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Database Management Systems

® Maintain data in linked tables.
* Structured Query Language (SQL) allows fast data retrieval.

* E.g., find all movie ratings > 4 where the user is a woman.

® Multi-billion dollar industry, $Bn 15+ in 2006.
* IBM, Microsoft, Oracle, SAP, Peoplesotft.

® Much interest in analysis (big data, data mining, business

intelligence, predictive analytics, OLAP...)

¥
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The Relational Data Modelj;

® Codd (IBM Research 1970)
® The fundamental question: What kinds of

izgformation do users need to represent?

® Answered by first-order predicate logic!
(Russell, Tarski).

® The world consists of
® Individuals/entities.

* Relationships/links among them.

@ From Relational Statistics to Degrees of Belief 5 /




Entity-Relationship Diagram IMDb
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ER-Diagram of the Mondial Database
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Relational Data Formats

graphical

Data Format

Nodes and edges
In heterogenous

network
(Sun and Han
2012)

tabular

Database
Tables
SQL

logical

Logical Facts
« Knowledge Graph

Triples
(Nickel et al. 2015)
 Atoms

Sun,Y. & Han, J. (2012), Mining Heterogeneous Information Networks: Principles and Methodologies,

Morgan & Claypool Publishers.
Nickel, M.; Murphy, K.; Tresp, V. & Gabrilovich, E. (2015), 'A Review of Relational Machine Learning

for Knowledge Graphs', ArXiv e-prints .
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Logical
Representation

* Standard in database theory.

Edsger
Dijkstra

by Hamilton
Richards

* Unify logic and probability.

7\ 0

® Lquational logic (Dijkstra and Scholten 1990) is especially
similar to random variable concepts in statistics.

® Represent relational information using functions (functors)

(Poole 2003).
® Single table data : All functions take 1 argument (Nickel etal. 2015).

® Relational data: Some functions take > 1 argument.

Poole, D. (2003), First-order probabilistic inference, in 'IJCAI’.
Getoor, L. & Grant, J. (2006), 'PRL: A probabilistic relational language', Machine Learning 62(1-2), 7-31.

Russell, S. & Norvig, P. (2010), Artificial Intelligence: A Modern Approach, Prentice Hall.
Ravkic, I.; Ramon, J. & Davis, ]. (2015), 'Learning relational dependency networks in hybrid domains', Machine Learning.

Dijskstra & Scholten (1990), Predicate calculus and program semantics, Springer Verlag.
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n/a n/a

genre = action
country = U.S.

-

Function Representation Example

gender = Man
country = U.S. country = U.S.

gender = Man gender = Woman gender = Woman

country =U.S.  country = U.S.

True False False True False True Actsin
$500K n/a na $5M n/a $2M  salary
genre = action

country = U.S. 10




First-Order Logic

An expressive formalism for specifying relational

conditions.
database relational
theory First-Order learning
Logic
Query Pattern
language Language

Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', Machine Learning, 1--45.
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First-Order Logic: Terms

® A constant refers to an individual.

°e.g “Fargo”

o A 1ogical variable refers to a class of individuals

°e.g “Movie” refers to Movies.

* A ground term is of the form f(a,,..,a )

® e.g. “salary(UmaThurman, Fargo)”

* A first-order term is of the form f(z,,..,t, ) where at least one

of the ¢, is a first-order variable.

® c.g. “salary(Actor, Movie)”.

Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', Machine Learning, 1—45.
g grap ) g
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Formulas (Equational Logic)

* A (conjunctive) formula is a conjunction

term;, = value,,...,term_=value_.
® ActsIn(Actor, Movie) =T, gender(Actor) =W
® A ground formula contains only constants.

® ActsIn(UmaThurman, KillBill) =T,
gender(UmaThurman) =W

13




Two Kinds of Probability

Frequencies vs. Single Event Probabilities

Joe Halpern Fahim Bacchus

From Relational Statistics to Degrees of Belief
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Frequencies/Proportions

e (lassical statistics aims to estimate population frequencies or

proportions.

ﬁ

90% of birds ﬂy.

0% of planes have crashed 82 82 82
because of a turbulence.

5% of Brusselians speak only 82 82 82
Dutch at home. % % %
51.1% of U.S. voters voted for

Barack Obama.

From Relational Statistics to Degrees of Belief 15
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e
Probabilities for Single Events

* Bayesian statistics emphasizes assigning probabilities to single events.

. Including the values of model parameters.

