Machine Learning for Information Networks

Oliver Schulte School of Computing Science Simon Fraser University

Collaborators

Machine Learning for Information Networks

Outline

- What are information networks/multi-relational data?
- Why machine learning for information networks?
- Unifying logic and statistics: learning first-order Bayesian networks
- Applications
 - Frequency Modelling/Density Estimation
 - Relational Exception Mining
- How is relational learning different from nonrelational learning?

What Are Information Networks?

Representing Relational Data

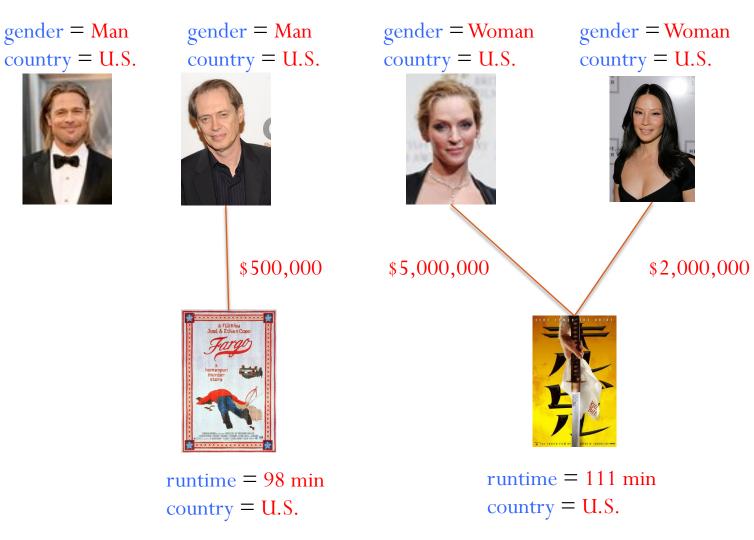
Definition

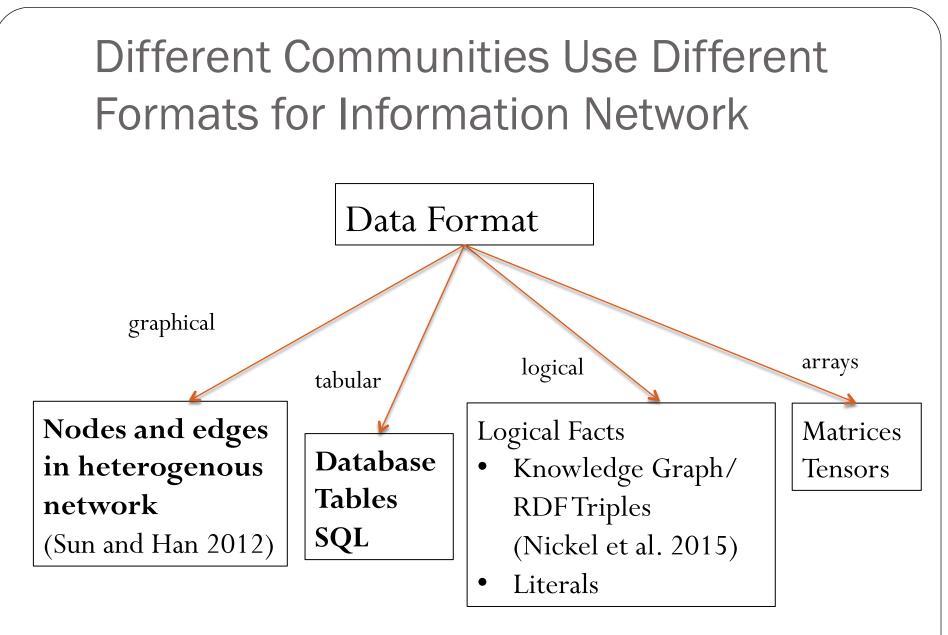
An information network (Sun and Han 2012) is a graph with

- nodes (aka entities)
- edges (aka relationships)
 - can be hyperedges
- Nodes and edges
 - can be of different types \rightarrow heterogeneity
 - can have attributes (aka features)

Sun, Y. & Han, J. (2012), Mining Heterogeneous Information Networks: Principles and Methodologies, Morgan & Claypool Publishers.

Toy Example





Nickel, M.; Murphy, K.; Tresp, V. & Gabrilovich, E. (2016), 'A review of relational machine learning for knowledge graphs', Proceedings of the IEEE 104(1), 11--33.

Table Representation

One table for each type of entity/link

Actors

	Attributes		
Name	gender	country	
Brad_Pitt	M	U.S.	
Lucy_Liu	W	U.S.	
Steve_Buscemi	Μ	U.S.	
Uma_Thurman	W	U.S.	

ActsIn

Name	Title	salary (M\$)
Lucy_Liu	Kill_Bill	2
Steve_Buscemi	Fargo	0.5
Uma_Thurman	Kill_Bill	5

Plug: The Prague Relational Learning Repository

- 80+ relational databases <u>Repository</u>
- Can search for different dataset properties.
- Write-up and connection details are <u>available</u>

http://arxiv.org/abs/1511.03086

		🛛 🗖 🗖 🖉
Management Schemas	🗲 Query 1 🗙	
SCHEMAS	🕸 🐮 🔚 🔚 🚀 🕵 🜔 🐯 📀 💿 🛞 🛛 Don't Limit	÷ 🔸 ダ 🔍 🕦 🗉 👘
Q Filter objects		- 4
Accidents Accidents AdventureWorks2014 Airline arnaud_clteseer arnaud_SSTOX arnaud_NWEcensusMid2014 Atherosclerosis AustralianFootball Basketball_men Basketball_men Basketball_women Biodegradability Bupa Carcinogenesis ccs ChEMBL ChEMBL ChEMBL_21 Chess classicmodels CORA Countries Credit cs Cs Cs Cs Cs		vies ng .epos
Ctu adult	100% 🗘 1:1	
Object Info Session	Action Output	
No object selected	Time Action Response	Duration / Fetch Time

Why Machine Learning for Information Networks?

