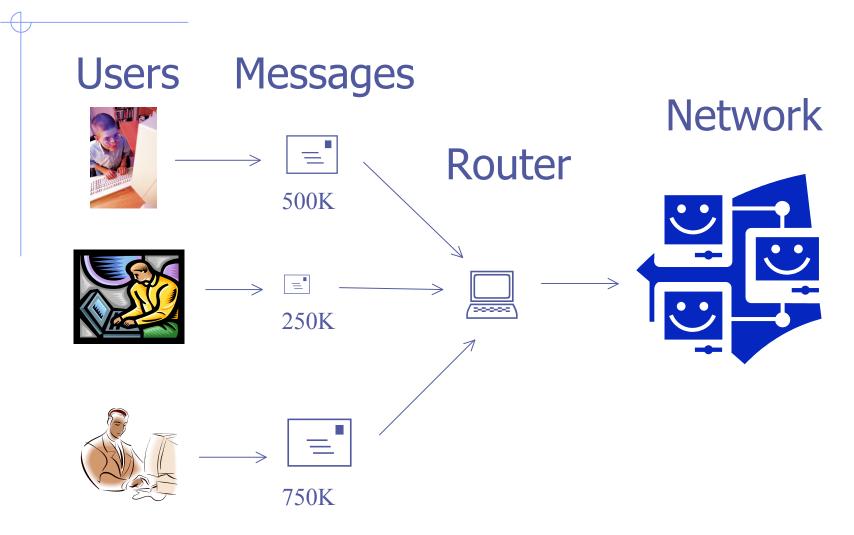
Evolutionary Equilibria in Computer Networks: Specialization and Niche Formation

Oliver Schulte
Petra Berenbrink
Simon Fraser University
oschulte@cs.sfu.ca

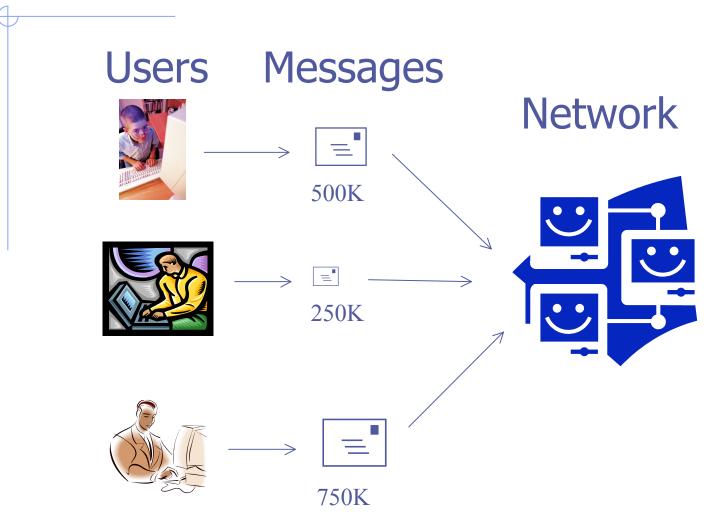
Modelling User Communities

- A system provides users with access to resources, e.g. a **network**.
- Centralized planning: gather requests, compute optimal allocation.
- "Anarchy": users individually choose resources, e.g. routes for messages.
- ◆Individual choice → strategic interactions (≈ traffic models).

Central Allocation

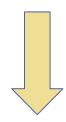


Decentralized Individual Choice



Motivation for Game-Theoretic Modelling

Use game theory to predict outcome of "selfish" user choices (Nash equilibrium)

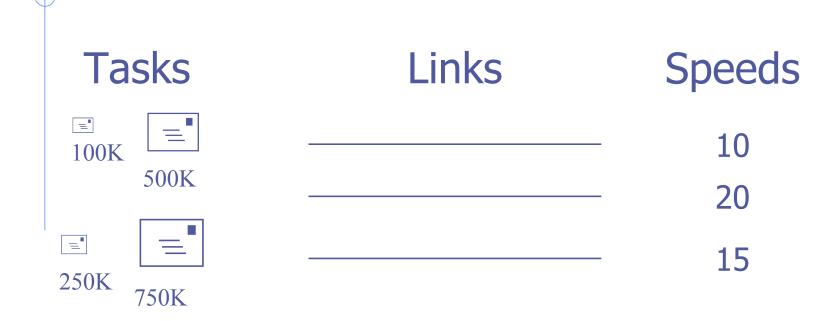


- 1. Assess "price of anarchy"
- 2. Improve network design/protocols

Outline

- Parallel Links Model
- Bayesian Parallel Links Game
- Intro to Evolutionary Stability
- ESS for Parallel Links Game
 - Characterization
 - Structural Conditions

