
Manual for Functor Bayes Net System

Yuke Zhu

July 19, 2012

Contents

1 Functor Bayes Net Package 1
1.1 Overview . 1
1.2 Functor Bayes Net . 2

2 Markov Logic Network Evaluation Package 5
2.1 Overview . 5
2.2 Inference . 5
2.3 5-fold Cross-validation . 6

3 Datasets 8
3.1 Databases . 8

4 Useful Scripts 9
4.1 Generator . 9
4.2 Statistics . 9

1 Functor Bayes Net Package

1.1 Overview

Functor Bayes Nets1 is a software package providing a series of learning algo-
rithms for statistical relational learning and probabilistic inference. This pack-
age is written in Java and based on the open-source The Tetrad Project2 and
used Weka3 for decision learning. Tetrad and Weka are open-source packages,
of which the source codes are imported into our package.

Package jbn
Operating System Unix/Linux
Environments Java version 1.6 or greater

MySQL installation

1Learning BNs For Relational Data http://www2.cs.sfu.ca/∼oschulte/jbn/
2The Tetrad Project http://www.phil.cmu.edu/projects/tetrad/
3Weka 3: Data Mining Software in Java http://www.cs.waikato.ac.nz/ml/weka/

1

1.2 Functor Bayes Net

The source code for our Functor Bayes Net system can be found in the jbn
folder. There are several parts in this package, structure learning, parameter
learning of Functor Bayes Net, Markov Logic Network exporting and decision
tree learning.
To make the package work, first we need to configure some global settings. The
global parameters of the system is defined in this file:

ca.sfu.jbn.common.global.java

You can change the default name of database, the URL, username and pass-
word of the database server and some other useful settings. Although it may be
impossible to go through each package one by one in the source code, there are
some important packages (classes) you should pay attention to. These packages
are mentioned below:

ca.sfu.jbn.ParameterLearning main.java
Main entry for structure and parameter learning of Functor Bayes Net; when
you want to use the structure and parameter learning code, export a jar file that
takes this class as main entry (argument formats are mentioned as comments in
the source file)

ca.sfu.jbn.MLN ParameterLearning main.java
Main entry for Markov Logic Network exporting from learned Bayes Net, fur-
ther used for MLN evaluation. Typically, we use this class together with the
Markov Logic Network Evaluation Package. The evaluate/jbn.jar file is an ex-
ported runnable Jar file of the whole project launched from this class.

ca.sfu.jbn.MLN DecisionTreeLearner main.java
Main entry for Markov Logic Network exporting with Weka decision tree learner.
Similar with MLN ParameterLearning main.java, it is also used for MLN eval-
uation. Typically, we use this class together with the Markov Logic Network
Evaluation Package. The evaluate/jbndt.jar file is an exported runnable Jar file
of the whole project launched from this class.

ca.sfu.jbn.structureLearning
Package which contains all the codes related to structure learning of Functor
Bayes Net.

ca.sfu.jbn.parameterLearning
Package which contains not all the codes related to parameter learning of Func-
tor Bayes Net.

1. ParamTet.java provides a main entry for parameter learning (As you see,
it is kind of messy of these main entries for some historical reasons, do not
bother too much).

2

Figure 1: Flow chart to illustrate the process of decision tree learner

2. Decisiontree.java is the most important code for decision tree learner, in
which we use Weka J48 decision learner to learn the tree structure and
use the frequencies from the database to calculate the weights for each
clause in MLN. This class is directly called from main entry of the learner
ca.sfu.jbn.MLN DecisionTreeLearner main.java.

You may want to take a look at the package ca.sfu.jbn.frequency to know better
about the process of parameter learning.

ca.sfu.jbn.frequency
Very important package for parameter learning. BayesStat.java is the key code
to obtain frequency and probability statistics directly from the database by do-
ing SQL queries. One thing to notice: there are some constraints for this code.
It did work well for our research now, but you may have to modify it to satisfy
new requirements (it may become buggy when there are multiple negative rela-
tions in your query).

edu.cmu.tetradapp.Tetrad.java
Tetrad has a GUI application for you to play with. We have done a lot of work
to get our JBN system integrated with this user interface. Try this if you are
interested. An exported Tetrad Jar file can be found in tetrad/SFUTetrad.jar.

