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Database Management Systems 

From Relational Statistics to Degrees of Belief 4 

�  Maintain data in linked tables. 
�  Structured Query Language (SQL) allows fast data retrieval. 

�  E.g., find all movie ratings > 4 where the user is a woman. 

�  Multi-billion dollar industry, $Bn 15+ in 2006. 
�  IBM, Microsoft, Oracle, SAP, Peoplesoft. 
�  Much interest in analysis (big data, data mining, business 

intelligence, predictive analytics, OLAP…) 
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The Relational Data Model 

From Relational Statistics to Degrees of Belief 5 

�  Codd (IBM Research 1970) 
�  The fundamental question: What kinds of 

information do users need to represent? 
�  Answered by first-order predicate logic! 

(Russell, Tarski).  
�  The world consists of 

�  Individuals/entities. 
� Relationships/links among them. 
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Entity-Relationship Diagram IMDb 
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7 From Relational Statistics to Degrees of Belief 7 

ER-Diagram of the Mondial Database
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Relational Data Formats 

Sun, Y. & Han, J. (2012), Mining Heterogeneous Information Networks: Principles and Methodologies, 
Morgan & Claypool Publishers. 
Nickel, M.; Murphy, K.; Tresp, V. & Gabrilovich, E. (2015), 'A Review of Relational Machine Learning 
for Knowledge Graphs', ArXiv e-prints . 

graphical 

Data Format 

Nodes and edges 
in heterogenous 
network  
(Sun and Han 
2012)  

Database 
Tables 
SQL 

Logical Facts 
•  Knowledge Graph 

Triples  
(Nickel et al. 2015) 

•  Atoms 

tabular 
logical 
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Logical 
Representation 
�  Standard in database theory. 
�  Unify logic and probability. 
�  Equational logic (Dijkstra and Scholten 1990) is especially 

similar to random variable concepts in statistics. 
� Represent relational information using functions (functors) 

(Poole 2003). 
�  Single table data : All functions take 1 argument (Nickel et al. 2015). 

� Relational data: Some functions take > 1 argument. 

Poole, D. (2003), First-order probabilistic inference, in 'IJCAI’. 
Getoor, L. & Grant, J. (2006), 'PRL: A probabilistic relational language', Machine Learning 62(1-2), 7-31. 
Russell, S. & Norvig, P. (2010), Artificial Intelligence: A Modern Approach, Prentice Hall. 
Ravkic, I.; Ramon, J. & Davis, J. (2015), 'Learning relational dependency networks in hybrid domains', Machine Learning. 
Dijskstra & Scholten (1990), Predicate calculus and program semantics, Springer Verlag.  
 

Edsger  
Dijkstra 
by Hamilton 
Richards 
 



10 

Function Representation Example 

True 
$500K 

True 
$5M 

True 
$2M 

False 
n/a   

ActsIn 
salary 

False 
n/a 

False 
n/a 

False 
n/a 

False 
n/a 

gender = Man 
country = U.S. 

gender = Man 
country = U.S. 

gender = Woman 
country = U.S. 

gender = Woman 
country = U.S. 

genre = action 
country = U.S. 

genre = action 
country = U.S. 
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First-Order Logic 

Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', Machine Learning, 1--45. 
 

11 

An expressive formalism for specifying relational 
conditions. 

First-Order 
Logic 

Query 
language 

Pattern 
Language 

database 
theory 

relational 
learning 
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First-Order Logic: Terms 

Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', Machine Learning, 1—45. 

12 

�  A constant refers to an individual. 
�  e.g. “Fargo” 

�  A logical variable refers to a class of individuals 
�  e.g. “Movie” refers to Movies. 

�  A ground term is of the form f(a1,..,an)  
�  e.g. “salary(UmaThurman, Fargo)” 

�  A first-order term is of the form f(t1,..,tn) where at least one 
of the ti is a first-order variable. 
�  e.g. “salary(Actor, Movie)”. 
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Formulas (Equational Logic) 
�  A (conjunctive) formula is a conjunction  

term1 = value1,...,termn=valuen. 
� ActsIn(Actor, Movie) = T, gender(Actor) = W 

�  A ground formula contains only constants. 
� ActsIn(UmaThurman, KillBill) = T, 

gender(UmaThurman) = W 



Two Kinds of Probability 

Frequencies vs. Single Event Probabilities 

From Relational Statistics to Degrees of Belief 

Joe Halpern Fahim Bacchus 



15 

Frequencies/Proportions 
�  Classical statistics aims to estimate population frequencies or 

proportions. 

From Relational Statistics to Degrees of Belief 

Proportion 
90% of birds fly. 

0% of planes have crashed 
because of a turbulence. 

5% of Brusselians speak only 
Dutch at home. 

