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Abstract

Particle physics experiments, like the Large Hadron
Collider in Geneva, can generate thousands of data
points listing detected particle reactions. An impor-
tant learning task is to analyze the reaction data for
evidence of conserved quantities and hidden par-
ticles. This task involves latent structure in two
ways: first, hypothesizing hidden quantities whose
conservation determines which reactions occur, and
second, hypothesizing the presence of hidden par-
ticles. We model this problem in the classic linear
algebra framework of automated scientific discov-
ery due to Valdés-Pérez, Zytkow and Simon, where
both reaction data and conservation laws are repre-
sented as matrices. We introduce a new criterion
for selecting a matrix model for reaction data: find
hidden particles and conserved quantities that rule
out as many interactions among the nonhidden par-
ticles as possible. A polynomial-time algorithm for
optimizing this criterion is based on the new theo-
rem that hidden particles are required if and only
if the Smith Normal Form of the reaction matrix R
contains entries other than 0 or 1. To our knowl-
edge this is the first application of Smith matrix de-
composition to a problem in Al Using data from
particle accelerators, we compare our algorithm to
the main model of particles in physics, known as
the Standard Model: our algorithm discovers con-
servation laws that are equivalent to those in the
Standard Model, and indicates the presence of a
hidden particle (the electron antineutrino) in accor-
dance with the Standard Model.

Introduction: Conservation Laws and
Hidden Particles in Particle Physics

Particle accelerators, like the Large Hadron Collider in
Geneva (LHC), generate huge amounts of sensor readings
from particle interactions, on the order of terabytes or even
petabytes. For example, the sensor data may be a large time
series of photoelectronic readings on an observation screen.
Two stages in the analysis of this data may be distinguished:
(1) The goal of the first stage is to separate background noise
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from experimental signal in the sensor readings. The result
is a set of reactions whose occurrence can be regarded as
definitely established by the experiments; these experimental
phenomena number in the 100s or 1000s, depending on the
experiment. (2) The second stage of analysis is concerned
with finding theories that explain the reaction phenomena es-
tablished by the first stage.

Filtering out as much noise as possible from the huge

amount of raw sensor data requires preprocessing by ma-
chine, and machine learning techniques like bagging and
boosting have been applied to this problem with consider-
able success (e.g., [Narsky, 2005]). This paper develops and
applies machine learning algorithms for the second stage of
data analysis, model exploration and construction. For new
areas of particle physics, like those targeted by the LHC, cur-
rent particle models are not expected to be sufficient, so it is
likely that machine learning will be useful if not essential for
exploring hypotheses and models, much as it has been for the
first stage of accelerator data analysis. This paper addresses
the key task of analyzing the experimental phenomena to find
conserved quantities and hidden entities.
Task Description and Approach. Considering the many
manhours and often millions of research dollars that go into
the establishment of a particle reaction, particle theorists aim
to find a model that is consistent with all the experimentally
established phenomena. In other words, they treat the ex-
perimental phenomena established in the first stage of data
analysis as noise-free. To support model construction in this
setting, we apply a classic Al framework for automated sci-
entific discovery, the matrix search paradigm [Valdés-Pérez et
al., 1993]. In this framework, an established reaction is repre-
sented as an n-dimensional vector, where n is the number of
detected or observed entities (particles that are not hidden). A
set of m observed reactions is summarized in an R, «,, data
matrix with m rows, and a set of conservation laws is also rep-
resented as a matrix. The construction of conservation laws
with hidden particles takes the form of a matrix search for a
solution @* of the equation anx(n+h)Q>{n+h)Xq = 0, where
R* extends the data matrix R with h columns corresponding
to i hidden particles.

