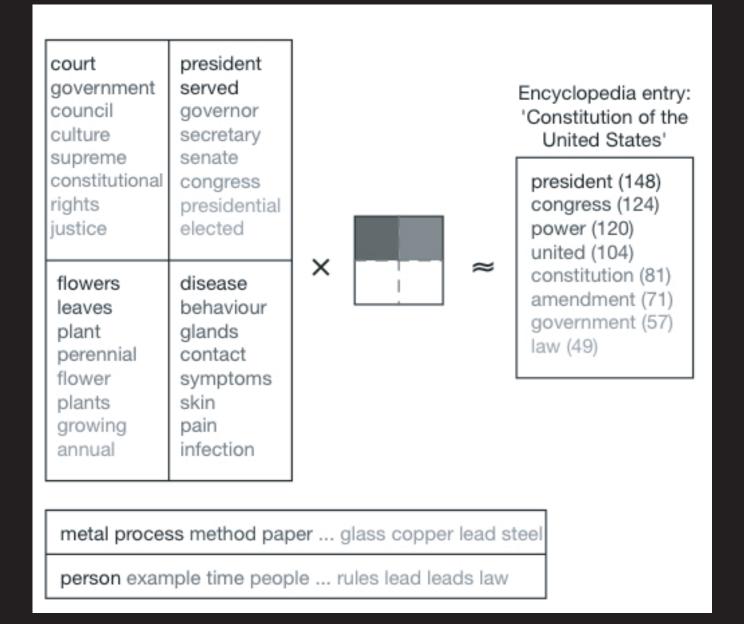
- Data compression
- Find similar images
- Cluster images

Original Image r = 400 Reconstructed Images k = 100

Text Mining MED dataset (k = 10)



Text Mining



• polysems broken across several basis vectors \mathbf{w}_i

Text Mining Applications

- Data compression
- Find similar terms
- Find similar documents
- Cluster documents
- Topic detection and tracking

Text Mining Applications Enron email messages 2001

Feature Index (k)	Cluster Size	Topic Description	Dominant Terms			Jan	1			
10	497	California	ca, cpuc , gov, socalgas , sempra, org, sce, gmssr, aelaw, ci							
23	43	Louise Kitchen named top woman by Fortune	evp, fortune , britain, woman, ceo , avon, fiorinai, cfo, hewlett, packard	01	Mar Apr					
26	231	Fantasy football	game, wr, qb, play, rb, season, injury, updated,		May	14		 Dynegy bankruptcy Fantasy football Texas football Dabhol - India 		
33	233 Texas U longhorn le football t newsletter r		fantasy, image UT, orange,		2001	Jun				
		longhorn[s], texas, true, truorange, recruiting, oklahoma defensive	5	2(Jul Aug		California			
34	65	Enron collapse	partnership[s], fastow, shares, sec, stock, shareholder, investors,			Sep			1	
39	235	Emails about India	equity, lay dahhol, dpc, india, mseb, maharashtra, indian, lenders, delhi, foreign, minister			Oct Nov Dec				
46	127	Enron collapse	dow, debt, reserved, wall, copyright jones, cents, analysts, reuters, spokesman			000	0 Nu	2 umber of		4 s

Recommendation Systems



- Create profiles for classes of users from basis vectors w_i
- Find similar users
- Find similar items

Properties of NMF

- basis vectors \mathbf{w}_i are not $\perp \Rightarrow$ can have overlap of topics
- can restrict **W**, **H** to be sparse
- W_k , $H_k \ge 0 \Rightarrow$ immediate interpretation (additive parts-based rep.)
 - **EX:** large w_{ij} 's \Rightarrow basis vector \mathbf{w}_i is mostly about terms j
 - **EX:** h_{i1} how much doc_1 is pointing in the "direction" of topic vector \mathbf{w}_i

$$\mathbf{A}_{k}\mathbf{e}_{1} = \mathbf{W}_{k}\mathbf{H}_{*1} = \begin{bmatrix} \vdots \\ \mathbf{w}_{1} \\ \vdots \end{bmatrix} h_{11} + \begin{bmatrix} \vdots \\ \mathbf{w}_{2} \\ \vdots \end{bmatrix} h_{21} + \dots + \begin{bmatrix} \vdots \\ \mathbf{w}_{k} \\ \vdots \end{bmatrix} h_{k1}$$