51.1% of U.S. voters voted for 
Barack Obama. 
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Probabilities for Single Events 

Proportion Instance 
90% of birds fly. The probability that Tweety flies is 90%. 

0% of planes have 
crashed because of a 
turbulence. 

The probability that Flight 3202 to Brussels 
crashes because of a turbulence is 0%. 

5% of Brusselians speak 
only Dutch. 

Given that Marc lives in Brussels, the 
probability that he speaks only Dutch is 5%. 

The probability that the mean μ=0 for a 
Gaussian distribution is 0.01. 

Heckerman, D. (1998), A tutorial on learning with Bayesian networks, in 'NATO ASI on Learning in graphical 
models', pp. 301--354. 

•  Bayesian statistics emphasizes assigning probabilities to single events. 
•  Including the values of model parameters. 
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Classical Statistics: Two Kinds of 
Probabilities 

de Finetti 1937: La Prévision: ses lois logiques, ses sources subjectives, Annales de l'Institut Henri Poincaré 

Probability 

Frequency in 
class of events 

Degree of Belief, 
Uncertainty 
Betting Odds 

learning 

instantiate 

inference 
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Two Kinds of Relational Probabilities 

Halpern, J. Y. (1990), 'An analysis of first-order logics of probability', Artificial Intelligence 46(3), 311--350. 
 

Relational 
Probability 

Relational Frequency 
Statistics 
type 1 probability 
Class-level probability 

Degree of Belief 
type 2 probability 
Instance-level probability 

P(first-order formulas) P(ground formulas) 

instantiate (?) 

The Halpern instantiation principle: 
 
P(φ(X)) = p) !P(φ(c)) = p 
 
where φ is a formula with free logical variable X, 
and c is a constant instantiating  X. 

inference (?) 
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Examples of the Instantiation 
Principle 

From Relational Statistics to Degrees of Belief 

First-Order Ground Instance 
90% of birds fly. The probability that Tweety flies is 90%. 

P(Flies(B)) = 90% P(Flies(tweety)) = 90% 
0% of planes have crashed because of a 
turbulence. 

The probability that Flight 3202 to Brussels crashes 
because of a turbulence is 0%. 

P(Turbulence_Crash(Plane)) = 0%. P(Turbulence_Crash(3202)) = 0%. 
x% of Brusselians speak Dutch. Given that Marc lives in Brussels, the probability that 

he speaks Dutch is x%. 

P(SpeaksOnly(Person,dutch)|
FromBrussels(Person)) = 5%. 

P(SpeaksOnly(marc,dutch)|
FromBrussels(marc)) = 5%. 
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Previous SRL Work: Different Models 
for Different Probabilities 

Getoor, L. (2001), 'Learning Statistical Models From Relational Data', PhD thesis, Department of Computer 
Science, Stanford University. 
Getoor, L.; Taskar, B. & Koller, D. (2001), 'Selectivity estimation using probabilistic models', ACM SIGMOD Record 
30(2), 461—472. 
 
 

Model for Frequencies 
Class-Level Probabilities 

Model for Single Event Probabilities 
Instance-Level Probabilities 

Statistical-Relational Models 
(Lise Getoor, Taskar, Koller 2001) 

Many Model Types: 
Parametrized Bayes Nets 
Probabilistic Relational Models,  
Markov Logic Networks, 
Bayes Logic Programs, 
Logical Bayesian Networks, … 
 

Relational 
Probability 
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Today: Unified Approach 

 
 

Frequencies 
Class-Level 

Single Event Probabilities 
Instance-Level 

new class-level semantics 
statistical-relational model 

Bayesian 
Network 

instantiate 

Learning 

new log-linear model 



Relational Frequencies 

From Relational Statistics to Degrees of Belief 

Joe Halpern Fahim Bacchus 
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Applications of Relational Frequency 
Modelling 
•  First-order rule learning  

(e.g., “women users like movies with women actors”). 

•  Strategic Planning  
(e.g., “increase SAT requirements to decrease student 
attrition”). 

•  Query Optimization (Getoor, Taskar, Koller 2001).  
Class-level queries support selectivity estimation è  
optimal evaluation order for SQL query . 

Getoor, Lise, Taskar, Benjamin, and Koller, Daphne. Selectivity estimation using probabilistic models. 
ACM SIGMOD Record, 30(2):461–472, 2001. 
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Relational Frequencies 

From Relational Statistics to Degrees of Belief 

� Database probability of a first-order formula =  
number of satisfying instantiations/ 
number of possible instantiations. 