Based on the methodology physicists have employed in
constructing hidden particle models, this paper introduces a
new criterion for selecting a conservation law matrix Q*: The
matrix should be maximally strict, meaning that Q* should be



Particle | Charge | Baryon# | Tau# | Electron# | Muon#
1 - -1 1 0 0 0
2 =T 1 -1 0 0 0
3 n 0 I 0 0 0
4 w 0 -1 0 0 0
5 D 1 I 0 0 0
6 D 1 -1 0 0 0
7 T 1 0 0 0 0
8 T -1 0 0 0 0
9 70 0 0 0 0 0
10 ~ 0 0 0 0 0
11 T -1 0 1 0 0
12 T 1 0 -1 0 0
3 v, 0 0 1 0 0
14 7 0 0 -1 0 0
15 w -1 0 0 0 1
16 1 1 0 0 0 -1
17 v, 0 0 0 0 1
18 7, 0 0 0 0 -1
19 e -1 0 0 1 0
20 et 1 0 0 -1 0
21 Ve 0 0 0 1 0
22 e 0 0 0 1 0

Table 1: Some common particles and quantum number as-
signments corresponding to conservation laws in the Standard
Model of particle physics. The table is an example of a con-
servation law matrix.

consistent with the observed reaction phenomena, but incon-
sistent with as many unobserved reactions as possible. We
establish several theorems in linear algebra that reduce opti-
mizing this criterion to standard linear algebra problems. The
main problem is to determine when hidden particles provide
extra “degrees of freedom” to rule out more unobserved reac-
tions. We solve this problem with an application of the classic
Smith Normal Form (SNF) decomposition of an integer ma-
trix: Hidden particles are needed if and only if the SNF of the
reaction data matrix contains an entry other than O or 1.

Evaluation. In principle, the theory and algorithms in this pa-
per apply to matrix search in any domain (such as chemistry
and engineering [Valdés-Pérez et al., 1993]). Here we focus
on particle physics as the application domain. For empiri-
cal evaluation we therefore compare our algorithm with the
fundamental Standard Model of particles [Cottingham and
Greenwood, 2007; Ford, 1963; Williams, 1997; Ne’eman and
Kirsh, 19831, developed over decades of physics research.
Neutrinos are an important example of particles whose exis-
tence was inferred indirectly by physicists. Table 1 illustrates
conservation laws in the Standard Model. Applying our pro-
gram to data from particle accelerators, the combination of
laws + hidden structure found by the program is equivalent to
the combination of laws + neutrinos in the Standard Model:
both classify reactions as possible and impossible in the same
way. The algorithm agrees with the Standard Model about
the need for a certain hidden particle, namely an electron
antineutrino. The procedure also computes a critical exper-
iment for testing the existence of the electron antineutrino.
The existence of this particle is one of the main questions in
research on new physics beyond the Standard Model [Elliott
and Engel, 2004, p.7], and finding new experiments that test
its existence is of considerable importance to particle physi-
cists [Lim et al., 2004].
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Related Work. The idea of modeling the search for hidden
entities as adding dimensions to a linear space was described
in [Valdés-Pérez er al., 1993]. They describe methods for
adding hidden dimensions in various domains, but not with
conservation laws in particle physics. [Valdés-Pérez, 1994]
develops an algorithm for finding conservation laws in parti-
cle physics, but not in combination with the search for hid-
den entities. None of the previous work applies the maximal
strictness criterion or develops algorithms for satisfying it.
Contributions. The main contributions of this paper may be
summarized as follows.

1. A new criterion—ruling out as many unobserved reac-
tions as possible—for selecting a set of conserved quan-
tities and hidden entities given an input set of observed
reactions.

. An algorithm for deciding whether introducing a hidden
entity is necessary for optimizing the criterion, based on
a novel application of the Smith decomposition of inte-
ger matrices.

A comparison of the output of the algorithm on particle
accelerator data with the fundamental Standard Model
of particles that shows an excellent match.

Paper Organization. We begin by reviewing standard con-
cepts and results from linear algebra and the matrix search
framework for automated scientific discovery. Then we for-
mally define the concept of a maximally strict matrix model,
describe the latent nullspace algorithm for finding one, and
establish the correctness and worst-case complexity of the al-
gorithm. The final section presents the implementation of the
algorithm and compares it to the Standard Model on actual
particle accelerator data. Our code and datasets are available
on-line at http://www.cs.sfu.ca/~oschulte/particles/.

