Pseudo-Likelihood for Relational Data

Oliver Schulte School of Computing Science Simon Fraser University Vancouver, Canada To appear at SIAM SDM conferen

To appear at SIAM SDM conference on data mining.

The Main Topic

- In relational data, units are interdependent
 ⇒ no product likelihood function for model.
- How to do model selection?
- Proposal of this talk: use **pseudo likelihood.**
 - Unnormalized product likelihood.
 - Like independent-unit likelihood, but with event frequencies instead of event counts.

Overview

- Define pseudo log-likelihood for *directed graphical models* (Bayes Nets).
- Interpretation as *expected log-likelihood* of random small groups of units.
- Learning Algorithms:
 - MLE solution.
 - Model Selection.
- Simulations.

Outline

- Brief intro to relational databases.
- Statistics and Relational Databases.
- Briefer intro to Bayes nets.
- Relational Random Variables.
- Relational (pseudo)-likelihoods.

Relational Databases

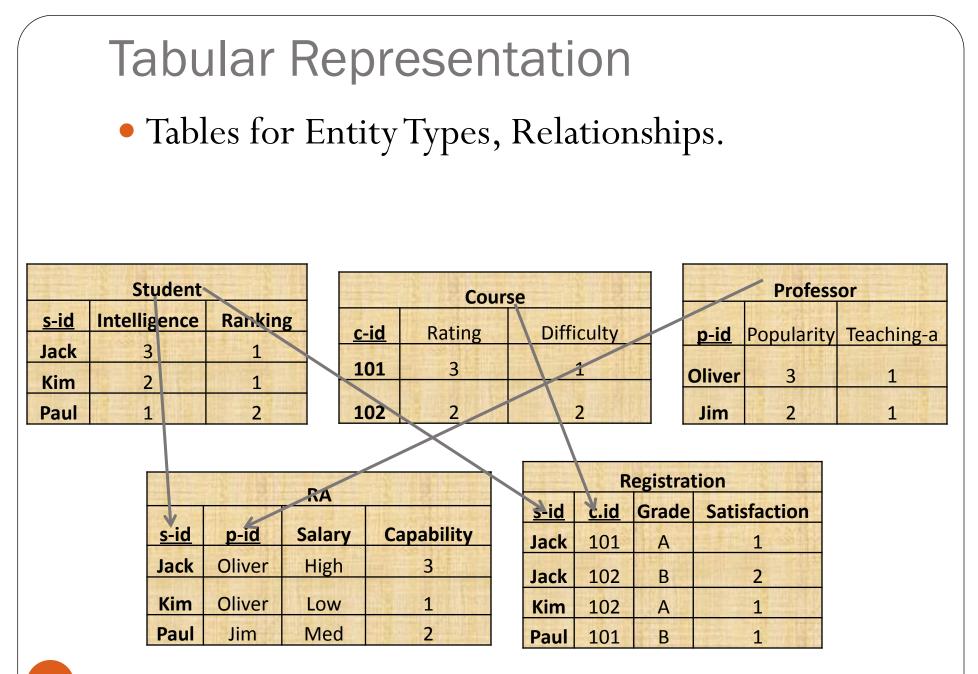
- 1970s: Computers are spreading. Many organizations use them to store their data.
- Ad hoc formats
 - ⇒ hard to build general data management systems.
 - \Rightarrow lots of duplicated effort.
- The Standardization Dilemma:
 - Too restrictive: doesn't fit users' needs.
 - Too loose: back to ad-hoc solutions.

The Relational Format

- Codd (IBM Research 1970)
- The fundamental question: What kinds of information do users need to represent?

- Answered by 1st-order predicate logic! (Russell, Tarski).
- The world consists of
 - Individuals/entities.

• Relationships/links among them.