Proportion Instance

90% of birds ﬂy. The probability that Tweety flies is 90%.
0% of planes have The probability that Flight 3202 to Brussels
crashed because of a crashes because of a turbulence is 0%.
turbulence.

5% of Brusselians speak  Given that Marc lives in Brussels, the
only Dutch. probability that he speaks only Dutch is 5%.

The probability that the mean 4 =0 for a

Gaussian distribution is 0.01.

Heckerman, D. (1998), A tutorial on learning with Bayesian networks, in 'NATO ASI on Learning in graphical 16
K models', pp. 301--354.




g Classical Statistics: Two Kinds of
Probabilities

: Probability
learning
Frequency in instantiate Degree of Belief,
class of events : Uncertainty
inference Betting Odds

de Finetti 1937: La Prevision: ses lois logiques, ses sources subjectives, Annales de I'Institut Henri Poincare
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Two Kinds of Relational Probabilities

P(first-order formulas) Relational P(ground formulas)
Probability
Relational Frequency instantiate (?) Degree of Belief
Statistics _ type 2 probability
type 1 probability inference (?) Instance-level probability
Class-level probability

The Halpern instantiation principle:

P(e(X)) =p) 2P(¢(c)) =p

where @ is a formula with free logical variable X,
and c is a constant instantiating X.
Halpern, ].Y. (1990), 'An analysis of first-order logics of probability', Artificial Intelligence 46(3), 311--350. 18




Examples of the Instantiation
Principle

First-Order Ground Instance

90% of birds fly. The probability that Tweety flies is 90%.
P(Flies(B)) = 90% P(Flies(tweety)) = 90%
0% of planes have crashed because of a The probability that Flight 3202 to Brussels crashes
turbulence. because of a turbulence is 0%.
P(Turbulence_Crash(Plane)) = 0%. P(Turbulence_Crash(3202)) = 0%.
x% of Brusselians speak Dutch. Given that Marc lives in Brussels, the probability that
he speaks Dutch is x%.

P(SpeaksOnly(Person,dutch) | P(SpeaksOnly(marc,dutch) |
FromBrussels(Person)) = 5%. FromBrussels(marc)) = 5%.

From Relational Statistics to Degrees of Belief 19
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4 ™
Previous SRL Work: Different Models

for Different Probabilities

Many Model Types:

Relational Parametrized Bayes Nets

P ilit Probabilistic Relational Models,
Statistical-Relational Models robability Markov Logic Networks,
(Lise GetOOF, TaSkar, Koller 2001) Bayes Logic Programs’

Logical Bayesian Networks, ...

Model for Frequencies
Class-Level Probabilities

Model for Single Event Probabilities
Instance-Level Probabilities

Getoor, L. (2001), 'Learning Statistical Models From Relational Data', PhD thesis, Department of Computer
Science, Stanford University.
Getoor, L.; Taskar, B. & Koller, D. (2001), 'Selectivity estimation using probabilistic models', ACM SIGMOD Record 20

\ 30(2), 461—472. /




Today: Unified Approach

]

new class-level semantics
statistical-relational model

Frequencies
Class-Level

l Learning
Bayesian
Network
instantiate Single Event Probabilities

)

Instance-Level

new log-linear model

21




Relational Frequencies

Joe Halpern Fahim Bacchus

From Relational Statistics to Degrees of Belief
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/Applioations of Relational Frequency
Modelling

*  First-order rule learning

(e.g., “women users like movies with women actors”).

*  Strategic Planning
(e.g., “increase SAT requirements to decrease student
attrition”).

*  Query Optimization (Getoor, Taskar, Koller 2001).

Class-level queries support selectivity estimation "9

optimal evaluation order for SQL query .

Getoor, Lise, Taskar, Benjamin, and Koller, Daphne. Selectivity estimation using probabilistic models. 73

K ACM SIGMOD Record, 30(2):461-472, 2001. /




Relational Frequencies

e Database probability of a first-order formula =

number of satisfying instantiations/

number of possible instantiations.

® Examples:
® Po(gender(Actor) =W) = 2/4.
® Po(gender(Actor) =W, ActsIn(Actor, Movie) =T) =
2/8.