2 Linear Algebra Background and Notation

In this section we review a number of standard concepts from
linear algebra; for more details see any textbook (e.g., [Artin,
1991]). A vector v is a list v. = (v(1),...,v(n)) of ra-
tional numbers. The set of vectors with integer entries only
is denoted by Int. The dimension of v is the number of
entries in v. A vector v is a linear combination of a set
of vectors {vy,..., v} if v can be written as a vector sum
v = Zf a;Vv; for suitable scalars (rational numbers) a;. A set
of vectors {vy, ..., vy} is linearly independent if no vector
v; is a linear combination of the k—1 other vectors. The span
of a set of vectors {vy, ..., v}, written span({vy,...,vi}),
is the set of linear combinations of vectors in {vy,...,Vvg}.
A linear subspace is a set of vectors V' that contains the 0
vector and is closed under linear combinations. A basis for a
linear space V is a maximum-size linearly independent set
of vectors from V. Two vectors vi, vy are orthogonal if
vi - vo = 0, where - is the dot product.

It will be necessary to distinguish linear combinations with
integral resp. fractional coefficients. The integer span of
a set of vectors {v1, ...,V } comprises linear combinations
with integer coefficients; formally, intspan({v1,...,vi}) =
{r:r= Zle z;r; for integer coefficients 21, ..., 2 }.



Let M,,«, be a matrix with m rows and n columns.
We omit the dimension subscripts for a matrix when con-
text makes them clear or irrelevant. The expression M (i, j)
denotes the entry in row ¢ and column j. The row space
of a matrix M is the span of the rows of M denoted by
rowspace(M). The null space, denoted by null(M), is the
set of n-dimensional vectors v that yield O when multiplied
by M, i.e., Mv = 0. The integer span is the integer span
of the rows of M, denoted by intspan(M). Let det denote
the determinant of a matrix. We make use of Cramer’s rule,
which states that if V' is a square matrix, the equation Vx =y
implies that x(i) = det(v;/y)/det(V'), where v;/y is the
matrix that results when the ¢-th column of V' is replaced by
the vector y.

Additional dimensions in a matrix model represent unob-
served entities. A vector v* with n 4+ h dimensions extends
an n-dimensional vector v if the vectors agree on the first
n dimensions, that is, v(i) = v*(i) for< = 1,...,n. The
superscript * indicates an extended vector or matrix object
with latent dimensions. A matrix M (n+h) extends a matrix
My, if M is a submatrix of M*, thatis, M (i, j) = M*(i, 5)
fori =1,...,sand j = 1,...,n. We make use of the clas-
sic Smith decomposition of integer matrices defined by the
following theorem [Artin, 1991, Ch.12].

Theorem 1 (Smith 1861) Ler M be an integer matrix. Then
there exist square integer matrices A and B such that
det(A) = £1,det(B) = £1, and S = AMB is an inte-
ger diagonal matrix with no negative entries.

A difference between the Smith decomposition M
A~18B~! and the well-known singular value decomposition
is that the former decomposes an integer matrix into other in-
teger matrices. Smith proved a stronger theorem that shows
that the matrix S is uniquely determined by several other con-
ditions, so one refers to it as the Smith Normal Form (SNF) of
M. The next section employs linear algebra concepts to de-
fine a framework for learning conservation law models with
hidden particles.

3 Learning Hidden Particle Models

Experimental particle physics produces a stream of observa-
tional phenomena. The main part of this data concerns the
observation of reactions among elementary particles. At any
given time, we have a set r1, ..., 7, of reactions that physi-
cists accept as experimentally established so far. The standard
notation for displaying reactions is the arrow notation where
reacting entities appear on the left of the arrow and the prod-
ucts of the reaction on the right. For example, the expression
e1 + es — e3 + e4 denotes that two entities eq, e react to
produce another two entities es3, e4. For a computational ap-
proach, we represent reactions as vectors, following [Aris,
1969; Valdés-Pérez et al., 1993]. Fix an enumeration of the
known particles numbered as p1, ..., p,. In Table 1, n = 22.
In the actual particle data analyzed in our study, n = 193. In
a given reaction r, we may count the number of occurrences
of a particle p among the reagents, and among the products;
subtracting the second from the first yields the net occur-
rence. For each reaction r, let r be the n-dimensional reac-
tion vector whose i-th entry is the net occurrence of entity
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e; in r. In what follows we simply refer to reaction vectors
as reactions. The scientific domains we consider deal with
discrete entities that occur in integral multiples. For example,
taking the 22 particles as numbered in Table 1, representing
the process u~ — e~ + v, + U, corresponds to the process
P15 — P19 + P17 + P22, and is represented by the vector
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,—1,0,—1,0,0, —1).