� Examples: 
� PD(gender(Actor) = W) = 2/4. 
� PD(gender(Actor) = W, ActsIn(Actor,Movie) = T) = 

2/8.  
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The Grounding Table 

Actor Movie gender(Actor)  ActsIn(Actor,Movie) genre(Movie) 

Brad_Pi(	 Fargo	 M F Action 

Brad_Pi(	 Kill_Bill	 M F Action 

Lucy_Liu	 Fargo	 W F Action 

Lucy_Liu	 Kill_Bill	 W T Action 

Steve_Buscemi	Fargo	 M T Action 

Steve_Buscemi	Kill_Bill	 M F Action 

Uma_Thurman	Fargo	 W F Action 

Uma_Thurman	Kill_Bill	 W T Action 

•  P(gender(Actor) = W, ActsIn(Actor,Movie) = T, genre(Movie) = Action) = 2/8 
•  frequency = #of rows where the formula is true/# of all rows 

Logical Variable •  Single data table that correctly represents 
relational frequencies. 

•  Schulte 2011, Riedel, Yao, McCallum (2013) 
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Random Selection Semantics 
(Terms) 

Prob Actor Movie gender(Actor)  ActsIn(Actor,Movie) genre(Movie) 

1/8	 Brad_Pi(	 Fargo	 M F Action 

1/8	 Brad_Pi(	 Kill_Bill	 M F Action 

1/8	 Lucy_Liu	 Fargo	 W F Action 

1/8	 Lucy_Liu	 Kill_Bill	 W T Action 

1/8	 Steve_Buscemi	Fargo	 M T Action 

1/8	 Steve_Buscemi	Kill_Bill	 M F Action 

1/8	 Uma_Thurman	Fargo	 W F Action 

1/8	 Uma_Thurman	Kill_Bill	 W T Action 

Halpern, J. Y. (1990), 'An analysis of first-order logics of probability', Artificial Intelligence 46(3), 311--350. 

Logical Random Variable 
P(Movie = Fargo) = 1/2 
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Population 

Actors 

Population variables 

Actor 
Random Selection  
from Actors. 
P(Actor = brad_pitt) 
= 1/4. 

Movie 
Random 
Selection  
from Movies. 
P(Movie = fargo) 
= ½. 

First-Order Random 
Variables 

gender(Actor) 
Gender of selected actor. 
P(gender(Actor) = W) = ½. 

genre(Movie) 
Genre of selected movie. 
P(genre(Movie)=Action) = 1. 

ActsIn(Actor,Movie) = 
T if selected actor appears in 
selected movie, F otherwise 
P(ActsIn(Actor,Movie) = T) = 3/8 

Random Selection Semantics 

Movies 



Bayesian Networks for Relational 
Statistics 
Statistical-Relational Models (SRMs) 
Random Selection Semantics for Bayesian Networks 

From Relational Statistics to Degrees of Belief 

Bayesian Network Model for Relational Frequencies 
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Bayesian networks for relational 
data 

�  A first-order Bayesian 
network is a Bayesian 
network whose nodes 
are first-order terms 
(Wang et al. 2008). 

�  aka parametrized 
Bayesian network (Poole 
2003, Kimmig et al. 
2014). 

Wang, D. Z.; Michelakis, E.; Garofalakis, M. & Hellerstein, J. M. (2008), BayesStore: managing large, uncertain 
data repositories with probabilistic graphical models, in , VLDB Endowment, , pp. 340--351. 
Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', Machine Learning, 1--45. 
   

gender(A) 

ActsIn(A,M) 

genre(M) 
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Random Selection Semantics for First-Order 
Bayesian Networks 

�  P(gender(Actor) = W, 
ActsIn(Actor,Movie) = T, 
genre(Movie) = Action) = 2/8 

 
“if we randomly select an actor 
and a movie, the probability is 2/8 
that the actor appears in the 
movie, the actor is a woman, and 
the movie is an action movie” 
�  Demo. 

From Relational Statistics to Degrees of Belief 

gender(A) 

ActsIn(A,M) 

genre(M) 
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Bayesian Networks are Excellent Estimators 
of Relational Frequencies 

•  Queries Randomly Generated. 
•  Example: P(gender(A) = W|ActsIn(A,M) = true, genre(M) = drama)? 
•  Learn and test on entire database as in Getoor et al. 2001. 

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

Ba
ye
s&N

et
&In

fe
re
nc
e&

True&Database&Frequencies&

BN" trend"line"BN"

Hepa77s&
Average"difference""
0.008"+="0.01"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

Ba
ye
s&N

et
&In

fe
re
nc
e&

True&Database&Frequencies&

BN" trend"line"BN"

MovieLens&
Average"
difference""
0.006"+="0.008"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

Ba
ye
s&N

et
&In

fe
re
nc
e&

True&Database&Frequencies&

BN" trend"line"BN"

Mondial&
Average"difference""
0.009"+="0.007"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

Ba
ye
s&
N
et
&In

fe
re
nc
e&

True&Database&Frequencies&

BN" trend"line"BN"

Financial&
Average"difference"
0.009"+="0.016"

Schulte, O.; Khosravi, H.; Kirkpatrick, A.; Gao, T. & Zhu, Y. (2014), 'Modelling Relational Statistics 
With Bayes Nets', Machine Learning 94, 105-125.   