3

	
	 MLN_ParameterLearning.java	

(Do	 the	 parameter	 learning	 on	
given	 database)	

ReadXML.java	
(it	 gets	 the	 database	 info,	 and	

parse	 them	 into	 xml	 format)	

ReadSQL_MLN_Files.java	
(it	 connects	 to	 database,	 put	 data	 info	

into	 .db,	 and	 make	 the	 predicates	 into	
VJ.mln	 and	 predicate.mln)	

S_learning.java	
(Structure	 learning	 part,	 using	

bayesPM,	 in	 three	 phases,	 and	

generate	 into	 bayesPM	 class)	

ParamTet.java	
(Do	 the	 parameter	 learning	 from	 the	 bayes	 instance	 from	

structure	 learning,	 and	 generate	 the	 final	 model	 into	 .bin	 file)	

Relation.xml	
(Contain	 the	 relation	

information	 in	 the	 xml	 format)	

*.db	
(For	 future	 infer	 of	 alchemy)	

*_VJ_.mln	
(Just	 initialize,	 for	 future	 parameter	 learning)	

*predicate_temp.mln	
(put	 the	 predicate	 relations	 in	 this	 file,	 the	

relations	 from	 table)	

*.bin	
(contain	 all	 the	 structure	 and	

parameter	 information)	

ExportToMLN.java	
(Generate	 the	 final	 mln	 file,	 dealing	 with	 the	 weight	

of	 each	 predicates,	 from	 the	 final	 structure	 and	
parameter	 learning	 model)	

Db.java	
(database	 connection	 and	 other	 database	

query	 related	 operations)	

*_VJ_.mln	
(Contain	 the	 final	 weight	 of	 all	
predicates)	

Parser.java	
(it	 gets	 the	 relationship	 info	

from	 relation.xml,	 and	 parse	

them	 for	 reading)	

DATABASE	

2 Markov Logic Network Evaluation Package

2.1 Overview

This package is to help evaluate the structure and parameters of a learned
Markov Logic Network file (.mln in the Alchemy4 format). The MLN evalua-
tion package outputs statistics, such as the average accuracy, conditional log-
likelihood, over all predicates in the dataset.

Package evaluate
Operating System Unix/Linux
Environments Java version 1.6 or greater

Korn shell (ksh)
Complied binaries of Alchemy (included in the package)

2.2 Inference

There are several parts of this package, of which each part is relatively inde-
pendent with others. The MLN inference code is written in Java, you can find
the code in infer folder. Here are some important packages (classes) in this code:

MLN.MLN.inference
Main entry for the MLN inference code, used for MLN evaluation. Typically, we
use this class together with evaluate package. The evaluate/evaluation/infer.jar
file is an exported runnable Jar file of the whole project launched from this class.

Usually, we do not use the infer project alone, it is just one part of the whole
evaluation system.

Now, what is the most important to know about this package is how to get
the codes work. First, we need to know the functionality of these files in the
evaluate folder:

1. test.sh
Korn shell script for evaluating the performance of different methods by
training and testing on a single database. This is one of the main entry of
the whole system, of which the argument format will be introduced later.

2. testcross.sh
Korn shell script for evaluating the performance of different methods by
training and testing on 5-fold cross-evaluation. This is the other one of
the main entry of the whole system, of which the argument format will be
introduced later.

3. learnwts
Compiled code for Alchemy MLN weight learner. We can get the code on

4Alchemy - Open Source AI http://alchemy.cs.washington.edu/

5

the website, but if you do not want to waste several weeks on changing
and compiling it, just use this one.

4. jbn.jar
As we have seen, this is an exported Jar file of the Functor Bayes Net
package launched from ca.sfu.jbn.MLN ParameterLearning main.java.

5. jbndt.jar
As we have seen, this is an exported Jar file of the Functor Bayes Net
package launched from ca.sfu.jbn.MLN DecisionTreeLearner main.java.

6. evaluation/infer.jar
As we have seen, this is an exported Jar file of the Inference package
launched from MLN.MLN.inference.

7. evaluation/lib
This is a folder that contains some ancient codes used for analyzing the
evaluation results and generating measurement statistics such as accuracy
and log-likelihood. Some of the codes come from the ca.sfu.jbn.Analyzer
of the Inference package. However, I have never read through them, why
not just put there and use them?

8. config.xml
Global configuration setting file that contains the database server, user-
name and password.

Thus, we can use test.sh and testcross.sh to run the evaluation system. The
argument format of these two scripts are the same; therefore, I will just explain
the cross-validation script testcross.sh.

2.3 5-fold Cross-validation

Before we begin to use the script, make sure you have set up the cross-validation
databases. Since 5-fold cross-validation is used, we create 5 training databases
and corresponding 5 testing databases, which are a subset of the whole databases.
The scripts in the cross folder are used to generate these databases, which will
be explained later.

The names of these training and testing databases are derived from the whole
database. For example, for a database named MovieLens, the generated train-
ing databases are named with suffix Training# and Test#:

MovieLens Training1,MovieLens Training2, . . . ,MovieLens Training5,

and the testing databases are named in a similar way:

MovieLens Test1,MovieLens Test2, . . . ,MovieLens Test5.

6

After we set up these databases, we can finally start our experiments. We use
the following command to run a cross-validation experiment:

$ testcross.sh dbName method geo-parameter

Here is a detailed description of these three arguments:

1. dbName
The name of the whole database you want to do cross-validation on.
For instance, the cross-validation databases are MovieLens Training# and
MovieLens Test#, you should use the name MovieLens.