The conserved quantities assigned to entities in the domains
of interest in this paper are integers, so a quantity can be rep-
resented as an n-dimensional vector with integer entries. In
what follows we simply refer to quantity vectors as quan-
tities. If q is a quantity conserved in reaction r, then q is
orthogonal to r. We may combine m observed reactions in-
volving n detected particles to form a reaction data matrix
R, xn whose rows are the observed reaction vectors. Simi-
larly, combining ¢ quantities assigned to n particles produces
a quantity matrix Q,x,. The equation QRT = RQT =0
holds iff each quantity in @ is conserved in each reaction in
R. A matrix model with hidden latent particles corresponds
to an extended quantity matrix Q;X (nt+h)" We say that a ma-
trix Q;‘X(n +h) is consistent with an n-dimensional reaction
vector r if there is an n + h-dimensional reaction vector r*
extending r such that Q*[r*]7 = 0. An extended quantity
matrix QZX(H +h) is consistent with a reaction data matrix
R, xn if there is a reaction matrix anx(n +h) extending R
such that the equation Q*[R*]T = 0 holds. The interpreta-
tion is that a hidden particle model specifies a set of h hidden
particles, and assigns them values of quantities specified in
Q@*. This model is consistent with a reaction data matrix R
that involves detected particles only if the reactions specified
in R can be extended with the A hidden particles to form a
matrix R* such that all extended reactions in R* conserve all
extended quantities in Q*.

Example. Consider a scenario with n = 2 particles whose
symbols are K and u. Suppose that the reactions K — p and
K+ K — K+ K + u+ p are observed, corresponding to
the reaction data matrix

o

A hidden particle model may hypothesize that during the tran-
sition K + K — K + K + p + p a hidden particle py,
was present, and the reaction that actually took place was
K+ K — K+ K + pu+ p+ pp. Accepting the reaction
K — u as observed without a hidden particle, the extended
reaction matrix is

w =

The extended reactions in R* conserve the quantity

1
0

-1
-2

1
0

-1
—2

0
-1

q* = (1a 1a _2)

therefore q* is consistent with R. In the next section we de-
scribe a criterion for selecting among the consistent models.



4 Computing Maximally Strict Hidden
Particle Models

To motivate our selection criterion, we briefly review some
of the basic principles of scientific inference that have guided
physicists in their search for conservation laws. [Bilaniuk and
Sudarshan, 1969] explains that

there is an unwritten precept in modern physics, of-
ten facetiously referred to as Gell-Mann’s totalitar-
ian principle, which states that “anything which is
not prohibited is compulsory”. Guided by this sort
of argument we have made a number of remarkable
discoveries from neutrinos to radio galaxies.

With respect to conservation laws specifically, Ford describes
the same principle: “everything that can happen without vi-
olating a conservation law does happen” [Ford, 1963, p.82],
Ford’s emphasis. These principles tell us to look for laws
that explain why certain reactions are not observed. Thus
we seek conservation laws that rule out as many unobserved
reactions as possible. In keeping with the physical interpre-
tation, we refer to such sets as maximally strict laws because
they “forbid” as many reactions as possible. In terms of the
lattice ordering of concepts (version spaces [Mitchell, 1990]),
maximally strict laws are maximally specific models. Thus a
key aspect of physicists’ approach to selecting conservation
laws can be seen as an instance of a classic Al principle. The
formal definition is as follows.

Definition 2 Let R, «,, be a reaction data matrix with n de-
tected particles. A hidden particle model sz(n 4Ry where
h > 0, is maximally strict for R if Q* is consistent with R,
and for all other hidden particle models Q;, « (n+h?) that are
consistent with R where h' > 0, for any n-dimensional re-
action r, if v is consistent with Q*, then r is consistent with
Q.

Definition 2 is a strong minimality condition in the sense
that the interactions among observed particles that are con-
sistent with a maximally strict matrix are exactly the same
as, or a subset of, the reactions consistent with any other ma-
trix that is consistent with the data. We now state several
linear algebra results that provide computationally tractable
criteria for maximally strict matrices and reduce the matrix
search to standard linear algebra transformations. The proof
of part 4 is in the appendix, otherwise proofs are omitted due
to space constraints. The reaction span of a matrix M is
defined as the integer vectors in its row space, denoted by
rowspace(M) N Int.