Pseudo-Likelihood for Relational Data - Statistics Seminar

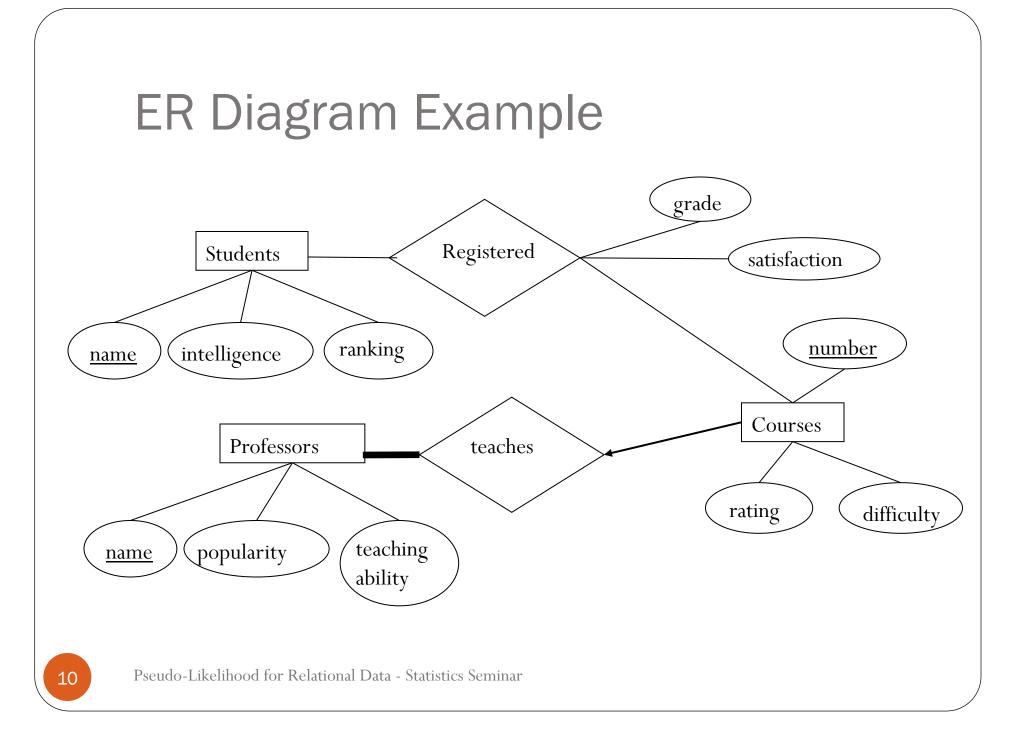
7

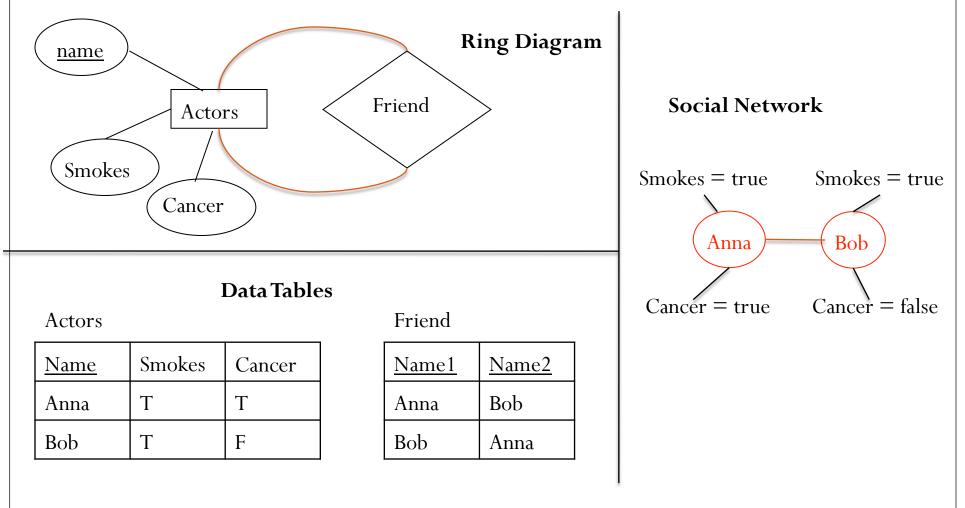
Database Management Systems

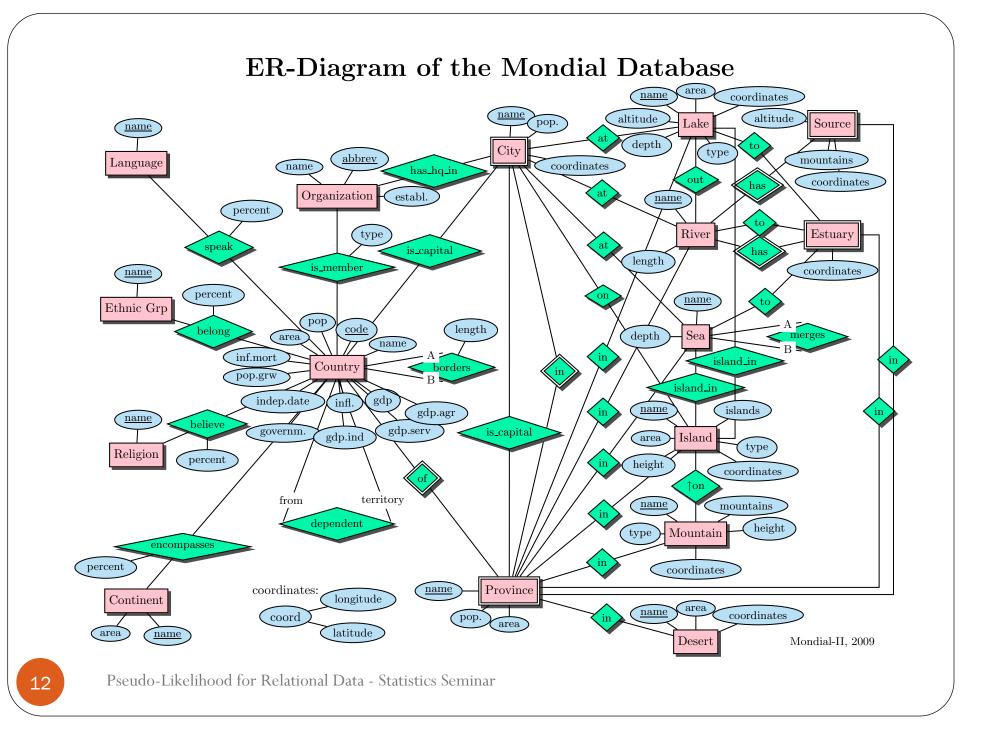
- Maintain data in linked tables.
- Structured Query Language (SQL) allows fast *data retrieval*.
 - E.g., find all SFU students who are statistics majors with gpa > 3.0.
- Multi-billion dollar industry, \$15+ bill in 2006.
- IBM, Microsoft, Oracle, SAP, Peoplesoft.

Relational Domain Models

- Visualizing Domain Ontology.
- Active Area of Research.
 - Unified Modelling Language (UML).
 - Semantic Web (XML).
- Classic Tool: The Entity-Relationship (ER) Diagram.







Relationship to Social Network Analysis

- A single-relation social network is a simple special case of a relational database.