From Relational Statistics to Degrees of Belief 24




The Grounding Table

* P(gender(Actor) = W, Actsin(Actor,Movie) = T, genre(Movie) = Action) = 2/8
« frequency = #of rows where the formula is true/# of all rows

Logical Variable  Single data table that correctly represents
relational frequencies.
/\ « Schulte 2011, Riedel, Yao, McCallum (2013)

Brad_Pitt Fargo M F Action
Brad_Pitt  Kill_Bill M F Action
Lucy_Liu Fargo W F Action
Lucy_Liu Kill_Bill W T Action
Steve_Buscemi Fargo M T Action
Steve_Buscemi Kill_Bill M F Action
Uma_Thurman Fargo W F Action

A\%\Y% T Action

KUma_Thurman Kill _Bill /




e

1/8
1/8
1/8
1/8
1/8
1/8

1/8

1/8

-

Random Selection Semantics

(Terms)

/\

Brad_Pitt Fargo
Brad_Pitt Kill_Bill
Lucy_Liu Fargo
Lucy_Liu Kill_Bill

Steve_Buscemi Fargo
Steve_Buscemi Kill_Bill
Uma_Thurman Fargo

Uma_Thurman Kill_Bill

Halpern, J.Y. (1990), 'An analysis of first-order logics of probability', Artificial Intelligence 46(3), 311--350.

Logical Random Variable
P(Movie = Fargo) = 1/2

= 2 2 2 £

=

F
F
F
T
T
F
F

T

Action
Action
Action
Action
Action
Action
Action

Action

26
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Random Selection Semantics

Population

Actors

A &
g 8

Movies

Population variables

Actor

Random Selection
from Actors.
P(Actor = brad_pitt)
=1/4.

First-Order Random
Variables

gender(Actor)

Gender of selected actor.

P(gender(Actor) =W) = a.

Movie

Random
Selection

from Movies.
P(Movie = fargo)
=,

ActsIn(Actor, Movie) =
T if selected actor appears in

selected movie, F otherwise
P(ActsIn(Actor, Movie) =T) = 3/8

genre(Movie)
Genre of selected movie.
P(genre(Movie)=Action) = 1.

27




Bayesian Networks for Relational
Statistics

Statistical-Relational Models (SRMs)

Random Selection Semantics for Bayesian Networks

Bayesian Network Model for Relational Frequencies

From Relational Statistics to Degrees of Belief
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Bayesian networks for relational
data

e A first-order Bayesian

network is a Bayesian

gender(A) genre(M)

network whose nodes

are first-order terms \/

(Wang et al. 2008). ActsIn(A,M)

® aka parametrized

Bayesian network (Poole
2003, Kimmig et al.
2014).

Wang, D. Z.; Michelakis, E.; Garofalakis, M. & Hellerstein, J. M. (2008), BayesStore: managing large, uncertain
data repositories with probabilistic graphical models, in , VLDB Endowment, , pp. 340--351.
Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', Machine Learning, 1--45.

29
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/
Random Selection Semantics for First-Order

Bayesian Networks

* P(gender(Actor) =W,
gender(A) genre(M)

ActsIn(Actor,Movie) =T,
genre(Movie) = Action) = 2/38 \/

ActsIn(A,M)

“if we randomly select an actor
and a movie, the probability is 2/8
that the actor appears in the
movie, the actor is a woman, and

the movie is an action movie”

® Demo.

From Relational Statistics to Degrees of Belief 30
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4 N
Bayesian Networks are Excellent Estimators

of Relational Frequencies

®* Queries Randomly Generated.
® Example: P(gender(A) =W | Actsin(A,M) = true, genre(M) = drama)?

* Learn and test on entire database as in Getoor et al. 2001.

¢ BN —trend line BN ¢ BN —trend line BN 4 BN —trend line BN ¢ BN —trend line BN

Bayes Net Inference
o © o o 9o o o

Bayes Net Inference
© © © o 9 o o
Bayes Net Inference
© o ©o o 9o o o

Bayes Net Inference
© o o o o9 o o

<
*

Mondial Movielens Hepatitis Financial

Average difference Average Average difference Average difference
0.009 +- 0.007 difference 0.008 +- 0.01 0.009 +- 0.016

0.006 +- 0.008
True Database Frequencies True Database Frequencies True Database Frequencies True Database Frequencies
Schulte, O.; Khosravi, H.; Kirkpatrick, A.; Gao, T. & Zhu,Y. (2014), 'Modelling Relational Statistics 31

K With Bayes Nets', Machine Learning 94, 105-125. /




Tl I
How to upgrade propositional

Bayesian network learners to first-
order logic

-
=

l Structure and Parameter Learning

Bayesian Network Model for Relational Frequencies

From Relational Statistics to Degrees of Belief
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4 N
How to upgrade single-table Bayesian network
learners to multi-relational data

Follow Luc’s advice!