Machine Learning for Information Networks

Enterprise Data Are Relational

- Most organizations maintain data in a relational database management system.
- Structured Query Language (SQL) allows fast *data retrieval*.
 - E.g., find all movie ratings > 4 where the user is a woman.
- Multi-billion dollar industry, \$Bn 15+ in 2006.
- IBM, Microsoft, Oracle, SAP, Peoplesoft.

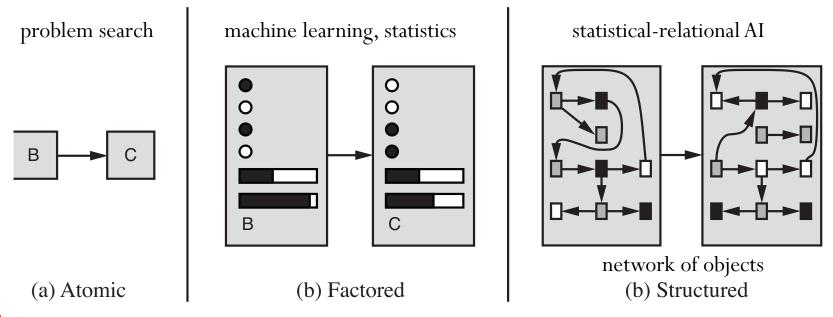
Impedance Mismatch

- Standard machine learning packages (R, SciKit, Weka,..) accept a *single* data table as input.
- In a database with *multiple* tables, which table do we input?
- SAP data scientist: "When our customers want to use machine learning, they spend 80% of their time getting the data into the right format".

		Attributes	Name	Titla	salary (MS
Name	gender	country			
Brad_Pitt	M	U.S.	Lucy_Liu	Kill_Bill	. 2
Lucy_Liu	W	U.S.	Steve_Buscemi	Fargo	0.5
Steve_Buscemi	М	U.S.	Uma_Thurman	Kill_Bill	. 5

Al Motivation: Expressive Power

- Russell and Norvig: Hierarchy of environment representations
- The more information an agent has about its environment, the better its performance



Russell, S. & Norvig, P. (2010), Artificial Intelligence: A Modern Approach, Prentice Hall.

Logic and Probability

- Russell (UC Berkeley): "Their unification holds enormous promise for AI"
- Domingos (U of Washington): "Logic handles complexity, probability represents uncertainty."

Russell, S. (2015), 'Unifying logic and probability', Communications of the ACM 58(7), 88--97.

Unifying Logic and Statistics

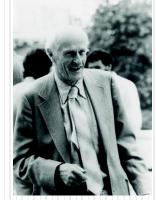
Lise Getoor

David Poole



Stuart Russsell

Stephen Kleene



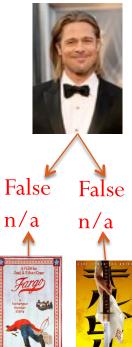
Poole, D. (2003), First-order probabilistic inference, '*IJCAI*'.
Getoor, L. & Grant, J. (2006), 'PRL: A probabilistic relational language', *Machine Learning* 62(1-2), 7-31.
Russell, S. & Norvig, P. (2010), *Artificial Intelligence: A Modern Approach, Prentice Hall.*Stephen Kleene, (1952). Introduction to Metamathematics.

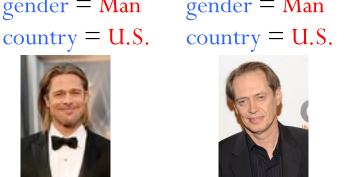
Function Representation

- The attributes and relationships in an information network can mathematically be represented using *functions*, e.g.
 - gender
 - ActsIn
 - salary

Example Function Representation

gender = Man gender = Man



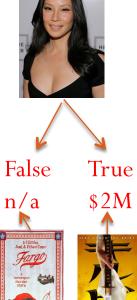


False True \$500K n/a

gender = Woman country = U.S.

False True n/a \$5M

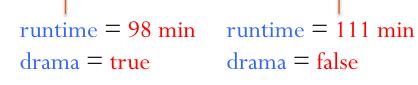
gender = Woman country = U.S.



ActsIn

\$2M

salary

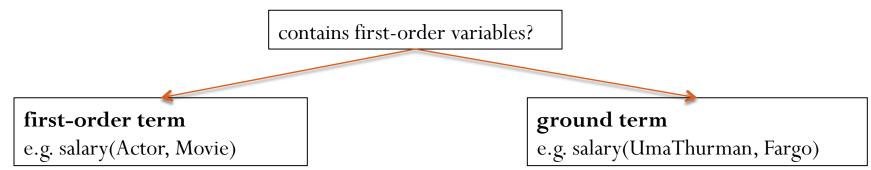


First-Order Logic: Terms

- A <u>constant</u> refers to an individual
 - "Fargo"
- A <u>first-order variable</u> refers to a class of individuals
 - "Movie" refers to Movies

Terms

- A constant or first-order variable is a term.
- The result of applying a function to a term is a term.



Stephen Kleene, (1952). Introduction to Metamathematics. North Holland.