- Converse also true if you allow:
 - Different types of nodes ("actors").
 - Labels on nodes.
 - Different types of (hyper)edges.
 - Labels on edges.

• See Newman (2003) SIAM Review.

• **Observation** A relational database is equivalent to a general network as described.

Outline

☑Brief intro to relational databases.

- Statistics and Relational Databases.
- Briefer intro to Bayes nets.
- Relational Random Variables.
- Relational (pseudo)-likelihoods.

Beyond storing and retrieving data

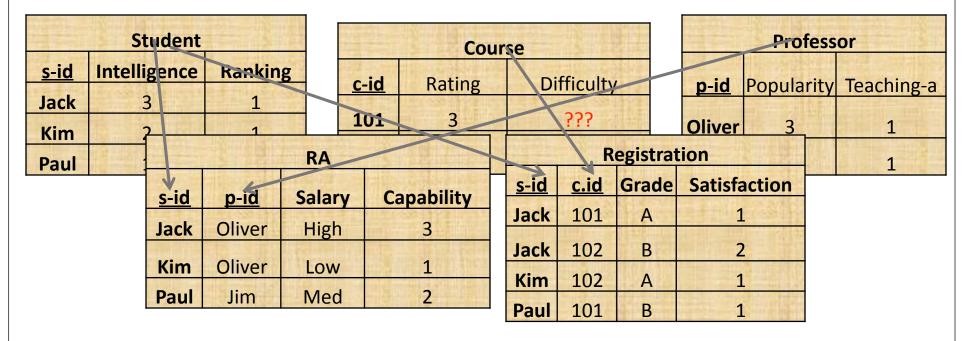
- Much new interest in analyzing databases.
 - Data Mining.
 - Data Warehousing.
 - Business Intelligence.
 - Predictive Analytics.
- Fundamental Question: how to combine logic and probability?
- Domingos (U of W, CS): "Logic handles complexity, probability represents uncertainty."