1. Search the space of functors/predicates, not literals. (Kersting
and de Raedt 2007).

2. Organize search using the specialization/refinement Jattice
of models (Laer and de Raedt 2001).

3. Follow the generalization principle (Knobbe 2006):

When we apply a relational model to a single i.i.d. data
table, it should give the same result as the propositional

model.

Kersting, K. & de Raedt, L. (2007), Bayesian Logic Programming: Theory and Tool'Introduction to Statistical
Relational Learning', MIT Press, , pp. 291-318.

Laer, W.V. & de Raedt, L. (2001), How to upgrade propositional learners to first-order logic: A case study'Relational
Data Mining', Springer Verlag, .

Knobbe, A. . (2006), Multi-relational data mining,Vol. 145, Ios Press.\ 33
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General Structure Learning
Schema

After Kimmig et al. 2014.
I. Initialize graph G := empty.
2. While not converged do
a. Generate candidate graphs. «—— lattice search

b. For each candidate graph C, learn parameters 6 c

that maximize score(C, 0, dataset)..  relational

c. G :=argmax score(C, 6 c,dataset). SCore

3. check convergence criterion.

From Relational Statistics to Degrees of Belief 34




Scoring Bayesian Networks for
Relational Data

From Relational Statistics to Degrees of Belief
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The Random Selection Pseudo
Likelihood Function

1. Randomly select a grounding for all first-order

variables in the first-order Bayesian network.

2. Compute the log—likelihood for the attributes of
the selected grounding.

3. Pseudo log—likelihood = expected log—

likelihood for a random grounding.

Generalizesi.i.d. log—likelihood.

Schulte, O. (2011), A tractable pseudo-likelihood function for Bayes Nets applied to relational data, 36

k in 'SIAM SDM', pp. 462-473. /




e

Example

-
=

gender(A)

genre(M)

\/

Actsin(A,M)

--_m

1/8 Brad_Pitt Fargo
1/8 Brad_Pitt Kill_Bill
1/8 Lucy_Liu Fargo
1/8 Lucy_Liu Kill_Bill
1/8 Steve_Buscemi Fargo
1/8 Steve_Buscemi Kill_Bill
1/8 Uma_Thurman Fargo
1/8 Uma_Thurman Kill_Bill

£ £ 2 =22 2 & &

- ™ T o~ ~ T T

Action
Action
Action
Action
Action
Action
Action

Action

-0.98
3/8 -0.98
2/8 -1.39
2/8 -1.39
1/8 -2.08
3/8 -0.98
2/8 -0.98
2/8 -1.39

0.27 geo -1.32 arith

Schulte, O. (2011), A tractable pseudo-likelihood function for Bayes Nets applied to relational data, in 'SIAM SDM', pp. 37
462-473.
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Observed Frequencies Maximize
Pseudo-Likelihood

Proposition The random selection pseudo log—likelihood is
maximized by setting the Bayesian network parameters to the

observed conditional frequencies.

gender(A) genre(M)
\/ P(ActsIn(A,M)=T|g(A) = M,ge(M) = Action) = %4
Actsin(A,M)
From Relational Statistics to Degrees of Belief 38
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Equivalent Closed-Form
Computation for Pseudo-Likelihood

P(D;B)»exp

Y Y N pplapxIn(Pyalj)
nodes i values a parent—state j / \

relational joint
frequency of child node Parameter of Bayes

value and parent state net |
e.g. P(ActsIn|M, Action) = V4
€.J. Pp(ActsIn,M,Action) = 1/8

gender(A) genre(M)

\/

ActsIin(A,M)

39
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Parameter Learning

Maximum Likelihood Estimation

From Relational Statistics to Degrees of Belief
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Computing Parameter Estimates
* Need to compute a

contingency table with M Lo |
M F Action 3
grounding counts. W F oo | 2
W T Action 2

® Well researched for all — e
true relationships. M F e
SQL Count(*) W F Action 2
W T Action 2

Virtual Join
Partition Function Reduction

Yin, X.; Han, ].;Yang, ]J. & Yu, P. S. (2004), CrossMine: Efficient Classification Across Multiple Database
Relations, in 'ICDE'.