Theorem 3 Let R,,«, be a reaction data matrix involving
n detected particles, let Q;‘X(n +h) be an extended quantity
matrix with h hidden particles, h > 0, and let anx(n+h) be

a reaction matrix that extends R with hidden particles.

1. If the set of reactions consistent with Q* is exactly the
integer span of R, then Q* is maximally strict for R.

2. Suppose that

(a) the reaction span of R* is equal to its integer span
(i.e., rowspace(R*) N Int = intspan(R*)), and
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(b) the set of reactions consistent with Q* is exactly the
reaction span of R*.

Then Q* is maximally strict for R* and for the input data
matrix R.

3. The set of reactions consistent with Q* is exactly the re-
action span of R* <= the row space of Q* is the null

space of R*.

The reaction span of R* is equal to its integer span <=
all entries in the Smith Normal Form of R* are 0 or 1.

Example. We expect that hidden dimensions allow a model
to fit the data more closely because the latent dimensions add
“degrees of freedom”. Theorem 3 characterizes the extra ex-
pressive power of hidden particle models in terms of the un-
observed reactions they can rule out: These are the reactions
that can be generated as linear combinations of the observed
reactions, but only with fractional coefficients. We illustrate
this phenomenon in a simple example. Consider again the
two observed reactions K — pand K+ K — K+K+pu+pu,
and unobserved reactions K + K — u+pand K + K — p.
These reactions respectively are represented by the vectors
(1,-1), (0,—-2) and (2,—2),(2,—1). The reaction vector
(2, —2) is the integer multiple 2(1, —1). The vector (2, —1)
can be generated from the observed ones as the linear com-
bination (2,-1) = 2(1,—1) — 4(0,—2). Thus the vec-
tor (2, —2) is in the integer span of the observed reactions,
and hence in their reaction span, and the vector (2, —1) is
in their reaction span but not in their integer span. Con-
sider again the quantity matrix with just the single quantity
q* = (1,1, —2). As we saw in Section 3, this model is con-
sistent with the observed reactions (1,—1), (0, —2), and it
is also consistent with the unobserved reaction (2, —2). The
model is not consistent, however, with the unobserved reac-
tion (2, —1), because no matter how many hidden particles
are used to extend this reaction, the quantity q* is not con-
served. In vector terms, there is no integer ¢ such that the
vector (2, —1,1%) is orthogonal to (1,1, —2). The reason why
the reaction K + K — p can be ruled out with hidden parti-
cles but the reaction K + K — i + p cannot is that the first
is a fractional linear combination and the second is an integer
linear combination of the observed reactions.

The Latent Nullspace Algorithm Theorem 3 shows that a
maximally strict hidden particle model can be found by se-
lecting conservation laws that define the nullspace of a latent
reaction matrix with hidden particles; we refer to this proce-
dure as the latent nullspace algorithm (LNA), displayed in
algorithm table 1. The algorithm extends an observed reac-
tion with a hidden particle if necessary and terminates with an
extension R* of R such that the reaction span of R* is equal
to the integer span of R*. The next proposition establishes
the Loop Invariant of Algorithm 1 (Line 9), which proves its
correctness given Theorem 3.

Proposition 4 (Loop Invariant of Algorithm 1) Ler

fo(n ht1) be an integer matrix whose reaction span
equals its integer span such that column n + h + 1 con-
tains Os only. Let r be any reaction vector of dimension
n + h + 1 such that vr(n + h + 1) = —1. Form a new matrix



Algorithm 1 The Latent Nullspace Algorithm (LNA) for
Finding a Maximally Strict Hidden Particle Model

Input: reaction data matrix R,,x, for n detected particles.

Calls: (1) Procedure nullbasis(M) which returns a basis

for the null space of matrix M.

(2) Procedure smith(M) which returns the Smith Normal

form of M.

Output: A reaction matrix R:nx(n +h) where h > 0, that
extends R with h hidden particles, and a quantity matrix
sz(n +h) that assigns conserved quantities to all n + h
particles, such that Q* is maximally strict for the input ma-
trix R.

1: Initialize h := 0 and R* := R.