Typical Tasks for Statistical-Relational Learning (SRL)

- Link-based Classification: given the links of a target entity and the attributes of related entities, predict the class label of the target entity.
- Link Prediction: given the attributes of entities and their other links, predict the existence of a link.

Link-based Classification

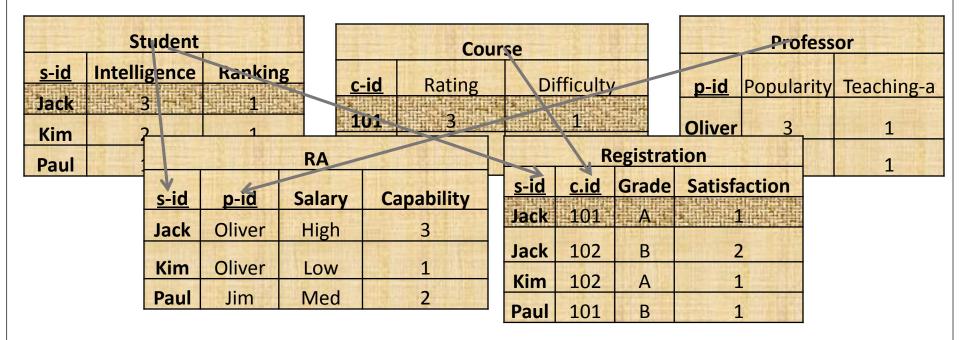
- Predict Attributes given Links, other Attributes
- E.g., P(diff(101))?



Link prediction

• Predict links given links, attributes.

• E.g., P(Registered(jack, 101))?



Generative Models

- Model the joint distribution over links and attributes.
- Today's Topic.
- We'll use Bayes nets as the model class.

What is a Bayes (belief) net? Compact representation of joint probability distributions via conditional independence

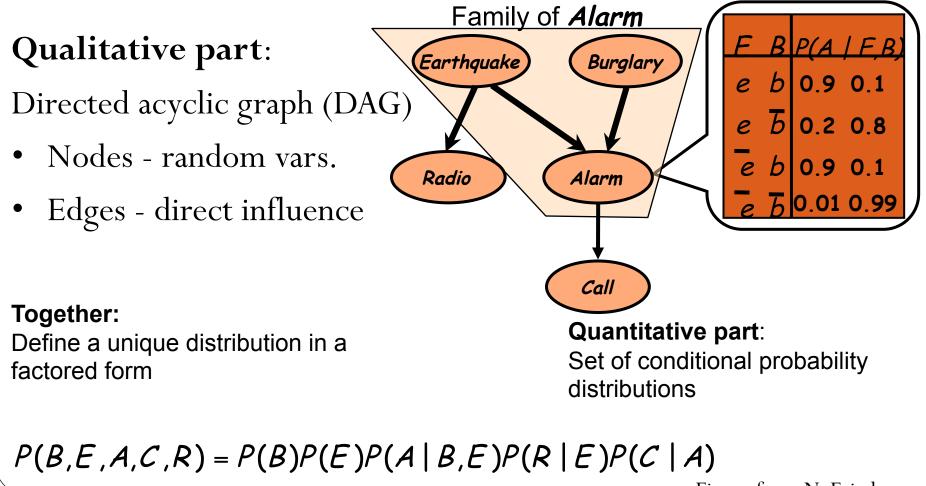


Figure from N. Friedman

Why are Bayes nets useful?

- Graph structure supports
 - Modular representation of knowledge
 - Local, distributed algorithms for inference and learning
 - Intuitive (possibly causal) interpretation
 - A solution to the relevance problem: Easy to compute "Is X relevant to Y given Z".
 - <u>Nice UBC Demo</u>.

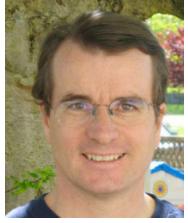
Outline

Brief intro to relational databases.
Statistics and Relational Databases.
Briefer intro to Bayes nets.

- Relational Random Variables.
- Relational (pseudo)-likelihoods.

Relational Data: what are the random variables?

- Intuitively, the attributes and relationships in the database.
 - i.e., the columns plus link existence.
 - i.e., the components of the ER diagrams.
- Proposal from David Poole (CS UBC): apply the concept of **functors** from Logic Programming.
- I'm combining this with Halpern (CS Cornell) and Bacchus' (CS U of T) random selection probabilistic semantics for logic.