• NMF is algorithm-dependent: **W**, **H** not unique

Computation of NMF

(Lee and Seung 2000)

Mean squared error objective function $\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2 \quad s.t. \quad \mathbf{W}, \mathbf{H} \ge \mathbf{0}$

Nonlinear Optimization Problem

— convex in **W** or **H**, but not both \Rightarrow tough to get global min

- huge # unknowns: mk for W and kn for H (EX: $A_{70K \times 1K}$ and k=10 topics \Rightarrow 800K unknowns)

above objective is one of many possible

convergence to local min NOT guaranteed for any algorithm

NMF Algorithms

- Multiplicative update rules
 - Lee-Seung 2000
 - Hoyer 2002
- Gradient Descent
 - Hoyer 2004
 - Berry-Plemmons 2004
 - Alternating Least Squares
 - Paatero 1994
 - ACLS
 - AHCLS

NMF Algorithm: Lee and Seung 2000

MEAN SQUARED ERROR OBJECTIVE FUNCTION

 $\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2$

s.t. $\mathbf{W}, \mathbf{H} \ge \mathbf{0}$

W = abs(randn(m,k)); H = abs(randn(k,n)); for i = 1 : maxiter H = H .* (W^TA) ./ (W^TWH + 10⁻⁹); W = W .* (AH^T) ./ (WHH^T + 10⁻⁹); end

Many parameters affect performance (k, obj. function, sparsity constraints, algorithm, etc.). — NMF is not unique!

(proof of convergence to fixed point based on E-M convergence proof)

NMF Algorithm: Lee and Seung 2000

DIVERGENCE OBJECTIVE FUNCTION

$$\begin{split} \min \sum_{i,j} (\mathbf{A}_{ij} \log \frac{\mathbf{A}_{ij}}{[\mathbf{WH}]_{ij}} - \mathbf{A}_{ij} + [\mathbf{WH}]_{ij}) \\ s.t. \quad \mathbf{W}, \mathbf{H} \geq \mathbf{0} \end{split}$$

$$\begin{split} & \textbf{W} = abs(randn(m,k)); \\ & \textbf{H} = abs(randn(k,n)); \\ & \text{for } i = 1 : maxiter \\ & \textbf{H} = \textbf{H} .^{*} (\textbf{W}^{T}(\textbf{A} ./ (\textbf{W}\textbf{H} + 10^{-9}))) ./ \textbf{W}^{T}\textbf{e}\textbf{e}^{T}; \\ & \textbf{W} = \textbf{W} .^{*} (((\textbf{A} ./ (\textbf{W}\textbf{H} + 10^{-9}))\textbf{H}^{T}) ./ \textbf{e}\textbf{e}^{T}\textbf{H}^{T}; \\ & \text{end} \end{split}$$

(proof of convergence to fixed point based on E-M convergence proof) (objective function tails off after 50-100 iterations)

Multiplicative Update Summary

Pros

- + convergence theory: guaranteed to converge to fixed point
- good initialization W⁽⁰⁾, H⁽⁰⁾ speeds convergence and gets to better fixed point

Cons

- fixed point may be local min or saddle point
- good initialization $\mathbf{W}^{(0)}, \mathbf{H}^{(0)}$ speeds convergence and gets to better fixed point
- slow: many M-M multiplications at each iteration
- hundreds/thousands of iterations until convergence
- no sparsity of W and H incorporated into mathematical setup
- 0 elements locked

Multiplicative Update and Locking

During iterations of mult. update algorithms, once an element in W or H becomes 0, it can never become positive.