How to upgrade propositional 
Bayesian network learners to first-
order logic 

From Relational Statistics to Degrees of Belief 

Bayesian Network Model for Relational Frequencies 
 

Structure and Parameter Learning 
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How to upgrade single-table Bayesian network 
learners to multi-relational data  

Follow Luc’s advice! 
1.  Search the space of functors/predicates, not literals. (Kersting 

and de Raedt 2007). 
2.  Organize search using the specialization/refinement lattice 

of models (Laer and de Raedt 2001).  
3.  Follow the generalization principle (Knobbe 2006): 

When we apply a relational model to a single i.i.d. data 
table, it should give the same result as the propositional 
model. 

Kersting, K. & de Raedt, L. (2007), Bayesian Logic Programming: Theory and Tool'Introduction to Statistical 
Relational Learning', MIT Press, , pp. 291-318. 
Laer, W. V. & de Raedt, L. (2001), How to upgrade propositional learners to first-order logic: A case study'Relational 
Data Mining', Springer Verlag, . 
Knobbe, A. J. (2006), Multi-relational data mining, Vol. 145, Ios Press.\ 
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General Structure Learning 
Schema 
After Kimmig et al. 2014. 
1.  Initialize graph G := empty. 
2.  While not converged do 

a.  Generate candidate graphs. 
b.  For each candidate graph C, learn parameters θC 

that maximize score(C, θ, dataset). 
c.  G := argmaxC score(C, θC,dataset). 

3.  check convergence criterion. 

From Relational Statistics to Degrees of Belief 

lattice search 

relational 
score 



Scoring Bayesian Networks for 
Relational Data  

From Relational Statistics to Degrees of Belief 
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The Random Selection Pseudo 
Likelihood Function 
1.  Randomly select a grounding for all first-order 

variables in the first-order Bayesian network. 
2.  Compute the log-likelihood for the attributes of 

the selected grounding. 
3.  Pseudo log-likelihood = expected log-

likelihood for a random grounding. 
Generalizes i.i.d. log-likelihood. 

Schulte, O. (2011), A tractable pseudo-likelihood function for Bayes Nets applied to relational data, 
in 'SIAM SDM', pp. 462-473. 
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Example 

Prob A M gender(A)  ActsIn(A,M) genre(M) PB ln(PB) 

1/8	 Brad_Pi(	 Fargo	 M F Action 3/8 -0.98	

1/8	 Brad_Pi(	 Kill_Bill	 M F Action 3/8 -0.98	

1/8	 Lucy_Liu	 Fargo	 W F Action 2/8 -1.39	

1/8	 Lucy_Liu	 Kill_Bill	 W T Action 2/8 -1.39	

1/8	 Steve_Buscemi	Fargo	 M T Action 1/8 -2.08	

1/8	 Steve_Buscemi	Kill_Bill	 M F Action 3/8 -0.98	

1/8	 Uma_Thurman	Fargo	 W F Action 2/8 -0.98	

1/8	 Uma_Thurman	Kill_Bill	 W T Action 2/8 -1.39	
0.27 geo -1.32	arith	

 
Schulte, O. (2011), A tractable pseudo-likelihood function for Bayes Nets applied to relational data, in 'SIAM SDM', pp. 
462-473. 

gender(A) 

ActsIn(A,M) 

genre(M) 
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Observed Frequencies Maximize 
Pseudo-Likelihood 
Proposition The random selection pseudo log-likelihood is 
maximized by setting the Bayesian network parameters to the 
observed conditional frequencies. 

From Relational Statistics to Degrees of Belief 

gender(A) 

ActsIn(A,M) 

genre(M) 

P(ActsIn(A,M)=T|g(A) = M,ge(M) = Action) = ¼ 
... 
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Equivalent Closed-Form 
Computation for Pseudo-Likelihood 

From Relational Statistics to Degrees of Belief 

P(D;B)∞exp

pD (a, j)× ln(P B (a | j))
parent−state j
∑

values a
∑

nodes i
∑

relational joint 
frequency of child node 
value and parent state 
e.g. PD(ActsIn,M,Action) = 1/8 

Parameter of Bayes 
net 
e.g. P(ActsIn|M, Action) = ¼ 

 
gender(A) 

ActsIn(A,M) 

genre(M) 



Parameter Learning 
Maximum Likelihood Estimation 

From Relational Statistics to Degrees of Belief 
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Computing Parameter Estimates 
� Need to compute a 

contingency table with 
grounding counts. 