Population Variables

Russell: "A good notation thinks for us".

- Consider a model with multiple populations.
- Let $X_1, X_2, Y_1, Y_2, ...$ be **population variables.**
- Each variable represents a random draw from a population.
- Population variables are jointly independent.
- A **functor** *f* is a function of one or more population variables.
- A **functor random variable** is written as $f_1(X)$ or $f_2(X, Y)$ or $f_3(X, Y, Z)$.

Unary Functors = Descriptive Attributes of Entities

- Population of Students, Professors.
- Population variables *S*,*P*.
- Attributes r.v.s *age(S)*, *gpa(S)*, *age(P)*, *rank(P)*.
- Can have several selections $age(S_1)$, $age(S_2)$.
- If *S* is uniform over students in the database:
 - P(gpa(S)=3.0) = empirical or database
 frequency of 3.0 gpa in student population.
- Can instantiate or *ground* functors with constants.
 E.g., gpa(jack) returns the gpa of Jack.

Binary Functors = Relationships

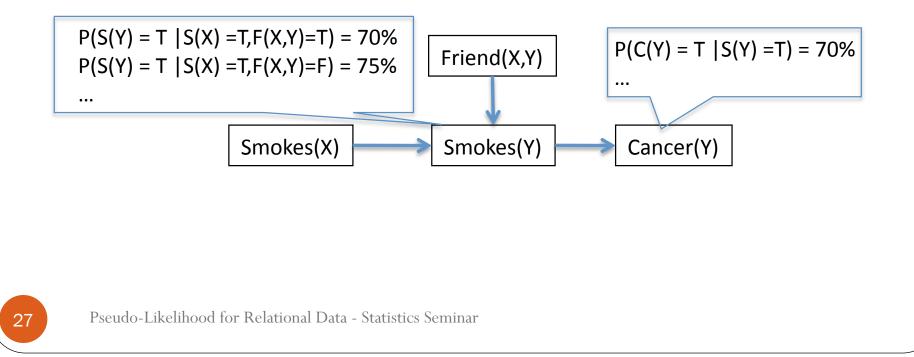
- *Registered(S,C)*: indicator function of existence of relationship.
- If *S*, *C* uniformly distributed over observed population:
 - P(Registered(S,C)=1) = #(s,c) s.t. Student s is registered in course c/ #Students x #Courses.

= Database Frequency of Registration.

Can also form chains:
 P(grade(S,C)=A, Teaches(C,P)=1).

Functor Bayes Nets

 Poole IJCAI 2003: A functor Bayes Net is a Bayes net whose nodes are functor random variables.



Likelihood Functions for Functor Bayes Nets: Latent Variables

- Problem: Given a database *D* and an FBN model *B*, how to define *P(D | B)*?
- Fundamental Issue: interdependent units, not iid.
- One approach: introduce *latent variables* such that units are independent conditional on hidden "state" (e.g., Kersting et al. IJCAI 2009).
 - Cf. social network analysis Hoff, Rafferty (U of W Stats), Linkletter SFU Stats.
 - Cf. nonnegative matrix factorization----Netflix challenge.

Likelihood Function for Single-Table Data

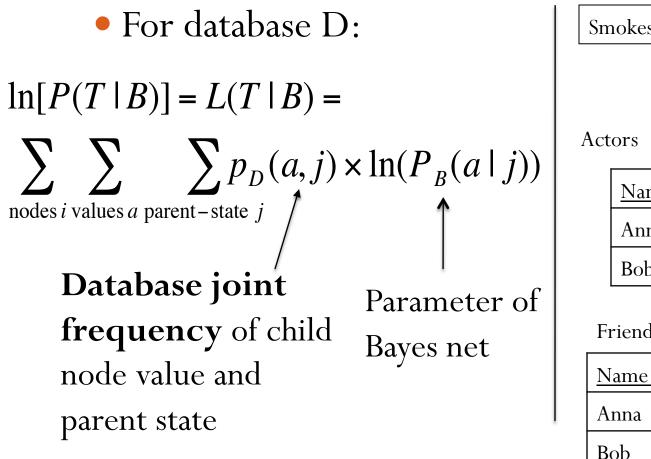
• For single table *T*: $\ln[P(T \mid B)] = L(T \mid B) =$ $\sum \sum n_T(a,j) \times \ln(P_B(a \mid j))$ nodes i values a parent-state jTable count of co-Parameter of occurrences of child Bayes net node value and parent state