Venugopal, D.; Sarkhel, S. & Gogate, V. (2015), Just Count the Satisfied Groundings: Scalable Local-

Search and Sampling Based Inference in MLNs, in AAAI 2015, pp. 3606--3612. 41




g The Mobius Extension Theorem for

negated relations

For two link types

RI RZ . —
° - ’ Count(*) Joint probabilities

A, Count(*)
. >R< ° R Count(*)

B

ZN

2, count(”

. < ° Count(*)
R .
o Count(*) Mobius Parameters
° R, * Count(*)
nothing Count(")

Learning Bayes Nets for Relational Dataa 42
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The Fast Mobius Transform
ActsIn(A,M) = R,

1) l

HasRated(U,M) = R,

Initial table with no J.P. = joint probability table with joint
false relationships probabilities

R,_IR, [P

T T 0.2 —_— T T 0.2 T T 0.2

* T 0.3 > F T o1 \\; F T 0.1
+

T * 04 —— T * 04 =2 T F 02

£ %] —> F * 06 > F F 05

+ +

Kennes, R. & Smets, P. (1990), Computational aspects of the Mobius transformation, in 'UAI', pp.
401-416. 43




Using Presence and Absence of
Relationships

e Fast Mobius Transform =2 almost free computationally!

e Allows us to find correlations with relationsbips.

® e.g.users who search for an item on-line also watch a video

about it.

* Relationship variables selected by standard data mining

approaches (Qian et al 2014).
® Interesting Association Rules.

® Feature Selection Metrics.

Qian, Z.; Schulte, O. & Sun,Y. (2014), Computing Multi-Relational Sufficient Statistics for Large
Databases, in 'Computational Intelligence and Knowledge Management (CIKM)', pp. 1249--1258. 44
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e

Parameter Learning Time

® Fast Inverse Mobius transtorm (IMT) vs.

* Constructing complement tables using SQL.

® Times are in seconds.

Database Parameters | #tuples || Complement IMT || Ratio
Mondial 1618 814 157 7 22
Hepatitis 1987 12,447 18,246 7 237
Financial 10926 17,912 228,114 | 14,821 15
MovieLens 326 82,623 2,070 50 41

Mobius transform is much faster, 15-200 times.

Learning Bayes Nets for Relational Data

45




Structure Learning: Lattice Search

From Relational Statistics to Degrees of Belief
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Learning a Bayesian Multi-Net

® Score = pseudo log—likelihood — parameter penalty
® Learn a Bayesian network for each relationship chain.
® Nodes and edges are propagated from shorter chains to

smaller chains.

® Demo.

Khosravi, H.; Schulte, O.; Man, T.; Xu, X. & Bina, B. (2010), Structure Learning for Markov Logic
Networks with Many Descriptive Attributes, in 'AAAI', pp. 487-493. 47




Comparison With Luc’s advice

+ Search in space of functions/ predicates.
+ Generalizesi.i.d. BN learning.

+ Decompose specialization lattice into sublattices.
* Each sublattice corresponds to relational path.

* Lattices at the same level can be analyzed separately ->

distributed processing.

* Results from lower levels are propagated to higher levels

edynamic prograrnrning style.

— First-order variables only =>» half of theta-subsumption.

From Relational Statistics to Degrees of Belief 48




Fast Structure Learning

-

RDN Boostt MLN _Boos -

1510.3 191+0.7 110.0
Mondlal 18 870 27%0.9 42+1.0 1021+6.9
Hepatitis 19 11,316 251%5.3 2301£2.0 28612.9
Mutagenesis 11 24,326 118%6.3 49+1.3 1£0.0
MovieLens(0.1M) 7 83,402 44145 min 31%1.87 min 1+0.0
MovieLens(1M) 71,010,051  >24hours  >24 hours 10x0.1
Imdb(1.5M) 171,538,400 >24 hours  >24 hours 549
* Standard deviations are shown for cross-validation.
* Units are seconds/predicate or function
Fast Learning of Relational Dependency Networks 49 /
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Predicting Ground Facts

® Many relational models aim to predict specific facts, e.g.
e Will KAA Gent win the Belgian football league 2015-20167
® Is Spectre likely to do well at the box office?

® The problem: relational data feature multiple instantiations of
the same pattern.
® E.g. 1,000 men give Spectre a high rating, 1,200 women give
spectre a high rating.
* Halpern’s project: from relational frequencies, derive a

probability distribution over possible worlds (models,

databases). (Halpern 1990, 1992, 2006).