Relational Random Variables

- *First-order random variable = First-order term* + probabilistic semantics (Wang et al. 2008)
- Both complex terms and complex random variables are built by function application

Statistics	Logic
Apply function to random variable(s)→ new random variable	Apply function to term(s)→ new term

Wang, D. Z.; Michelakis, E.; Garofalakis, M. & Hellerstein, J. M. (2008), BayesStore: managing large, uncertain data repositories with probabilistic graphical models, in , Proceedings VLDB Endowment, , pp. 340—351.

Formulas

- A (conjunctive) formula is a **joint assignment** $term_1 = value_1, ..., term_n = value_n$
 - e.g., ActsIn(Actor, Movie) = T, gender(Actor) = W
- A ground formula contains only constants
 - e.g., ActsIn(UmaThurman, KillBill) = T, gender(UmaThurman) = W

What is a Bayesian network? Compact representation of joint probability distributions via conditional independence

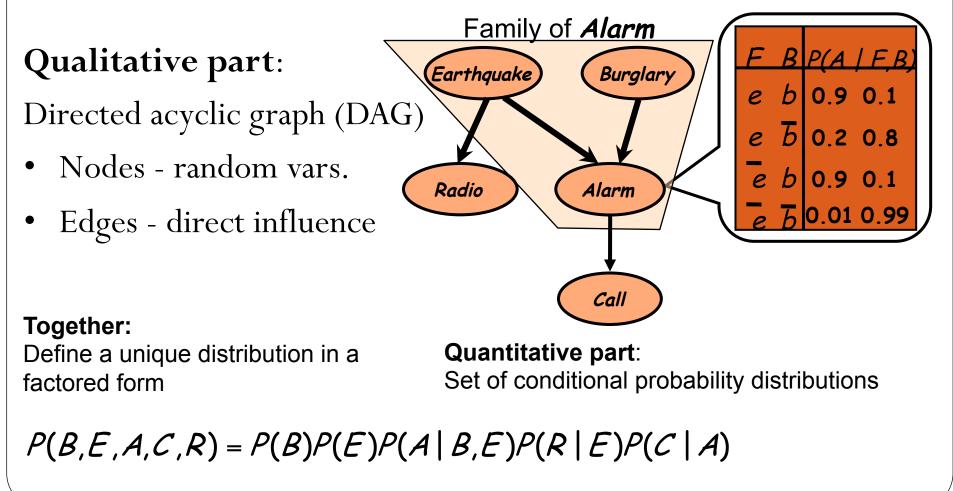


Figure from N. Friedman

Why are Bayes nets useful?

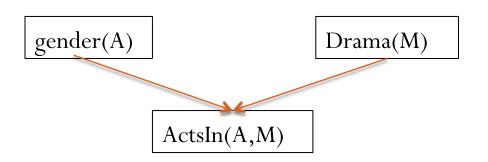
- Graph structure supports
 - Modular representation of knowledge
 - Local, distributed algorithms for inference and learning
 - Intuitive (possibly causal) interpretation
 - Easy to compute "Is X relevant to Y given Z".

• <u>UBC Demo</u>.

Learning Bayesian networks for Multi-Relational Data

Bayesian networks for relational data

- A first-order Bayesian network is a Bayesian network whose nodes are first-order terms (Wang et al. 2008)
- AKA parametrized Bayesian network (Poole 2003, Kimmig et al. 2014)



Wang, D. Z.; Michelakis, E.; Garofalakis, M. & Hellerstein, J. M. (2008), BayesStore: managing large, uncertain data repositories with probabilistic graphical models, in ,VLDB Endowment, , pp. 340--351. Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', *Machine Learning*, 1--45.

Frequency Semantics for First-Order Bayesian Networks

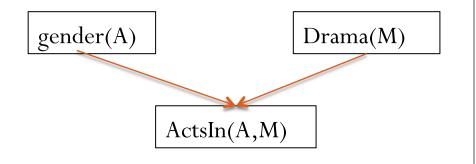
Joe Halpern

Fahim Bacchus

Halpern, J.Y. (1990), 'An analysis of first-order logics of probability', *Artificial Intelligence* 46(3), 311--350. Bacchus, F. (1990), *Representing and Reasoning with Probabilistic Knowledge: A Logical Approach to Probabilities, MIT Press, Cambridge, MA*.

Random Selection Semantics for First-Order Bayesian Networks

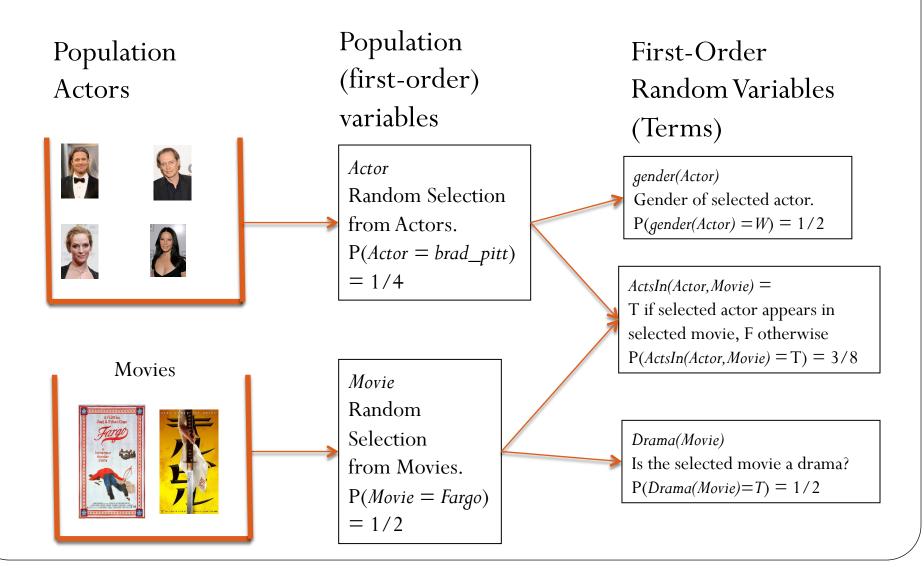
- We can compute joint probabilities from a FOBN, e.g.
- P(gender(Actor) = W, ActsIn(Actor,Movie) = T, Drama(Movie) = F) = 2/8



• But what does this represent?