- Implications for **W**: In order to improve objective function, algorithm can only take terms out, not add terms, to topic vectors.
- Very inflexible: once algorithm starts down a path for a topic vector, it must continue in that vein.
- ALS-type algorithms do not *lock* elements, greater flexibility allows them to escape from path heading towards poor local min

Sparsity Measures

• Berry et al. $\|\mathbf{x}\|_2^2$

• Hoyer
$$spar(\mathbf{x}_{n \times 1}) = \frac{\sqrt{n} - \|\mathbf{x}\|_1 / \|\mathbf{x}\|_2}{\sqrt{n} - 1}$$

• Diversity measure $E^{(p)}(\mathbf{x}) = \sum_{i=1}^{n} |x_i|^p, \ \mathbf{0} \le p \le \mathbf{1}$ $E^{(p)}(\mathbf{x}) = -\sum_{i=1}^{n} |x_i|^p, \ p < \mathbf{0}$

Rao and Kreutz-Delgado: algorithms for minimizing $E^{(p)}(\mathbf{x})$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$, but expensive iterative procedure

• Ideal $nnz(\mathbf{x})$ not continuous, NP-hard to use this in optim.

NMF Algorithm: Berry et al. 2004

GRADIENT DESCENT-CONSTRAINED LEAST SQUARES

W = abs(randn(m,k));(scale cols of **W** to unit norm) $\mathbf{H} = \operatorname{zeros}(k,n);$ for i = 1 : maxiter **CLS** for i = 1 : #docs, solve $\min_{\mathbf{H}_{*i}} \|\mathbf{A}_{*j} - \mathbf{W}\mathbf{H}_{*j}\|_{2}^{2} + \lambda \|\mathbf{H}_{*j}\|_{2}^{2}$ s.t. $H_{*i} \ge 0$ **GD** $W = W .* (AH^T) ./ (WHH^T + 10^{-9});$ (scale cols of W) end

NMF Algorithm: Berry et al. 2004

GRADIENT DESCENT-CONSTRAINED LEAST SQUARES

 $\mathbf{W} = abs(randn(m,k));$ (scale cols of **W** to unit norm) $\mathbf{H} = \operatorname{zeros}(k,n);$ for i = 1 : maxiter cls for i = 1 : #docs, solve $\min_{\mathbf{H}_{*i}} \|\mathbf{A}_{*i} - \mathbf{W}\mathbf{H}_{*i}\|_{2}^{2} + \lambda \|\mathbf{H}_{*i}\|_{2}^{2}$ s.t. $\mathbf{H}_{*i} \geq 0$ Solve for H: $(W^TW + \lambda I) H = W^TA$; (small matrix solve) **GD** $W = W .* (AH^T) ./ (WHH^T + 10^{-9});$ (scale cols of W) end

(objective function tails off after 15-30 iterations)

Berry et al. 2004 Summary

Pros

- + fast: less work per iteration than most other NMF algorithms
- + fast: small # of iterations until convergence
- + sparsity parameter for H

Cons

- 0 elements in W are *locked*
- no sparsity parameter for W
- ad hoc nonnegativity: negative elements in H are set to 0, could run Isqnonneg or snnls instead
- no convergence theory

PMF Algorithm: Paatero & Tapper 1994

MEAN SQUARED ERROR—ALTERNATING LEAST SQUARES

 $\min \|\mathbf{A} - \mathbf{W}\mathbf{H}\|_F^2$
s.t. $\mathbf{W}, \mathbf{H} \ge \mathbf{0}$

$$\begin{split} \mathbf{W} &= \operatorname{abs}(\operatorname{randn}(\mathsf{m},\mathsf{k}));\\ \text{for } \mathsf{i} &= \mathsf{1} : \ \operatorname{maxiter}\\ \mathbf{Ls} \ \ \mathsf{for } \mathsf{j} &= \mathsf{1} : \ \#docs, \ \mathsf{solve}\\ & \min_{\mathsf{H}_{*j}} \|\mathbf{A}_{*j} - \mathbf{W}\mathbf{H}_{*j}\|_2^2\\ & \quad \mathsf{s.t.} \ \ \mathsf{H}_{*j} \geq \mathbf{0}\\ \mathbf{Ls} \ \ \mathsf{for } \mathsf{j} &= \mathsf{1} : \ \#terms, \ \mathsf{solve}\\ & \min_{\mathsf{W}_{j*}} \|\mathbf{A}_{j*} - \mathbf{W}_{j*}\mathbf{H}\|_2^2\\ & \quad \mathsf{s.t.} \ \ \mathsf{W}_{j*} \geq \mathbf{0} \end{split}$$