� Well researched for all 
true relationships. 
SQL Count(*) 
Virtual Join 
Partition Function Reduction 

  
Yin, X.; Han, J.; Yang, J. & Yu, P. S. (2004), CrossMine: Efficient Classification Across Multiple Database 
Relations, in 'ICDE'. 
Venugopal, D.; Sarkhel, S. & Gogate, V. (2015), Just Count the Satisfied Groundings: Scalable Local-
Search and Sampling Based Inference in MLNs, in AAAI, 2015, pp. 3606--3612. 
 
 

g(A)  Acts(A,M) ge(M) count 

M F Action 3 

M F Action 3 

W F Action 2 

W T Action 2 

M T Action 1 

M F Action 3 

W F Action 2 

W T Action 2 
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The Möbius Extension Theorem for 
negated relations 

Learning Bayes Nets for Relational Dataa 

R1 R2 Count(*) 
R1 R2 Count(*) 
R1 R2 Count(*) 

R1 R2 Count(*) 

For two link types 

R1 R2 Count(*) 
R1 Count(*) 

R2 Count(*) 

Count(*) nothing 

Joint probabilities 

Möbius Parameters 
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The Fast Möbius Transform 

R1 R2 J.P. 

T T 0.2 

* T 0.3 

T * 0.4 

* * 1 

Kennes, R. & Smets, P. (1990), Computational aspects of the Möbius transformation, in 'UAI', pp. 
401-416. 
 

Initial table with no 
false relationships 

R1 R2 J.P. 

T T 0.2 

F T 0.1 

T * 0.4 

F * 0.6 

R1 R2 J.P. 

T T 0.2 

F T 0.1 

T F 0.2 

F F 0.5 

+ 
- 

+ 
- 

+ 
- 

+ 
- 

table with joint 
probabilities 

J.P. = joint probability 

HasRated(U,M) = R2 

ActsIn(A,M) = R1 
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Using Presence and Absence of 
Relationships 
�  Fast Möbius Transform è almost free computationally!  
�  Allows us to find correlations with relationships. 

�  e.g. users who search for an item on-line also watch a video 
about it. 

�  Relationship variables selected by standard data mining 
approaches (Qian et al 2014). 
� Interesting Association Rules. 
� Feature Selection Metrics. 

Qian, Z.; Schulte, O. & Sun, Y. (2014), Computing Multi-Relational Sufficient Statistics for Large 
Databases, in 'Computational Intelligence and Knowledge Management (CIKM)', pp. 1249--1258. 
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Parameter Learning Time 
�  Fast Inverse Möbius transform (IMT) vs. 
� Constructing complement tables using SQL. 
�  Times are in seconds. 

Learning Bayes Nets for Relational Data 

Modelling Relational Statistics With Bayes Nets

Figure 3. The estimates of conditional probability parameters, averaged over 10 random subdatabases and all BN param-
eters. Error (absolute di�erence) in conditional probability estimates. The median observation is the red center line and
the box comprises 75% of the observed values. The whisker indicates the maximum acceptable value (1.5 IQR upper).

Table 1. Learning time results (sec) for the Möbius trans-
form vs. constructing complement tables. For each
database, we show the number of tuples, and of param-
eters in the fixed Bayes net structure.

Database Parameters #tuples Complement IMT Ratio

Mondial 1618 814 157 7 22
Hepatitis 1987 12,447 18,246 77 237
Financial 10926 17,912 228,114 14,821 15
MovieLens 326 82,623 2,070 50 41

then estimated the complete-population frequencies
from partial-population data. A fractional sample
size parameter is uniform across tables and databases.
We employed standard subgraph subsampling (Frank,
1977; Khosravi et al., 2010), which selects entities uni-
formly at random and restricts the relationship tuples
in each subdatabase to those that involve only the se-
lected entities.

Figure 3 illustrates that with increasing sample size,
MPLE estimates approach the true value in all cases.
Even for the smaller sample sizes, the median error
is close to 0, confirming that most estimates are very
close to correct. As the box plots show, the 3rd error
quartile of estimates is bound within 10% on Mondial,
the worst case, and within less than 5% on the other
datasets.

6.4. Inference

The basic inference task for Bayes nets is answering
probabilistic queries. If the given Bayes net struc-
ture is an I-map of the true distribution, then correct
parameter values lead to correct predictions. Thus
the performance on queries has been used to evalu-
ate parameter learning. We randomly generate queries
for each dataset according to the following proce-
dure. First, choose a target node V 100 times, and go

through each possible value a of V such that P (V = a)
is the probability to be predicted. For each value a,
choose the number k of conditioning variables, ranging
from 1 to 3. Select k variables V1, . . . , Vk and corre-
sponding values a1, . . . , ak. The query to be answered
is then P (V = a|V1 = a1, . . . , Vk = ak). An example
query could be

P (Int(S ) = high|Registered(S ,C ) = T , di� (C ) = high).