"if we randomly select an actor and a movie, the probability is 2/8 that the actor appears in the movie, the actor is a woman, and the movie is a drama"

Random Selection Semantics



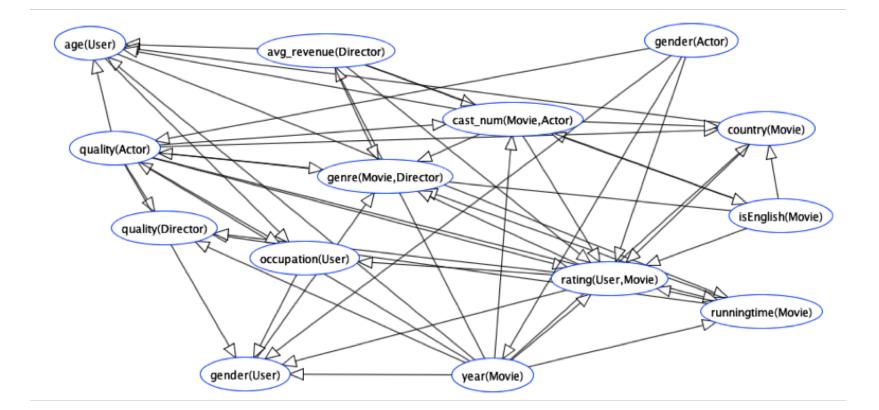
Real-World Examples

- To illustrate frequency semantics, learn and evaluate on the training set
- >ground truth about frequencies
- We discuss generalization later

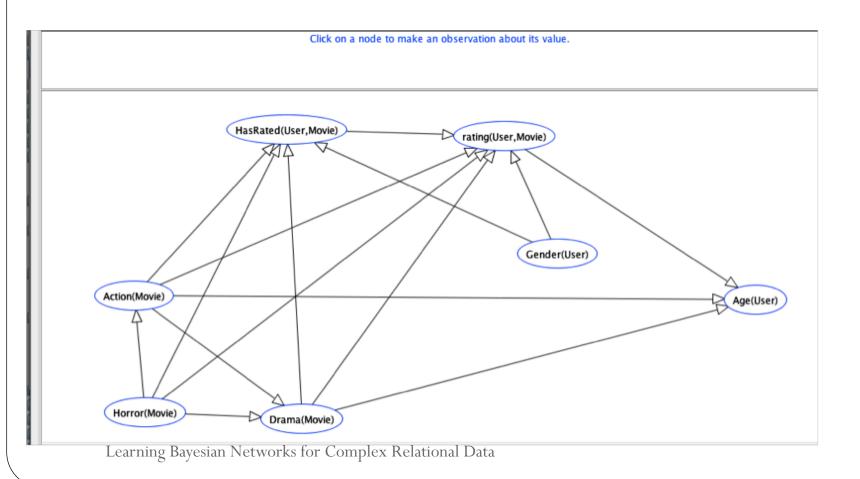
IMDb Data Format

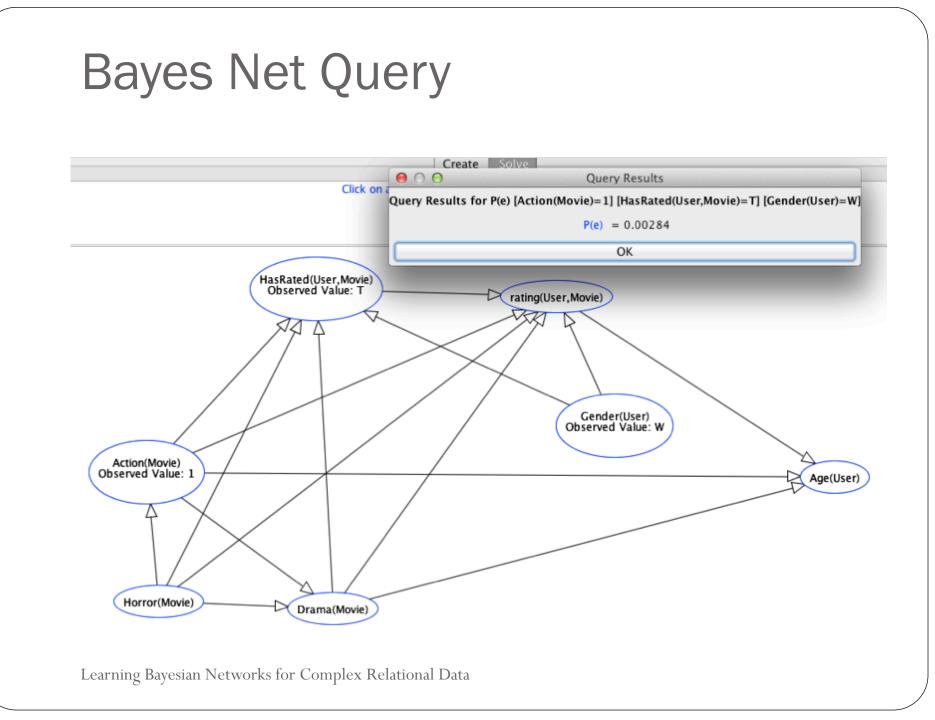


Learned Bayes Net for Full IMDB



Learned Bayes Net for IMDb With only 1 relationship HasRated(User, Movie).