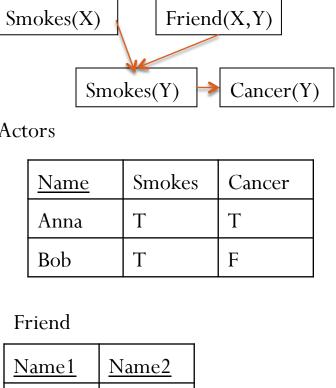
Smokes(Y)	>	Cancer(Y)

Actors

Name	Smokes	Cancer			
Anna	Т	Т			
Bob	Т	F			

Proposed Pseudo Log-Likelihood





Bob

Anna

Random Selection Log-Likelihood

- 1. Randomly select instances $X_1 = x_1, \dots, X_n = x_n$. for each variable in FBN.
- 2. Look up their properties, relationships in database.
- 3. Compute log-likelihood for the FBN assignment obtained from the instances.
- 4. L^{R} = expected log-likelihood over uniform random selection of instances.

		Hyperentity Hyperfeatures								
Smokes(X) $Friend(X,Y)$	Γ	Х	Y	F(X,Y)	S(X)	C(X)	S(Y)	C(Y)	P_B^R	$ln(P_B^R)$
	γ_1	Anna	Bob	Т	Т	Т	Т	F	0.105	-2.254
	γ_2	Bob	Anna	Т	Т	F	Т	Т	0.245	-1.406
	γ_3	Anna	Anna	F	Т	Т	Т	Т	0.263	-1.338
Smokes(Y) \rightarrow Cancer(Y)	γ_4	Bob	Bob	F	Т	F	Т	F	0.113	-2.185

 $L^{R} = -(2.254 + 1.406 + 1.338 + 2.185)/4 \approx -1.8$

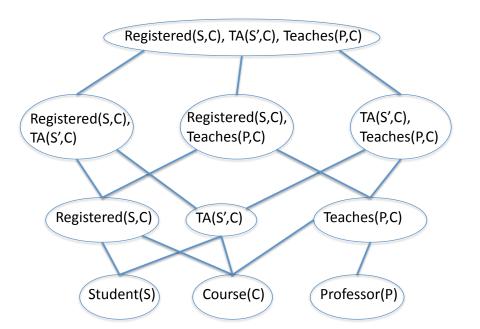
Proposition The random selection log-likelihood equals the pseudo log-likelihood.

Parameter Estimation

Proposition For a given database D, the parameter values that maximize the pseudo likelihood are the empirical conditional frequencies.

Model Selection

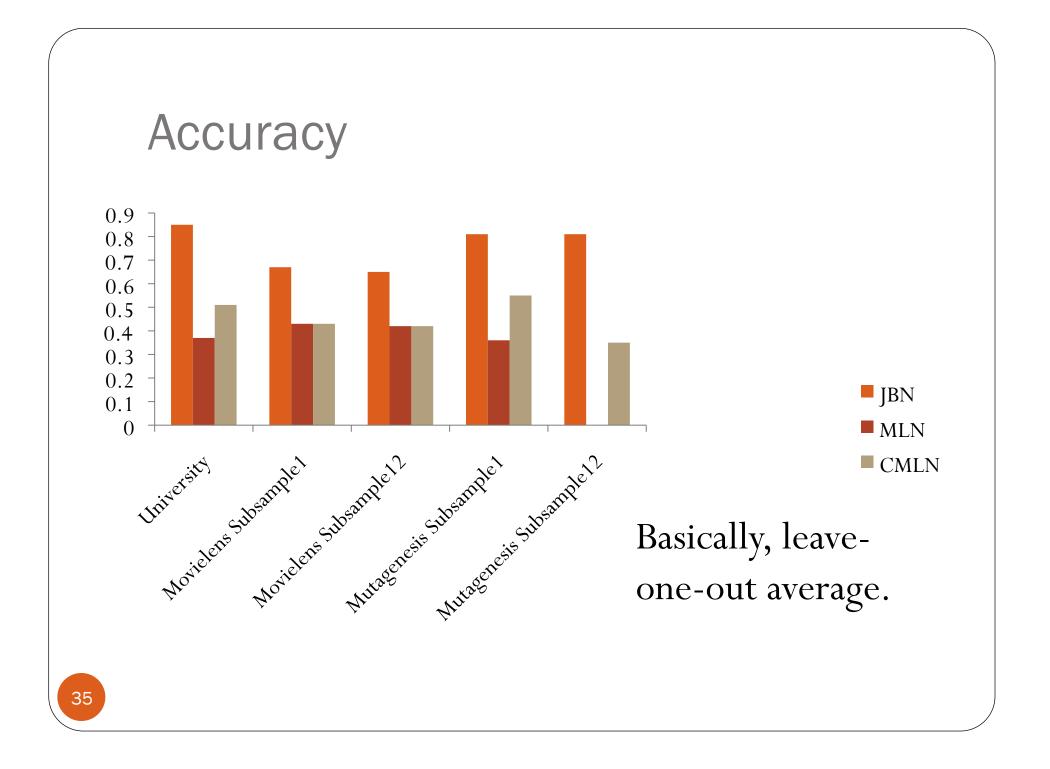
- New model selection algorithm (Khosravi, Schulte et al. AAAI 2010).
- Level-wise search through table join lattice.