2: fori =1tomdo
3:  Let M be the submatrix of R* consisting of the first ¢
rows.
4:  if smith(M) contains an entry other than O or 1 then
{add a new hidden particle}
5: Extend R* with an extra column to form
R:z X (n+h+1)"
6: Assign R*(i,n+h+1) := —1, and
R*(j,n+h+1):=0forj #i.
7: h:=h+1.
8: endif

9: end for{Loop Invariant: The reaction span of the first ¢
rows of R* is equal to their integer span. }
10: Assign B := nullbasis(R*). Let Q* be a matrix whose
rows are the vectors in the basis B.
11: Return R* and Q*.

Ri41)x(n+h+1) whose © + 1-st row is v and whose first i

rows are the same as R*. Then the reaction span of R equals
its integer span.

Run-time Analysis. The worst-case complexity of the al-
gorithm can be bounded as O(n") according to the follow-
ing analysis. The run-time of the algorithm is determined
by the computational cost of finding the Smith Normal Form
for the extended reaction matrices R;‘X(n +h) at stage ¢, for
i =1,...,m. Computing the SNF is a well-studied, compu-
tationally intensive process; the run-time of the standard al-
gorithm is O(j® x b?), where j is the maximum of the number
of rows and columns of the input matrix M, and b is the max-
imum length of entries in M [Kannan and Bachem, 1979].
The parameter b for a reaction matrix represents the number
of occurrences of a particle in a single reaction. In practice
we can assume this to be a small number, because there are
limits to the number of particles an experiment can detect.
So for the particle physics domain, we may take b = 1 as a
constant. To bound the parameter j, we assume that fraction-
free Gaussian elimination has been applied to the input matrix
R. The result of this preprocessing step is a reaction matrix
R* with linearly independent rows whose reaction and inte-
ger span are the same as the input matrix . Since the di-
mension of the row space of R is bounded by the number of
columns n, the input matrix may be assumed to have fewer
rows than columns, so j = n. Thus the run-time cost of each

Smith Normal Form computation is O(n%). As this compu-
tation is carried out at most n times, the overall complexity
of Algorithm 1 is O(n"). An important point is that the algo-
rithm scales up as data points increase: only the preprocess-
ing depends on the number of observed reactions, whereas
the main routine depends only on the number n of known
particles, which is essentially constant. In the next section we
describe a further optimization that makes the computation of
the Smith Normal Form feasible for realistic n on the order of
200, and reduces the time for a single experiment to minutes.

5 Implementation and Evaluation

We discuss the implementation of the LNA and the dataset on
which it was evaluated. Our code and datasets are available
on-line at http://www.cs.sfu.ca/~oschulte/particles/.

5.1 Evaluation and Results

Implementation. The algorithm was implemented in Maple,
a system for computational mathematics from the Univer-
sity of Waterloo. The subroutine nullbasis corresponds to
Maple’s built-in function nullspace, and the subroutine
smith to Maple’s function 1 smith. Because a reaction ma-
trix is very sparse, finding a basis for its nullspace is fast. For
example, it takes about 12 seconds to produce a basis for 205
reactions with 194 particles on an x86 Processor (1100 MHz,
523 MB RAM). The function ismith was optimized to take
advantage of the prevalence of O entries by minimizing the
number of determinant checks. With this optimization, find-
ing the Smith Normal Form for reaction data with 205 reac-
tions and 193 particles takes about 3 minutes with the same
processor. The run-time of i smith dominates the total run-
time of the LNA. The dataset for our experiments was formed
as follows.

Selection of Particles. The selection is based on the parti-
cle data published in the Review of Particle Physics [Parti-
cle Data Group, 2008]. The Review of Particle Physics is
an authoritative annual publication that collects the current
knowledge of the field. The Review lists the currently known
particles and a number of important reactions that are known
to occur. Our particle database contains an entry for each par-
ticle listed in the Review, for a total of 193 particles.
Selection of Reactions. For our experiments, we chose a
set of 205 observed reactions, 199 of which are decays listed
in the Review. The dataset includes a decay for each of the
182 particles with a decay mode listed. The data include the
most probable decay listed in the Review of Particle Physics.
The additional reactions are important processes listed in text-
books. We denote this data by D*.