This asks for the number of student-course pairs with
a highly intelligent student, out of the class of student-
course pairs where the student is registered in the
course and the course is di�cult.

As in (Getoor et al., 2001), we evaluate queries af-
ter learning parameter values on the entire database.
Thus the BN is viewed as a statistical summary of the
data rather than generalizing from a sample. BN in-
ference is carried out using the Approximate Updater
in CMU’s Tetrad program. Figure 4 shows that the
accuracy of Bayes net query estimates is high. We
also compared the runtime cost of performing model
inference vs. estimating query sizes using SQL, but
cannot show the details due to lack of space. Basi-
cally, model inferences are substantially faster, because
for larger databases, the cost of data access is much
greater than the CPU cost of inference computations;
see also (Getoor et al., 2001). For queries that involve
negated relations, model inference is faster than den-
sity estimation from data by orders of magnitude.

7. Conclusion

We introduced a new semantics for Parametrized
Bayes nets as models of class-level statistics in a re-
lational structure. For parameter learning we uti-
lized the empirical database frequencies, which can be
feasibly computed using the Möbius transform, even
for frequencies concerning negated links. In evalu-
ation on four benchmark databases, the maximum

Möbius transform is much faster, 15-200 times.  



Structure Learning: Lattice Search 
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Learning a Bayesian Multi-Net 
� Score = pseudo log-likelihood – parameter penalty 
� Learn a Bayesian network for each relationship chain. 
� Nodes and edges are propagated from shorter chains to 

smaller chains. 
� Demo. 

Khosravi, H.; Schulte, O.; Man, T.; Xu, X. & Bina, B. (2010), Structure Learning for Markov Logic 
Networks with Many Descriptive Attributes, in 'AAAI', pp. 487-493. 
 

Actors A Movies M Users U 

ActsIn(A,M) HasRated(U,M) 

ActsIn(A,M), 
HasRated(U,M) 
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Comparison With Luc’s advice 
+ Search in space of functions/predicates. 
+ Generalizes i.i.d. BN learning. 
+ Decompose specialization lattice into sublattices. 

•  Each sublattice corresponds to relational path. 
•  Lattices at the same level can be analyzed separately è 

distributed processing. 
•  Results from lower levels are propagated to higher levels 
èdynamic programming style. 

-  First-order variables only è half of theta-subsumption. 

From Relational Statistics to Degrees of Belief 
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Fast Structure Learning 

Dataset	
#  

Predicates	 # tuples	RDN_Boost	MLN_Boost	 Lattice	
UW	 14 612	 15±0.3	 19±0.7	 1±0.0	
Mondial	 18 870	 27±0.9	 42±1.0	 102±6.9	
Hepatitis	 19 11,316	 251±5.3	 230±2.0	 286±2.9	
Mutagenesis	 11 24,326	 118±6.3	 49±1.3	 1±0.0	
MovieLens(0.1M)	 7 83,402	 44±4.5 min	 31±1.87 min 	 1±0.0	
MovieLens(1M)	 7 1,010,051	 >24 hours	 >24 hours	 10±0.1	
Imdb(1.5M) 17 1,538,400 >24 hours >24 hours 549 

•  Standard deviations are shown for cross-validation. 
•  Units are seconds/predicate or function 

Fast Learning of Relational Dependency Networks 



From Relational Statistics to 
Degrees of Belief 

Bayesian Network Model for Relational Frequencies 
 

Relational Classifier 
Dependency Network 
 

Structure and Parameter Learning 

New Log-linear Model 
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Predicting Ground Facts 
�  Many relational models aim to predict specific facts, e.g. 

� Will KAA Gent win the Belgian football league 2015-2016? 
�  Is Spectre likely to do well at the box office? 

�  The problem: relational data feature multiple instantiations of 
the same pattern. 
�  E.g. 1,000 men give Spectre a high rating, 1,200 women give 

spectre a high rating. 

�  Halpern’s project: from relational frequencies, derive a 
probability distribution over possible worlds (models, 
databases). (Halpern 1990, 1992, 2006). 

Bacchus, F.; Grove, A. J.; Koller, D. & Halpern, J. Y. (1992), From Statistics to Beliefs, in 'AAAI', pp. 602-608. 
Halpern, J. Y. (2006), From statistical knowledge bases to degrees of belief: an overview, in 'PODS', ACM, , pp. 110—113. 
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Bayesian Network Relational 
Classification 
�  Classification problem: Define P(Y*=y|X*=x) for ground 

term Y* given values for all other terms X*. 
�  Strictly easier than defining joint probability P(Y*=y,X*=x). 
�  Basic idea: score labels by comparing pseudo-likelihood 

P(Y*=0,X*=x) to P(Y*=1,X*=x) . 
�  Restrict pseudo-likelihood to relevant groundings that 

involve the target term. 
�  Generalizes propositional Bayesian Network classification 

formula. 