ALS Algorithm

 $\mathbf{W} = abs(randn(m,k));$

- for i = 1 : maxiter
 - LS solve matrix equation $\mathbf{W}^T \mathbf{W} \mathbf{H} = \mathbf{W}^T \mathbf{A}$ for \mathbf{H}
 - NONNEG $\mathbf{H} = \mathbf{H} \cdot (\mathbf{H} \ge 0)$
 - LS solve matrix equation $\mathbf{H}\mathbf{H}^T\mathbf{W}^T = \mathbf{H}\mathbf{A}^T$ for \mathbf{W} NONNEG $\mathbf{W} = \mathbf{W} \cdot \mathbf{W} >= \mathbf{0}$

end

ALS Summary

Pros

- + fast
- + works well in practice
- speedy convergence
- + only need to initialize $\mathbf{W}^{(0)}$
- + 0 elements not *locked*

Cons

- no sparsity of W and H incorporated into mathematical setup
- ad hoc nonnegativity: negative elements are set to 0
- ad hoc sparsity: negative elements are set to 0
- no convergence theory

Alternating Constrained Least Squares

If the very fast ALS works well in practice and no NMF algorithms guarantee convergence to local min, why not use ALS?

$$\begin{split} \mathbf{W} &= abs(randn(m,k)); \\ \text{for } i &= 1 : \text{ maxiter} \\ \text{cLs } \text{for } j &= 1 : \# docs, \text{ solve} \\ & \min_{\mathbf{H}_{*j}} \|\mathbf{A}_{*j} - \mathbf{W}\mathbf{H}_{*j}\|_{2}^{2} + \lambda_{H} \|\mathbf{H}_{*j}\|_{2}^{2} \\ & \text{s.t. } \mathbf{H}_{*j} \geq 0 \\ \text{cLs } \text{for } j &= 1 : \# terms, \text{ solve} \\ & \min_{\mathbf{W}_{j*}} \|\mathbf{A}_{j*} - \mathbf{W}_{j*}\mathbf{H}\|_{2}^{2} + \lambda_{W} \|\mathbf{W}_{j*}\|_{2}^{2} \\ & \text{s.t. } \mathbf{W}_{j*} \geq 0 \end{split}$$

end

Alternating Constrained Least Squares

If the very fast ALS works well in practice and no NMF algorithms guarantee convergence to local min, why not use ALS?

$$\begin{split} \mathbf{W} &= \operatorname{abs}(\operatorname{randn}(\mathsf{m},\mathsf{k})); \\ \text{for } \mathsf{i} &= \mathsf{1} : \operatorname{maxiter} \\ \text{cls} & \operatorname{solve} \text{ for } \mathsf{H} : \left(\mathbf{W}^T \mathbf{W} + \lambda_H \mathsf{I} \right) \mathsf{H} = \mathbf{W}^T \mathsf{A} \\ \text{nonneg} & \mathsf{H} &= \mathsf{H} . * \left(\mathsf{H} > = 0 \right) \\ \text{cls} & \operatorname{solve} \text{ for } \mathsf{W} : \left(\mathsf{H} \mathsf{H}^T + \lambda_W \mathsf{I} \right) \mathsf{W}^T = \mathsf{H} \mathsf{A}^T \\ \text{nonneg} & \mathsf{W} &= \mathsf{W} . * \left(\mathsf{W} > = 0 \right) \\ \text{end} \end{split}$$

ACLS Summary

Pros

- + fast: 6.6 sec vs. 9.8 sec (gd-cls)
- + works well in practice
- speedy convergence
- + only need to initialize $\mathbf{W}^{(0)}$
- + 0 elements not *locked*
- + allows for sparsity in both W and H

Cons

- ad hoc nonnegativity: after LS, negative elements set to 0, could run lsqnonneg or snnls instead (doesn't improve accuracy much)
- no convergence theory

ACLS + spar(x)

Is there a better way to measure sparsity and still maintain speed of ACLS?