Results. We compare the quantities and hidden particles in-
troduced by the LNA with the Standard Model of particle
physics. The conservation laws in the Standard Model are
based on the quantities electric charge, baryon number, elec-
tron number, muon number and tau number, which we denote
CBEMT (see Table 1). To apply our algorithm, the user needs
to specify a set of detected particles. Because of the com-
plexity of the experimental apparatus in particle physics and
the nature of particles, there is no absolute answer as to what
particles should be counted as directly observable and which



only as indirectly observable—-a user can apply our algo-
rithm according to his or her assumptions and/or hypotheses.
In our experiments, we chose the detectable particles to be
the non-neutrinos, for two reasons. (1) Historically, the pres-
ence of neutrinos was inferred indirectly, whereas other parti-
cles were considered to be directly observed [Williams, 1997,
Ne’eman and Kirsh, 1983]. (2) With regard to some neu-
trinos hypothesized by the Standard Model, there are im-
portant current debates about their existence. In particular,
a crucial issue in particle physics is whether in addition to
the electron neutrino, there exists a distinct electron antineu-
trino [Elliott and Engel, 2004, p.7]. The standard symbol for
the electron antineutrino is .. There are 6 neutrinos, which
leaves n = 187 nonneutrino particles that we treat as de-
tectable. We removed from the reaction data D* described
above all occurrences of neutrinos; for instance, the process
n — p+ e~ + V., known as beta decay, is entered into the
database as n — p + e~ . We denote the resulting database as
D. Applying our algorithms establishes the following results.

1. The conservation laws CBEMT in the Standard Model
are maximally strict for the reaction data D.

2. Without the electron antineutrino, the conservation laws
in the Standard Model are not maximally strict.

Method. For the first result, the SNF of the dataset D* with
neutrinos included contains only 0 and 1 entries, so Theorem
3(4) implies that the reaction span of D* is equal to its in-
teger span. It is straightforward to check that the quantities
CBEMT span the null space of D*. For the second result,
we removed the electron antineutrino 7, from the database
D*. The SNF of the resulting dataset contains a 2, which
establishes that without the v, particle the CBEMT laws, or
indeed any set of conservation laws, are not maximally strict.

5.2 Discussion

The fact that the conservation laws in the Standard Model are
maximally strict for the reaction data confirms that Definition
2 formalizes an important principle of scientific reasoning in
this domain.

Applications to Different Datasets. While hundreds more
reactions are known to be consistent with the Standard Model,
our result is valid for them as well, because the CBEMT quan-
tities are maximally strict for our data set D* already, hence
they remain maximally strict for any larger data set consis-
tent with the Standard Model. We have applied LNA also
to data inconsistent with the Standard Model: Since the re-
cent discovery that neutrinos have nonzero mass [Cottingham
and Greenwood, 2007], physicists have established a number
of experimental phenomena that contradict the conservation
laws of the Standard Model in exceptional cases, and accord-
ingly revised these laws. We applied the LNA to these addi-
tional data points and its output matches the revised theories
(details omitted due to space constraints).

The algorithm was also applied to the problem of learning
molecular structure in chemistry [Valdés-Pérez et al., 1993;
Langley et al., 1987]. Briefly, the problem is to infer the
structure of a known substance (e.g., Water has the structure
H>0) from known reactions among substances (e.g., 200 ml
of Hydrogen combine with 100 ml of Oxygen to produce 200
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ml of Water vapor). From such data, the LNA correctly re-
covered the molecular structure of five chemical substances
(details omitted due to space constraints).

Existence of Electron Antineutrino, and Computing Crit-
ical Experiments. The principle of our analysis is that with-
out the hidden particle, there is a reaction in the span of the
observed reactions that is not in their integer span, and should
not be observed if and only if the particle exists. Let us refer
to such a reaction as a critical experiment for the existence of
the particle. The main reaction whose absence physicists cite
in favor of the 7, particle is neutrinoless double beta decay,
symbolized as n +n — p+ p + e~ + e~ [Williams, 1997,
Elliott and Engel, 2004, Ch.12.2]. Our system solved a set of
linear equations to verify that neutrinoless double beta decay
is in the reaction span but not the integer span of the reaction
data base D* with the 7, particle removed. This confirms the
connection between fractional coefficients and hidden parti-
cles.