Data Query

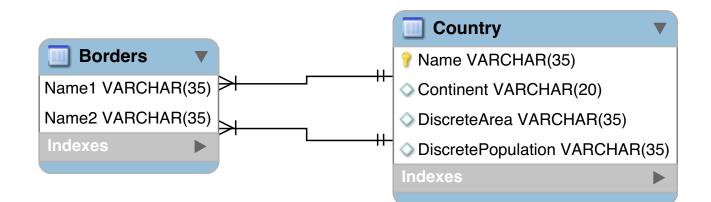
Num Movies	3883
Num Users	6039
Num Movie-User Pairs	3883 x 6039 = 23449437

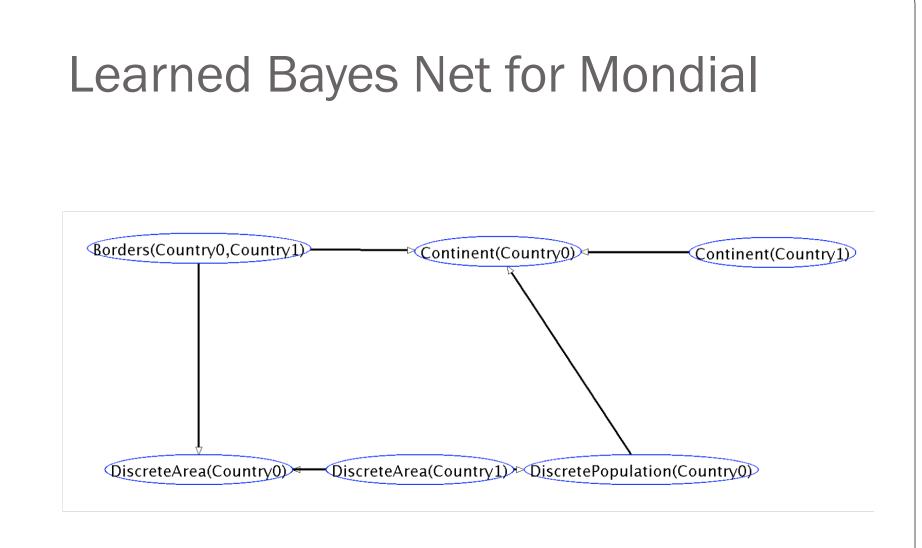
movie-user pairs with action movie, woman user

Action(Movie) = T, HasRated(User,Movie) = T,	
gender(User) = W	66642
	66642/23449437=
Frequency	0.0028

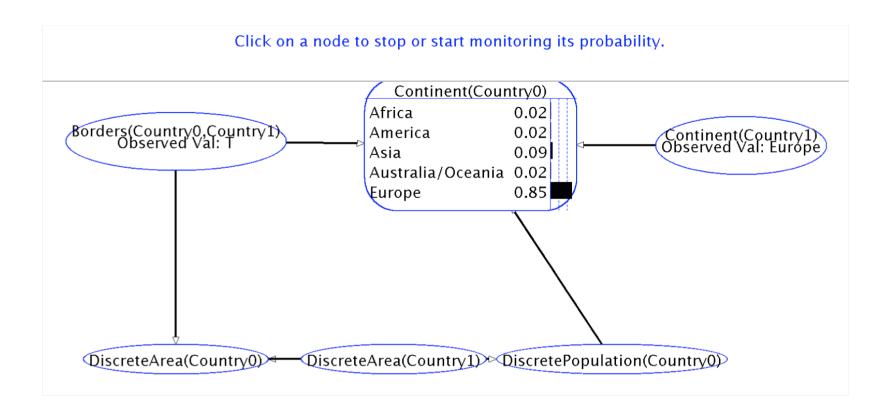
More Examples in spreadsheet on website

Mondial Data Format





Bayes Net query



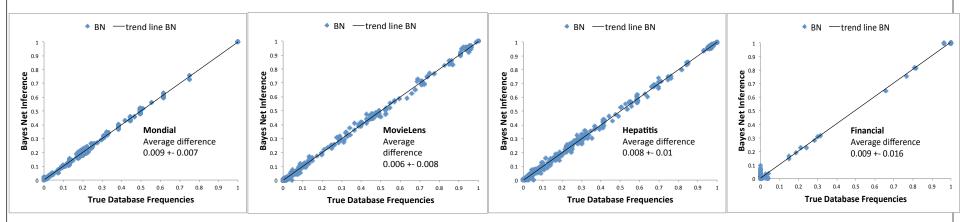
Data Query

Number of Europe-Europe Borders	156
Number of *-Europe Borders	166
P(continent(country1) = Europe	156/166=
Borders(country1,country2) = T ,	93.98%
continent(country2=Europe))	

- BN was learned with frequency smoothing (Laplace correction)
- More Examples in spreadsheet on tutorial website

Bayesian Networks are Excellent Estimators of Network Frequencies

- Queries Randomly Generated
- Example: P(gender(A) = W | ActsIn(A, M) = true, Drama(M) = T)?
- Learn Bayesian network and test on entire database as in Getoor et al. 2001



Schulte, O.; Khosravi, H.; Kirkpatrick, A.; Gao, T. & Zhu, Y. (2014), 'Modelling Relational Statistics With Bayes Nets', Machine Learning 94, 105-125.