From Relational Statistics to Degrees of Belief 
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Example 

A M gender(A)  ActsIn(A,M) genre(M) PB ln(PB) 

sam	 Fargo	 W F Action 2/8 -0.98	

sam	 Kill_Bill	 W T Action 2/8 -1.39	

-1.32	arith	

Schulte et al. (2014) ‘Fast Learning of Relational Dependency Networks’, in ILP 2014 

gender(sam) 

ActsIn(sam,M) 

genre(M) 

-1.32 > -1.36: predict sam 
is a woman.  

A M gender(A)  ActsIn(A,M) genre(M) PB ln(PB) 

sam	Fargo	 M F Action 3/8 -0.98	

sam	Kill_Bill	 M T Action 1/8 -1.39	

-1.36	arith	
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Dependency Networks 
�  aka Markov blanket networks (Hoffmann and Tresp 1998). 
�  Defined by a local conditional distribution for each random 

variable  Y*: P(Y*=y|X*=x). 
�  We just showed Bayesian network è dependency network. 
�  Can compare with other dependency network learning. 
�  Recall that this is very fast (<12 min on 1M tuples). 
�  Finds complex dependencies 

�   e.g. gender(User) correlates with gender(Actor) in movies they have 
rated. 

Hofmann, R. & Tresp, V. (1998), Nonlinear Markov networks for continuous variables, in 'Advances in Neural Information Processing 
Systems', pp. 521--527. 
Heckerman, D.; Chickering, D. M.; Meek, C.; Roundthwaite, R.; Kadie, C. & Kaelbling, P. (2000), 'Dependency Networks for 
Inference, Collaborative Filtering, and Data Visualization', JMLR 1, 49—75. 
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Accuracy Comparison 

-0.70	

-0.60	

-0.50	

-0.40	

-0.30	

-0.20	

-0.10	

0.00	

CLL	

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

UW	 Mondial		 HepaNNs	 Muta	 MovieLens(0.1M)	

PR	

RDN_Boost	 MLN_Boost	 RDN_Bayes	

•  Leave-one-out over all unary functors. 
•  PR = area under precision-recall curve. 

CLL: conditional log-likelihood 



Model-Based Unsupervised 
Relational Outlier Detection 
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Model-Based Outlier Detection for 
I.I.D. data 

ID Att1 Att2 Att3 

1000 M rich 8 

Cansado, A. & Soto, A. (2008), 'Unsupervised anomaly detection in large databases using Bayesian networks', 
Applied Artifical Intelligence 22(4), 309--330. 
 

Attribute1 

Attribute3 

Attribute2 

Learning 

ID Attribute1 Attribute2 Attribute3 

1 W rich 10 

2 .... ... ... 

Likelihood of potential outlier 
low likelihood èoutlier 



58 

Model-Based Outlier Detection for 
Relational Data 

“Model-based Outlier Detection for Object-Relational Data”. Riahi and Schulte (2015). IEEE SSCI.  
Maervoet, J.; Vens, C.; Vanden Berghe, G.; Blockeel, H. & De Causmaecker, P. (2012), 'Outlier Detection in Relational 
Data: A Case Study in Geographical Information Systems', Expert Systems With Applications 39(5), 4718—4728. 

Individual Profile 
e.g. MU games 

First-Order 
Bayesian 
network 

Pseudo likelihood of individual database 
low likelihood èoutlier 

Population Database 
e.g. Premier League games 
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Likelihood Ratio Variant 
Complete 
Database 

Population 
Parameter 
Values θClass 

outlier score = 
pseudo-likelihood(θClass)/ 
pseudo-likelihood(θindividual) 

Individual 
Profile 

Individual 
Parameter 
Values θindividual 

Parameter  
Learning  
Algorithm 

Parameter  
Learning  
Algorithm BN Structure 



60 

Example Terms in Outlier Metrics 
Striker Edin Dzeko. 
�  Pseudo log-likelihood: 

� Shoteff(dzeko,M) = hi, 
TackleEff(dzeko,M)= medium è 
DribbleEff(dzeko,M) = low. 
Support=26% Confidence = 50%. 

�  Pseudo log-likelihood 
26% x ln(38%). 

�  Pseudo Log-likelihood ratio 
26% x (ln(38%)-ln(50%)). 

Novak, P. K.; Lavrac, N. & Webb, G. I. (2009), 'Supervised descriptive rule discovery: A unifying survey of 
contrast set, emerging pattern and subgroup mining', The Journal of Machine Learning Research 10, 377--403. 
 