It is not easy to design critical experiments for the exis-
tence of hidden particles; this task has occupied particle theo-
rists especially for the 7, particle [Lim ez al., 2004]. Critical
experiments can be computed by solving a set of linear equa-
tions according to the following outline.

1. Compute the Smith Decomposition of the reaction data
matrix, such that R = A~1SB~!, and suppose that S
contains a diagonal entry S(¢, %) other than 0 or 1.

Construct an integer vector w with w(i) = 1 and com-
pute the vector [B~!]Tw = y, whose entries are inte-
gers also.

It can then be shown that the equation R”x = y has
only fractional solutions x, so y is in the reaction span
of R but not in the integer span.

This method found the process Y+ A — p+e~ which should
not be observed if and only if there is a distinct electron an-
tineutrino, and appears to be a new critical experiment for the
existence of the 7, particle.

6 Conclusion and Future Work

We applied the classic matrix search framework of [Valdés-
Pérez et al., 1993] to two key problems in the analysis of par-
ticle reaction data: Finding conserved quantities and hidden
particles. We introduced a new selection criterion for con-
servation laws with hidden particles: maximally strict hid-
den particle models rule out as many unobserved reactions as
possible. Optimizing this criterion can be reduced to stan-
dard linear algebra operations, in particular the Smith Nor-
mal Form of an integer matrix. The maximal strictness cri-
terion matches the fundamental Standard Model of particles:
it makes exactly the same predictions as the Standard Model
about which interactions among detectable particles are pos-
sible, and it indicates the need for an electron antineutrino in
accordance with the Standard Model.

We mention several avenues for future research. (1) Fur-
ther efficiency improvements are possible; for instance, rather
than computing the Smith Normal Forms of extended matri-
ces with ¢ and ¢ + 1 reactions separately, many of the com-
putations can be reused. (2) Further criteria for refining the



model selection are plausible. Our system introduces hidden
particles to better fit the data, but it does not attempt to mini-
mize the number of hidden particles introduced, or to choose
simple quantum numbers (cf. [Valdés-Pérez, 1994]). (3) We
plan to apply the algorithm to other particle data sets, such as
those that will come from the Large Hadron Collider.
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Appendix: Proof of Theorem 3, Part 4

Since the determinant of an integer matrix is itself an in-
teger, Cramer’s rule implies that if V' is an integer square
matrix with determinant +1, then Vx is an integer vector
if and only if x is an integer vector. By Smith’s Theorem
1, there exist square integer matrices U and V' such that
det(U) = £1,det(V) = 1, and S = URYV is a diago-
nal integer matrix. The equation Rx = Yy is equivalent to
[U-1SV-lx =y,or

SV~1lx =Uy.

(=) We show the contrapositive. Let y be an integer vector
and consider solutions to the equation SV ~!x = Uy where
all entries in S are 0 or 1. We show that if there is any so-
lution x, then there is an integer solution x’. Let u = Uy,
which is an integer vector since U is an integer matrix, and
let w = V~!x. Then we have Sw = u. Define w’ as fol-
lows: w'(j) = 01if S;; = 0, and w'(j) = w(j) otherwise.
Clearly Sw’ = Sw = u. It follows that w’ is an integer vec-
tor: For j with S;; = 0 it is immediate that w’(j) = 0; for
j with S;; # 0, we have S;; = 1, and Sj; x wW'(j) = uj,
which is an integer, so w’(j) is an integer and w’ € Int.

Now define x’ = Vw’. Clearly x’ is an integer vector since
w’ is an integer vector. So

SVlx' = SV Vw] = Sw = u= Uy,

which was to be shown.

(<) Suppose that S; > 1. Define w(j) = 1 fori = j
and w(j) = 0 otherwise. Let y = U~ 'w. We argue that no
solution of the equation SV ~'x = Uy is an integer vector;
consider any solution x. Then

SV lx =Uy=w.
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Let v = V—1x, such that Sv = w. Now

w; = 1= Si X V(Z)
So v(i) = 1/5;, where S; is not 1 or -1; hence v is not an
integer vector. Clearly v satisfies the equation Vv = x, so as
V' is an integer square matrix with determinant £1, it follows

from Cramer’s Rule that x is not an integer vector since v is
not an integer vector.
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