Getoor, L.; Taskar, B. & Koller, D. (2001), 'Selectivity estimation using probabilistic models', ACM SIGMOD Record 30(2), 461-472.

Relational Exception Mining

Random Individuals vs. Specific Individuals

Machine Learning for Information Networks

Profile-Based Outlier Detection for Relational Data

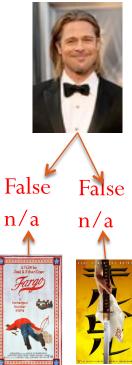
Population Database e.g. IMDB Individual Database Profile, Interpretation, egonet e.g. Brad Pitt's movies

Goal: Identify exceptional individual databases

Akoglu, L.; Tong, H. & Koutra, D. (2015), 'Graph based anomaly detection and description: a survey', *Data Mining and Knowledge Discovery 29(3), 626--688.*Maervoet, J.; Vens, C.; Vanden Berghe, G.; Blockeel, H. & De Causmaecker, P. (2012), 'Outlier Detection in Relational Data: A Case Study in Geographical Information Systems', *Expert Systems With Applications 39(5), 4718—4728.*

Example: population data

gender = Man gender = Mancountry = U.S. country = U.S.



runtime = 98 mindrama = trueaction = true

False True \$500K n/a

drama = false

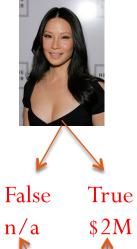
action = true

runtime = 111 min

gender = Woman country = U.S.

False True \$5M n/a

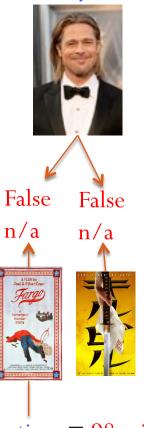
gender = Woman country = U.S.



ActsIn salary

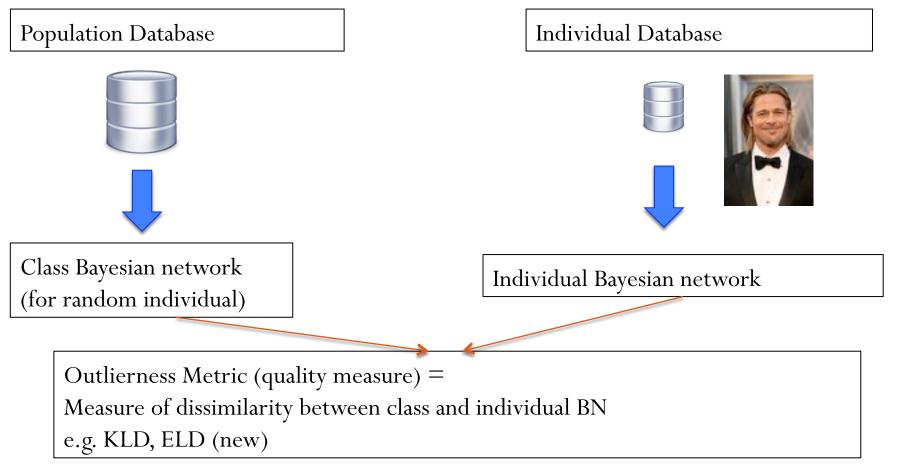
Example: individual data

gender = Mancountry = U.S.



runtime = 98 mindrama = true

Compare Random Individual to Target Individual



"Model-based Outlier Detection for Object-Relational Data". Riahi and Schulte (2015). IEEE SSCI.

Example: class and individual Bayesian network parameters

$P(gender(A)=M) = 0.5 \qquad P(Drama(M)=T) = 0.5$ $gender(A) \qquad Drama(M)$	Gender (A)	Drama(M)	Cond. Prob. of ActsIn(A,M)= T
	Μ	Т	1/2
ActsIn(A,M)	М	F	0
	W	Т	0
	W	F	1
	Gender (bradPitt)	(M)	Cond. Prob. of ActsIn(A,M)=T
	М	Т	0
ActsIn(BradPitt,M)	М	F	0

Case Study: Strikers and Movies

Data are from Premier League Season 2011-2012.

Player Name		KLD Rank			Individual Probability	Class Probability
	Striker		Dribble Efficiency	DE = Low	0.16	0.50
Paul Robinson	Goalie	2	SavesMade	SM = Medium	0.30	0.04

Striker = Normal

MovieTitle	Genre	KLD Rank			Individual Probability	
Brave Heart	Drama	1	Actor_Quality	a_quality=4	0.93	0.42
Austin Powers	Comedy	2	Cast_position	cast_num=3	0.78	0.49
Blue Brothers	Comedy	3	Cast_position	cast_num=3	0.88	0.49

How is Relational Learning Different From IID Learning?

Challenges and Solutions

Learning Bayesian Networks for Complex Relational Data

IID Data vs. Relational Data

Traditional Data Matrix represents independent and identically distributed data points (i.i.d.)

 \succ special case of relational data with 0 relationships

unary functors

gender = Man
country = U.S.gender = Man
country = U.S.gender = Woman
country = U.S.gender = Woman
country = U.S.Image: Second Se

Nickel, M.; Murphy, K.; Tresp, V. & Gabrilovich, E. (2016), 'A review of relational machine learning for knowledge graphs', Proceedings of the IEEE 104(1), 11--33.