Bacchus, F.; Grove, A. ].; Koller, D. & Halpern, ].Y. (1992), From Statistics to Beliefs, in 'AAAI', pp. 602-608.

Halpern, ].Y. (2006), From statistical knowledge bases to degrees of belief: an overview, in 'PODS', ACM, , pp. 110—113.
51
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Bayesian Network Relational
Classification

* Classification problem: Define P(Y*=y | X*=x) for ground

term Y* given values for all other terms X*.
® Strictly easier than defining joint probability P(Y*=y,X*=x).
® Basic idea: score labels by comparing pseudo-Iikelihood

P(Y*=0,X*=x) to P(Y*=1,X*=x) .

* Restrict pseudo-likelihood to relevant groundings that
involve the target term.

® Generalizes propositional Bayesian Network classification

formula.

From Relational Statistics to Degrees of Belief 52




e

-

Example

gender(sam) genre(M)
-1.32 > -1.36: predict sam \a/
is a woman. ActsIn(sam,M)

--m

7 Action 2/8 -0.98
sam qn_sin WV T Action 2/8 -1.39
-1.32 arith
--_
samFargo M Action 3/8 -0.98
samKill_Bill M T Action 1/8 -1.39
-1.36 arith

53
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Dependency Networks

aka Markov blanket networks (Hotfmann and Tresp 1998).
Detfined by a local conditional distribution for each random
variable Y*: P(Y*=y | X*=x).

We just showed Bayesian network > 4 dependency network.
Can compare with other dependency network learning.
Recall that this is very fast (<12 min on 1M tuples).

Finds complex dependencies

* e.g. gender(User) correlates with gender(Actor) in movies they have
rated.

Hofmann, R. & Tresp, V. (1998), Nonlinear Markov networks for continuous variables, in 'Advances in Neural Information Processing

Systems', pp. 521--527.
Heckerman, D.; Chickering, D. M.; Meck, C.; Roundthwaite, R.; Kadie, C. & Kaelbling, P. (2000), 'Dependency Networks for
Inference, Collaborative Filtering, and Data Visualization', JMLR 1, 49—75. 54
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Accuracy Comparison

" RDN_Boost ™ MLN_Boost  RDN_Bayes

1.20
1.00
0.80 A
PR 0.60
0.40 -
0.20 -
0.00 -
Mondial Hepatitis Muta MovielLens(0.1M)
0.00 -
-0.10 A
-0.20 A
-0.30
CLL -0.40
-0.50
-0.60
-0.70
Leave-one-out over all unary functors.
PR = area under precision-recall curve. o

CLL: conditional log-likelihood




Model-Based Unsupervised
Relational Outlier Detection

From Relational Statistics to Degrees of Belief
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g Model-Based Outlier Detection for

|.1.D. data

1D | Attribute | Attribute2 | Attribute3
1 W 10

rich
) .
1 Learning
_ D | Attl [ At2| A3
Attr{‘ ‘ytez 1000 M rich 8
Attribute3 \ l

Likelihood of potential outlier
low likelihood =>»outlier

Cansado, A. & Soto, A. (2008), 'Unsupervised anomaly detection in large databases using Bayesian networks',

Applied Artifical Intelligence 22(4), 309--330. 57




g Model-Based Outlier Detection for

Relational Data
Population Database
e.g. Premier League games

!

First-Order @ Individual Profile

Bayesian e.g. MU games
network \

Pseudo likelihood of individual database
low likelihood =»outlier

“Model-based Outlier Detection for Object-Relational Data”. Riahi and Schulte (2015). IEEE SSCI.
Maervoet, J.; Vens, C.; Vanden Berghe, G.; Blockeel, H. & De Causmaecker, P. (2012), 'Outlier Detection in Relational
Data: A Case Study in Geographical Information Systems', Expert SystemsWith Applications 39(5), 4718—4728. 58




Likelih

ood Ratio Variant

Complete E
Database U

Parameter \
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Example Terms in Outlier Metrics

Striker Edin Dzeko.
* Pseudo log-likelihood:

° Shoteff(dzeko,M) = hi, Shoteff(P,M) TackleEff(P,M)
TackleEff(dzeko,M)= medium = \‘/
DribbleEft(dzeko,M) = low. DribbleEff(P,M)
Support=26% Confidence = 50%.