Running time on benchmarks

Dataset	JBN	MLN	CMLN
University	$0.03 {+} 0.032$	5.02	11.44
MovieLens	1.2+120	NT	NT
MovieLens Subsample 1	0.05 + 0.33	44	121.5
MovieLens Subsample 2	0.12 + 5.10	2760	1286
Mutagenesis	0.5 + NT	NT	NT
Mutagenesis subsample 1	0.1 + 5	3360	900
Mutagenesis subsample 2	0.2 + 12	NT	3120

- Time in Minutes. NT = did not terminate.
- x + y = structure learning + parametrization (with Markov net methods).
- JBN: Our join-based algorithm.
- MLN, CMLN: standard programs from the U of Washington (Alchemy)



Future Work: Inference

Prediction is usually based on *knowledge-based model construction* (Ngo and Haddaway, 1997; Koller and Pfeffer, 1997; Haddaway, 1999).

- Basic Idea: instantiate population variables with all population members. Predict using instantiated model.
- With Bayes nets, can lead to cycles.
- My conjecture: cycles can be handled with a normalization constant that has a closed form.
- Help?!

Summary: Likelihood for relational data.

- Combining relational databases and statistics.
 - Very important in practice.
 - Combine logic and probability.
- Interdependent units → hard to define model likelihood.
- Proposal: Consider a randomly selected small group of individuals.
- Pseudo log-likelihood = expected log-likelihood of randomly selected group.

Summary: Statistics with Pseudo-Likelihood

- Theorem: Random pseudo log-likelihood equivalent to standard single-table likelihood, replacing table counts with database frequencies.
- Maximum likelihood estimates = database frequencies.
- Efficient Model Selection Algorithm based on lattice search.
- In simulations, very fast (minutes vs. days), much better predictive accuracy.

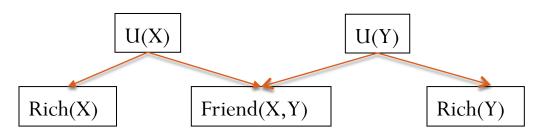
Thank you!

• Any questions?

Choice of Functors

- Can have complex functors, e.g.
 - Nested: wealth(father(father(X))).
 - Aggregate: AVG_C{grade(S,C): Registered(S,C)}.
- In remainder of this talk, use functors corresponding to
 - Attributes (columns), e.g., *intelligence(S)*, *grade(S,C)*
 - Boolean Relationship indicators, e.g. *Friend(X,Y)*.

Hidden Variables Avoid Cycles



• Assign unobserved values *u(jack)*, *u(jane)*.

- Probability that Jack and Jane are friends depends on their unobserved "type".
- In ground model, *rich(jack)* and *rich(jane)* are correlated given that they are friends, but neither is an ancestor.
- Common in social network analysis (Hoff 2001, Hoff and Rafferty 2003, Fienberg 2009).
- \$1M prize in Netflix challenge.
- Also for multiple types of relationships (Kersting et al. 2009).
- Computationally demanding.

Typical Tasks for Statistical-Relational Learning (SRL)

- Link-based Classification: given the links of a target entity and the attributes of related entities, predict the class label of the target entity.
- Link Prediction: given the attributes of entities and their other links, predict the existence of a link.