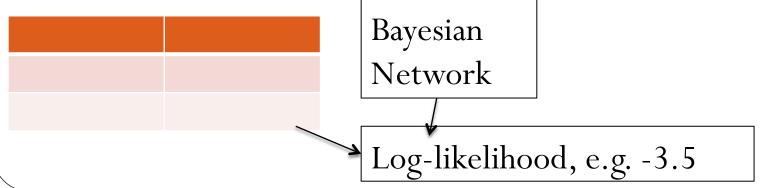
Relational Data Are Not Independent

Name	Title	Salary (M\$)
Lucy_Liu	Kill_Bill	2
Uma_Thurman	Kill_Bill	5
Uma_Thurman	Be_Cool	9

- Uma Thurman's salary in Kill Bill carries information about her salary in Be Cool
- Also carries information about Lucy Liu's salary in Kill Bill

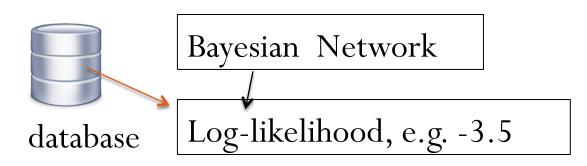
Difficulty #1: Likelihood Function

- Most Bayesian network learning methods are based on a score function
- Key component: the likelihood function P(data | model)
- measure how how likely each datapoint is according to the Bayesian network
- 2. <u>Multiply</u> datapoint probabilities to define likelihood for whole dataset – <u>assumes independence and single table</u> data table



Solution #1: The Random Selection Likelihood Score

- 1. Randomly select a grounding/instantiation for **all** firstorder variables in the first-order Bayesian network
- 2. Compute the log-likelihood for the attributes of the selected grounding
- Log-likelihood score =
 expected log-likelihood for a random grounding



Schulte, O. (2011), A tractable pseudo-likelihood function for Bayes Nets applied to relational data, *in 'SIAM SDM'*, *pp.* 462-473.

Theoretical Validation #1

- **Proposition** (Schulte 2011) The random selection loglikelihood score is maximized by setting the conditional probabilities to the *frequencies observed in the network*.
- **Theorem** (Xiang and Neville 2011) The random selection log-likelihood score is *consistent* (asymptotically correct).

Distance between correct and maximum-likelihood parameter values

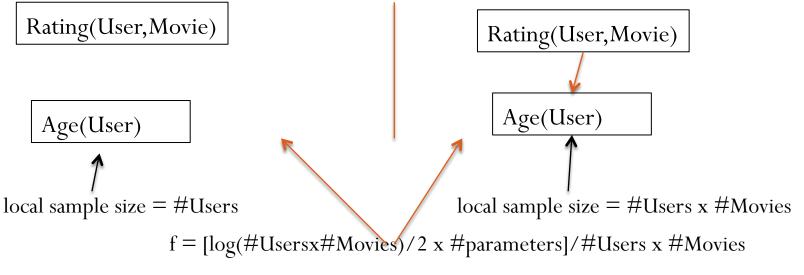
#of entities

Difficulty #2: No global sample size

- What is the sample size #Users, #Movies, # Ratings?
- Typical model selection scores are of the form score(model,data) = log-likelihood(data | model)- already discussed
 f(#model parameters, sample size) penalize complex models
- e.g. for BIC we have
 f = log(N)/2 x #parameters

Solution #2

- Use local sample sizes = number of possible child-parent instantiations
- When comparing two models, normalize <u>both</u> penalty terms by the larger local sample size.

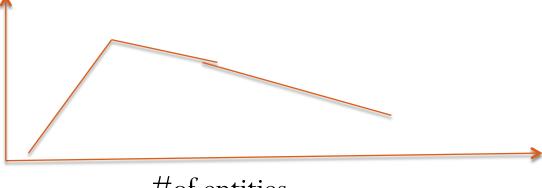


Schulte, O. & Gholami, S. (2017), Locally Consistent Bayesian Network Scores for Multi-Relational Data, IJCAI 2017

Theoretical Validation #2

- **Theorem** (Schulte and Gholami 2017) If a score is consistent for i.i.d. data, then the normalized score is consistent for relational data:
 - converges to a model of the network frequencies
 - with a minimum number of edges

Distance between network frequencies and FOBN joint probabilities



#of entities

Schulte, O. & Gholami, S. (2017), Locally Consistent Bayesian Network Scores for Multi-Relational Data, IJCAI 2017

Summary: Information Networks

- Heterogeneous information networks are ubiquitous, go by several names:
 - relational database
 - first-order model
 - matrixes/tensors
- Unifying logic and statistics:
 - Relational random variable = first-order term
 - First-order Bayesian network = BN whose nodes are first-order terms

Summary: Applications of FOBNs

- Modelling correlations and frequencies in relational data
 - applies classic random selection semantics for probabilistic logic
- Exception Mining and Anomaly Detection

Summary: Learning Challenges

- Network nodes and links are *not* independent
- Difficult to define likelihood for entire network
- Solution: apply random selection semantics to define *expected log-likelihood* from random instances
- There is no global sample size N
- Difficult to define model selection score
- Normalize score by (max) local sample size
- Theoretical and extensive empirical validation

There's More (In Tutorial)

- https://oschulte.github.io/srl-tutorial-slides/
- Scalable Algorithms:
 - for counting relational frequencies
 - for relational model structure search
- Latent variable models for clustering, community detection, matrix factorization, relational deep learning
- Applications:
 - link-based classification
 - link prediction
 - feature extraction