* Pseudo log-likelihood gg%:g&'gﬁ;(iw = low|

26% x In(38%). TackleEff(P,M)= medium)

* Pseudo Log-likelihood ratio = 38%

26% x (In(38%)-In(50%)).

Novak, P. K.; Lavrac, N. & Webb, G. I. (2009), 'Supervised descriptive rule discovery: A unifying survey of
contrast set, emerging pattern and subgroup mining', The Journal of Machine Learning Research 10, 377--403. 60




Interpretable (and Accurate)

Top Outliers from Selected Normal Classes:
« Strikers
« Midfielders

 Drama

Strikers (Normal) vs. Goalies (Outlier)
PlayerName Position ELD Rank ELD Max Node ELD Node Score FD Max feature Value | Object Probability | Class Probability
Edin Dzeko Striker 1 DribbleEfficiency 83.84 DE=low 0.16 0.5
Paul Robinson Goalie 2 SavesMade 494 SM=Medium 0.3 0.04
Michel Vorm Goalie 3 SavesMade 85.9 SM=Medium 0.37 0.04

Midfielders (Normal) vs. Strikers (Outlier)

PlayerName Position ELD Rank ELD Max Node ELD Node Score F'D Max feature Value | Object Probability | Class Probability
Robin Van Persie | Striker 1 ShotsOnTarget 153.18 ST=high 0.34 0.03
Wayne Rooney Striker 2 ShotsOnTarget 113.14 ST=high 0.26 0.03
Scott Sinclair Midfielder | 6 DribbleEfficiency | 71.9 DE=high 0.5 0.3

Drama (Normal) vs. Comedy (Outlier)
MovieTitle Genre ELD Rank ELD Max Node ELD Node Score F'D Max feature Value | Object Probability | Class Probability
Brave Heart Drama 1 ActorQuality 89995.4 a_quality=4 0.93 0.42
Austin Powers Comedy 2 Cast_Position 61021.28 Cast_Num=3 0.78 0.49
Blue Brothers Comedy 3 Cast_Position 24432.21 Cast_num=3 0.88 0.49

(-

Riahi, S. and Schulte, O. (2015). ‘Model-based Outlier Detection for Object-Relational Data’ IEEE Sympogiym

Series on Computing Intclligcnce. Forthcorning.

/




Summary, Review, Open Problems

From Relational Statistics to Degrees of Belief
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Random Selection Semantics for
First-Order Logic

® First-order variables and first-order terms are viewed as

random variables.

® Associates relational frequency with each first-order formula.

Joe Halpern

From Relational Statistics to Degrees of Belief

Fahim Bacchus
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Applying random selection to log-

liInear models

Graphical model ~

Propositional log-linear model

E(s) from random instantiation

relational log—linear model

S:Wifi\

\

feature functions = frequency

* (Combines multiple instantiations of the same feature.

* Detines relational pseudo log—likelihood score Bayes

net.
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Log-linear Models With Proportions

* Frequencies are on the same scale [0,1]: addresses “ill-

conditioning” (Lowd and Domingos 2007).

® . e . K o '3 . .
Surprlslngly expressive: can simulate comblmng rules

(Kazemi et al. 2014).

* Also effective for dependency networks with hybrid data
types (Ravkic, Ramon, Davis 2015).

® Random selection semantics provides a theoretical

foundation.

Lowd, D. & Domingos, P. (2007), Efficient Weight Learning for Markov Logic Networks, in 'PKDD', pp. 200—211.
Kazemi, S. M.; Buchman, D.; Kersting, K.; Natarajan, S. & Poole, D. (2014), Relational Logistic Regression, in 'Principles
of Knowledge Representation and Reasoning:, KR 2014.

Ravkic, I.; Ramon, J. & Davis, ]. (2015), 'Learning relational dependency networks in hybrid domains', Machine Leggning.
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Learning results

e Random selection pseudo-likelihood score for Bayesian

networks.

® Closed-form parameter estimation.
e Fast Mobius transform for computing parameters with negated
relationships.
® Structure Learning: Decompose the lattice gf relationship

chains.

® Fast learning, competitive accuracy for:
° modeling relational frequencies.
® relational dependency networks.

® relational outlier detection.
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Open Problems

® Learning with constants (theta-subsumption).

® Generalize model scores like AIC, BIC with positive and

negative relationships.

® need to scale penalty terms as well as feature counts.

From Relational Statistics to Degrees of Belief 67
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Thank you!

L Any questions?

From Relational Statistics to Degrees of Belief
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