2. method
You have many options on method parameter. This parameter determines
how to generate clauses and how to get the weights of clauses in MLN file.
Here is a list:

(a) mbn
To export MLN structure file from Bayes Net and use Alchemy weight
learner mbn to learn the weights of clauses in MLN file

(b) dtmbn
To export MLN structure file using decision tree learner from Bayes
Net and use Alchemy weight learner learnwts to learn the weights of
clauses in MLN file

(c) log
Deprecated To export weighted MLN file from Bayes Net, here we
obtain the weight by taking log of the conditional probability

(d) dtlog
Deprecated To export weighted MLN file using decision tree learner
from Bayes Net, here we obtain the weight by taking log of the con-
ditional probability

(e) lsn
To export weighted MLN file from Bayes Net. Similar with log, here
we obtain the weight by taking log of the conditional probability and
then subtracting the log of unit prior

(f) dtlsn
To export weighted MLN file using decision tree learner from Bayes
Net. Similar with log, here we obtain the weight by taking log of the
conditional probability and then subtracting the log of unit prior

3. geo-parameter
This parameter determines whether to use geometric mean when we do
MLN inference. There are two options:

(a) geo
To using geometric mean when we do inference; the performance test
usually favors this option

7

(b) nom
To disable geometric mean option

The content of the output contains statistics for each run in the 5-fold cross-
validation, including the accuracy, log-likelihood for each attribute and overall
accuracy and log-likelihood in average with regard to attributes.

Here is an example to illustrate how to run a 5-fold cross-validation on Movie-
Lens database (using mbn method and geometric mean):

$ testcross.sh MovieLens mbn geo

3 Datasets

3.1 Databases

Our datasets are some real-world and synthesized databases. There are five
real-world databases5 that we most commonly use in our experiments. You can
find more details about these datasets from the references in our published pa-
pers and on-line sources. Schema is the name of database in our database server.

1. MovieLens Database
Schema: MovieLens
This is a standard dataset from the UC Irvine machine learning repository.

2. Mutagenesis Database
Schema: Muta
This dataset is widely used in ILP research. It contains information on
Atoms, Molecules, and Bonds between them.

3. Hepatitis
Schema: hepelwin
This data is a modified version of the PKDD02 Discovery Challenge database.
The database contains information on the laboratory examinations of hep-
atitis B and C infected patients.

4. Mondial
Schema: mondelwin
This dataset contains data from multiple geographical web data sources.
We used a subset of the tables and features for fast inference.

5. Financial
Schema: fin
A dataset from the PKDD 1999 cup.

5Some of these databases are slightly modified from the original ones to meet specific
requirements of our system

8

6. UW
Schema: uw
A dataset from University of Washington, containing information of fac-
ulty, students and courses.

The backup of these databases are stored in the databases folder. For conve-
nience, each table is stored in one .sql file. Please always make sure you have
the backups before you modify these databases.

4 Useful Scripts

4.1 Generator

In some of our experiments, we have to generate sub-databases from the orig-
inal databases; or, make synthesized databases for some special purpose. The
most frequently-used generator is to generate the 5-fold cross-validation sub-
databases; other generators include the scripts to generate synthesized testbed
used in our parameter learning evaluation.

Script Name cross
Operating System Unix/Linux
Environments Java version 1.6 or greater

Korn shell (ksh)
Description Generate the 5-fold cross-validation databases. The name

of the cross-validation databases are named by append-
ing a suffix to the name of the original database. For
example, the original database is MovieLens, it will
create ten databases (five training databases and five
test databases) with names: MovieLens Training[1-5] and
MovieLens Test[1-5]

Example See the file example.txt in the same folder to get the idea

Script Name TestbedGenerator.py
Environments Python version 2.4.3 or greater
Description deprecated This script is used to generate a synthesized uni-

versity database containing information about students and
courses. We can control the number of students and courses
in the databases and the ratio of enrollment.

Example $ python TestbedGenerator.py <Students> <Courses>

4.2 Statistics

We have some scripts to help us handle with the outputs of our systems. You
can find them in the scripts folder. These scripts are very simple and most of
them are written in Python. Be free to use them to simplify your work.

9

Script Name clause-count.py
Environments Python version 2.4.3 or greater
Description Count the number of clauses in a MLN file
Output The number of clause in this MLN file
Example $ python clause-count.py < MovieLens.mln

Script Name clause-display.py
Environments Python version 2.4.3 or greater
Description Print out all the clauses in a MLN file
Example $ python clause-display.py < MovieLens.mln

Script Name cross-stat.py
Environments Python version 2.4.3 or greater
Description Very useful. Print out statistics of the cross-validation re-

sult, including accuracy, log-likelihood for each attributes,
also with average accuracy, average log-likelihood and stan-
dard deviation

Example First, we need to save all the output generated in one
cross-validation experiment into a temporary file, say
cross.output. Then run with this command:
$ python cross-stat.py < cross.output

10