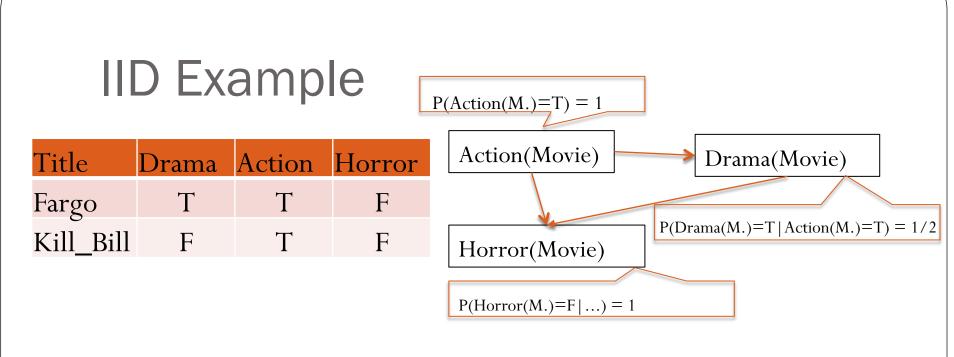
References

- Github <u>https://github.com/sfu-cl-lab</u>
 - Code and names of collaborators (thank you thank you!)
- Russell, S. (2015), 'Unifying logic and probability', *Communications of the ACM* 58(7), 88--97.
- Nickel, M.; Murphy, K.; Tresp, V. & Gabrilovich, E. (2016), 'A review of relational machine learning for knowledge graphs', *Proceedings of the IEEE 104(1), 11--33*.
- Domingos, P. & Lowd, D. (2009), Markov Logic: An Interface Layer for Artificial Intelligence, Morgan and Claypool Publishers.
- Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', *Machine Learning*, 1—45.

The Bayes Net Likelihood Function for IID data

- 1. For each row, compute the log-likelihood for the attribute values in the row.
- Log-likelihood for table = sum of log-likelihoods for rows.

Assumes independence of rows (data points)



Title	Drama	Action	Horror	P _B	ln(P _B)
Fargo	Т	Т	F	1x1/2x1 = 1/2	-0.69
Kill_Bill	F	Т	F	1x1/2x1 = 1/2	-0.69

Total Log-likelihood Score for Table = -1.38

Learning Bayesian Networks for Complex Relational Data

Theoretical Validation #1

- **Proposition** (Schulte 2011) The random selection loglikelihood score is maximized by setting the conditional probabilities to the *frequencies observed in the network*.
- **Theorem** (Xiang and Neville 2011) The random selection log-likelihood score is *consistent* (asymptotically correct).

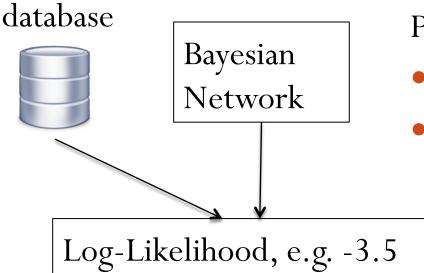
Distance between correct and maximum-likelihood parameter values

#of entities

Likelihood Function for Relational Data

Learning Bayesian Networks for Complex Relational Data

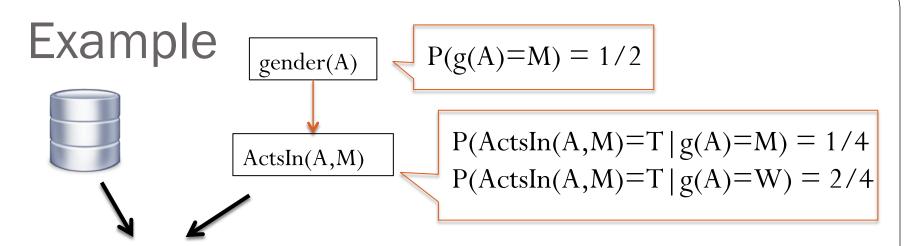
Wanted: a likelihood score for relational data



Problems

- Multiple Tables.
- Dependent data points

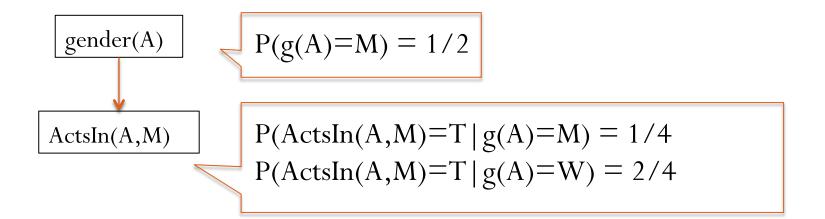
Learning Bayesian Networks for Complex Relational Data



Prob	А	Μ	gender(A)	ActsIn(A,M)	P _B	$\ln(P_B)$
1/8	Brad_Pitt	Fargo	М	F	3/8	-0.98
1/8	Brad_Pitt	Kill_Bill	М	F	3/8	-0.98
1/8	Lucy_Liu	Fargo	W	F	2/8	-1.39
1/8	Lucy_Liu	Kill_Bill	W	Т	2/8	-1.39
1/8	Steve_Buscemi	Fargo	М	Т	1/8	-2.08
1/8	Steve_Buscemi	Kill_Bill	М	F	3/8	-0.98
1/8	Uma_Thurman	Fargo	W	F	2/8	-1.39
1/8	Uma_Thurman	Kill_Bill	W	Т	2/8	-1.39
					0.27 geo	-1.32 arith

Observed Frequencies Maximize Random Selection Likelihood

Proposition The random selection log-likelihood score is maximized by setting the Bayesian network parameters to the observed conditional frequencies



Schulte, O. (2011), A tractable pseudo-likelihood function for Bayes Nets applied to relational data, *in 'SIAM SDM'*, *pp. 462-473*.