Parallel Links Model



delay of task w on link l = w / (speed of l)

Parallel Links Model as a Game (Koutsoupias and Papadimitriou 1999)

- 1. Players 1,...,n with tasks $w_1,...,w_n$
- 2. Pure strategy = (choice of) link
- 3. Fix choices $(w_1, l_1), ..., (w_n, l_n)$.
- \Rightarrow load on link $I = \sum_{i=1..n} w_i$ for $I_i = I$.
- \Rightarrow utility u_i for player i =
 - load on link /_i
 speed of link /_i

Bayesian Routing Game (Gairing, Monien, Tiemann 2005)

- Agents are uncertain about tasks.
 - common dist. μ over tasks W
 - strategy ~ "program" p for routing tasks
 - p(I|w) = probability that program p chooses link I when given task w.
- $u_i(p_1,...,p_n) = \Sigma_{task \text{ assignments}} < w_1,...,w_n > \Pi_{j=1...n} \mu(w_j) \cdot u_i [(w_1,p_1|w_1),...,(w_n,p_n|w_n)]$

Motivation for Evolutionary Analysis

- Under "anarchy", we expect successful strategies to spread → evolutionary dynamics.
- 2. Highly successful predictions in biology.
- 3. Distinguishes stable from unstable equilibria.
- 4. May be useful in network design: see W. Sandholm's (2002) pricing scheme for traffic congestion. "evolutionary implementation in computer networks seems an important topic for future research".

Hawk vs. Dove As A Population Game

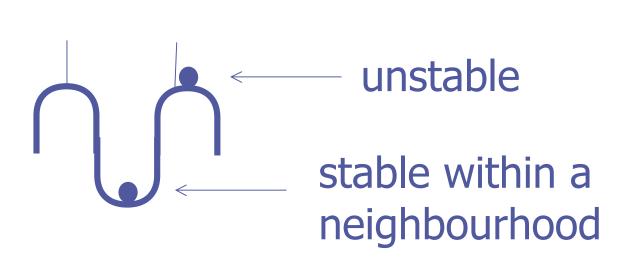
Hawk	Hawk (H) -2,-2	Dove (D) 6,0
Dove	0,6	3,3

- Assume a large population of agents.
- Agents are either hawks (H) or doves(D).
- We randomly draw 2 at a time to play.

Population Interpretation of Nash Equilibrium

- Consider a population of agents with frequency distribution π.
 e.g. [H,H,H,H,H,D,D,D,D]
- 2. π is in equilibrium \Leftrightarrow H does as well as D \Leftrightarrow (π, π) is a **symmetric Nash equilibrum.**
- 3. (π, π) does **not** represent the choices of 2 players.
- 4. (π, π) says that both positions are drawn from the same population of agents with distribution π .

Stable vs. Unstable Equilibrium



Evolutionarily Stable Strategies (ESS)

mixed population dist. = $(1-\epsilon) \pi^* + \epsilon \pi$

current dist π^* HHHHHH DDDD $10/12 = 1-\epsilon$ mutant dist π H D $2/12 = \epsilon$

 \leftarrow mutant plays mutant: $u(1/2,1/2; \pi)$

incumbent plays mutant: $u(6/10,4/10; \pi)$

- 1. A distribution π^* is an ESS \Leftrightarrow for all sufficiently small mutations π the incumbents in π^* do better in the mixed population than the mutants.
- 2. A distribution π^* is an ESS \Leftrightarrow there is an ϵ^* such that for all sizes $\epsilon < \epsilon^*$ $u(\pi^*; (1-\epsilon) \pi^* + \epsilon \pi) > u(\pi; (1-\epsilon) \pi^* + \epsilon \pi)$ for all mutations $\pi \neq \pi^*$.