Shoteff(P,M) 

DribbleEff(P,M) 

TackleEff(P,M) 

P(DribbleEff(P,M) = low| 
Shoteff(P,M) = hi,  
TackleEff(P,M)= medium) 
 = 38% 
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Interpretable (and Accurate) 

Riahi, S. and Schulte, O. (2015). ‘Model-based Outlier Detection for Object-Relational Data’  IEEE Symposium 
Series on Computing Intelligence. Forthcoming.  61 

Top Outliers from Selected Normal Classes: 
•  Strikers 
•  Midfielders 
•  Drama 
TABLE XI. CASE STUDY FOR THE TOP OUTLIERS RETURNED BY THE LOG-LIKELIHOOD DISTANCE SCORE ELD

Strikers (Normal) vs. Goalies (Outlier)
PlayerName Position ELD Rank ELD Max Node ELD Node Score FD Max feature Value Object Probability Class Probability
Edin Dzeko Striker 1 DribbleEfficiency 83.84 DE=low 0.16 0.5
Paul Robinson Goalie 2 SavesMade 49.4 SM=Medium 0.3 0.04
Michel Vorm Goalie 3 SavesMade 85.9 SM=Medium 0.37 0.04

Midfielders (Normal) vs. Strikers (Outlier)
PlayerName Position ELD Rank ELD Max Node ELD Node Score FD Max feature Value Object Probability Class Probability
Robin Van Persie Striker 1 ShotsOnTarget 153.18 ST=high 0.34 0.03
Wayne Rooney Striker 2 ShotsOnTarget 113.14 ST=high 0.26 0.03
Scott Sinclair Midfielder 6 DribbleEfficiency 71.9 DE=high 0.5 0.3

Drama (Normal) vs. Comedy (Outlier)
MovieTitle Genre ELD Rank ELD Max Node ELD Node Score FD Max feature Value Object Probability Class Probability
Brave Heart Drama 1 ActorQuality 89995.4 a quality=4 0.93 0.42
Austin Powers Comedy 2 Cast Position 61021.28 Cast Num=3 0.78 0.49
Blue Brothers Comedy 3 Cast Position 24432.21 Cast num=3 0.88 0.49

There are several avenues for future work. (i) A limitation
of our current approach is that it ranks potential outliers, but
does not set a threshold for a binary identification of outlier
vs. non-outlier. (ii) Our divergence uses expected L1-distance
for interpretability, but other distance scores like L2 could be
investigated as well. (iii) Extending the expected L1-distance
for continuous features is a useful addition.

In sum, outlier metrics based on model likelihoods are a
new type of structured outlier score for object-relational data.
Our evaluation indicates that this model-based score provides
informative, interpretable, and accurate rankings of objects as
potential outliers.
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Random Selection Semantics for 
First-Order Logic 
�  First-order variables and first-order terms are viewed as 

random variables. 
�  Associates relational frequency with each first-order formula. 

From Relational Statistics to Degrees of Belief 

Joe Halpern Fahim Bacchus 
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Applying random selection to log-
linear models 

Graphical model ≈ 
Propositional log-linear model 
s = wi xi 

 

E(s) from random instantiation 

 

relational log-linear model 
s = wi fi 

 

 
feature functions = frequency 

•  Combines multiple instantiations of the same feature. 
•  Defines relational pseudo log-likelihood score Bayes 

net. 
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Log-linear Models With Proportions 
�  Frequencies are on the same scale [0,1]: addresses “ill-

conditioning”  (Lowd and Domingos 2007). 
�  Surprisingly expressive: can “simulate” combining rules 

(Kazemi et al. 2014). 
�  Also effective for dependency networks with hybrid data 

types (Ravkic, Ramon, Davis 2015). 
�  Random selection semantics provides a theoretical 

foundation. 

Lowd, D. & Domingos, P. (2007), Efficient Weight Learning for Markov Logic Networks, in 'PKDD', pp. 200—211.  
Kazemi, S. M.; Buchman, D.; Kersting, K.; Natarajan, S. & Poole, D. (2014), Relational Logistic Regression, in 'Principles 
of Knowledge Representation and Reasoning:, KR 2014. 
Ravkic, I.; Ramon, J. & Davis, J. (2015), 'Learning relational dependency networks in hybrid domains', Machine Learning. 
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Learning results 
�  Random selection pseudo-likelihood score for Bayesian 

networks. 
�  Closed-form parameter estimation. 

�  Fast Möbius transform for computing parameters with negated 
relationships. 

�  Structure Learning: Decompose the lattice of relationship 
chains. 

�  Fast learning, competitive accuracy for: 
� modeling relational frequencies. 
�  relational dependency networks. 
�  relational outlier detection. 

From Relational Statistics to Degrees of Belief 
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Open Problems 
�  Learning with constants (theta-subsumption). 
� Generalize model scores like AIC, BIC  with positive and 

negative relationships. 
� need to scale penalty terms as well as feature counts. 

From Relational Statistics to Degrees of Belief 
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Thank you! 
�  Any questions? 

From Relational Statistics to Degrees of Belief 