 $\operatorname{spar}(\mathbf{x}_{n\times 1}) = \frac{\sqrt{n} - \|\mathbf{x}\|_1 / \|\mathbf{x}\|_2}{\sqrt{n} - 1} \quad \Leftrightarrow \quad ((1 - \operatorname{spar}(\mathbf{x}))\sqrt{n} + \operatorname{spar}(\mathbf{x})) \|\mathbf{x}\|_2 - \|\mathbf{x}\|_1 = 0$ $(\operatorname{spar}(\mathbf{W}_{j*}) = \alpha_W \text{ and } \operatorname{spar}(\mathbf{H}_{*j}) = \alpha_H)$

s.t. $\mathbf{W}_{j*} \geq \mathbf{0}$

end

AHCLS

$$(\operatorname{spar}(\mathbf{W}_{j*}) = \alpha_W \text{ and } \operatorname{spar}(\mathbf{H}_{*j}) = \alpha_H)$$

```
\mathbf{W} = abs(randn(m,k));
\beta_H = ((1 - \alpha_H)\sqrt{k} + \alpha_H)^2
\beta_W = ((1 - \alpha_W)\sqrt{k} + \alpha_W)^2
for i = 1 : maxiter
                solve for H: (\mathbf{W}^T\mathbf{W} + \lambda_H\beta_H \mathbf{I} - \lambda_H\mathbf{E}) \mathbf{H} = \mathbf{W}^T\mathbf{A}
     CLS
     NONNEG H = H \cdot (H >= 0)
                solve for W: (HH^T + \lambda_W \beta_W] - \lambda_W E) W^T = HA^T
     CLS
     NONNEG W = W \cdot (W >= 0)
end
```

AHCLS Summary

Pros

- + fast: 6.8 vs. 9.8 sec (gd-cls)
- + works well in practice
- speedy convergence
- + only need to initialize $\mathbf{W}^{(0)}$
- + 0 elements not *locked*
- + allows for more explicit sparsity in both W and H

Cons

- ad hoc nonnegativity: after LS, negative elements set to 0, could run Isqnonneg Or snnIs instead (doesn't improve accuracy much)
- no convergence theory

Strengths and Weaknesses of NMF

Strengths

- Great Interpretability
- Performance for data mining tasks comparable to LSI
- Sparsity of factorization allows for significant storage savings
- Scalability good as k, m, n increase
- possibly faster computation time than SVD

Weaknesses

- Factorization is not unique \Rightarrow dependency on algorithm and parameters
- Unable to reduce the size of the basis without recomputing the NMF

Current NMF Research

Algorithms

- Alternative Objective Functions
- Convergence Criterion
- Updating NMF
- Initializing NMF
- Choosing k

Extensions for NMF

Tensor NMF

p-way factorization $\mathbf{A} = \mathbf{A}_1 \mathbf{A}_2 \dots \mathbf{A}_p$ $\mathbf{A}, \mathbf{A}_i \ge \mathbf{0}$

Embedded NMF

$$\mathbf{A} = \operatorname{term} \begin{pmatrix} \mathbf{A}_1 \end{pmatrix} \operatorname{topic} \begin{pmatrix} \mathbf{A}_2 \end{pmatrix}, \quad \operatorname{then} \mathbf{A}_1 = \operatorname{term} \begin{pmatrix} \mathbf{B}_1 \end{pmatrix} \operatorname{subtopic} \begin{pmatrix} \mathbf{B}_2 \end{pmatrix}.$$

NMF on Web's hyperlink matrix — terms from anchor text create A

 $\mathbf{A} = \begin{array}{cccc} \text{node 1} & \text{node 2} & \dots & \text{node n} \\ \text{term 1} & \mathbf{1} & \mathbf{5} & \dots & \mathbf{0} \\ \text{term 2} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{1} \\ \vdots & \vdots & \ddots & \vdots \\ \text{term m} & \mathbf{0} & \mathbf{1} & \dots & \mathbf{2} \end{array} \right)$