Characterization of ESS in Bayesian Routing Game *B*

Define:

- the load on link / due to strategy p: load(p,l) = $\Sigma_{\text{tasks } w} \mu(w) \cdot p(l|w) \cdot w$
- the (marginal) probability of using link I: $prob(p,l) = \sum_{tasks \ w} \mu(w) \cdot p(l|w)$

Theorem. A strategy p* is an ESS in $B \Leftrightarrow$ for all best replies $p \neq p^*$ we have $\Sigma_{\text{links } /}[\text{load}(p^*, /) - \text{load}(p, /)] \cdot [\text{prob}(p^*, /) - \text{prob}(p, /)] > 0$

Intuition: to defeat mutation p:

- if load on link increases, use link less (- x -)
- if load decreases, use link more (+ x +) Evolutionary Equilibria in Network Games

Necessary Condition: Same Speed, Same Behaviour

Proposition. Let B be a Bayesian routing routing game with ESS p^* . If two links l_1 , l_2 have the same speed, then $p^*(l_1|w) = p^*(l_2|w)$ for all tasks w.

	Links	Speeds
w ₁ :50%,w ₂ :50%, w ₃ :0 —		- 10
$w_1:50\%, w_2:50\%, w_3:0$ —		- 10
w ₁ :0,w ₂ :0, w ₃ :100% —		- 15
Evolutionary Equilib	oria in Network Games	16/23

Necessary Condition: bigger tasks get faster links

Proposition. Let *B* be a Bayesian routing game with ESS p*. Suppose that

- 1. link 1 is faster than link 2
- 2. p* uses link 1 for task w1, link 2 for task w2.

Then $w1 \ge w2$.

	Links	Speeds
w2= 10: 50%		- 10
w ₁ = 20:100%, w2: 50% ———		- 15
Evolutionary Equilibria in	Network Games	17/23

Single Task: Unique ESS

Proposition. Let *B* be a Bayesian network routing game with just one task *w*.

- 1. B has a unique ESS p*.
- 2. If all m links have the same speed, $p*(l_j|w) = 1/m$ is the unique ESS.

	Links	Speeds
w: 1/3		- 10
w: 1/3		- 10
w: 1/3		- 10

Strong Necessary Condition: No Double Overlap

- Fix a Bayesian network game B.
- Strategy p* **uses** link / for weight $w \Leftrightarrow p^*(/|w) > 0$.
- **Proposition.** Let p^* be an ESS in B. Suppose that p^* uses two distinct links $I_1 \neq I_2$ for task w. Then p^* does not use both I_1 and I_2 for any other task w'.

	Links	Speeds
w ₁ :70%, w ₂ :30%		10
w ₁ :30%, w ₂ :70%		20
w ₃ :100%		15

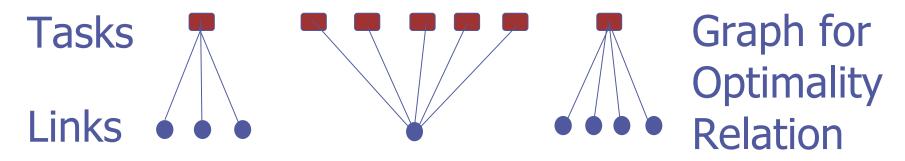
>2 Tasks, Uniform Speeds: No ESS

Proposition. Let *B* be a Bayesian network game with >1 link, >1 task, all links the same speed. Then there is no ESS for *B*.

double overlap	Links	Speeds
w ₁ :50%,w ₂ :50% –		— 10
w ₁ :50%,w ₂ :50% –		— 10

Clusterings are typical ESS's

- \bullet Fix a Bayesian network game B with strategy p*.
- ♦ A link / is **optimal** for task w given $p^* \Leftrightarrow / \min w = w / speed(/) + load(/,p^*).$
- ♦ A strategy p* **clusters** \Leftrightarrow if two distinct links $l_1 \neq l_2$ are optimal for task w, then neither l_1 nor l_2 is optimal for any other task $w' \neq w$.
- Proposition. If p* clusters, then p* is an ESS.



Does A Clustered Equilibrium Exist?

- Fix an assignment A of links to tasks.
- Proposition.
- 1. There is *at most one* clustered ESS p* whose clustering is *A*.
- 2. The candidate p* can be computed in polynomial time.
- 3. The question: is there a clustered ESS p* for a game *B*? is in NP.

Future Work

- Conjecture: if an ESS exists, it's unique.
- Conjecture: the "no double overlap" condition is sufficient as well as necessary.
- Computational Complexity and Algorithms for computing ESS's.

Conclusion

- ESS refines Nash equilibrium and defines stable equilibria.
- Analysis of evolutionary stability in Bayesian network games:
 - characterization of successful mutations
 - structure of stable task/link allocations.
- Finding:
 - evolutionary dynamics leads to formation of "niches" or clusters for task/link combinations.
 - Symmetric outcomes tend to be socially suboptimal.