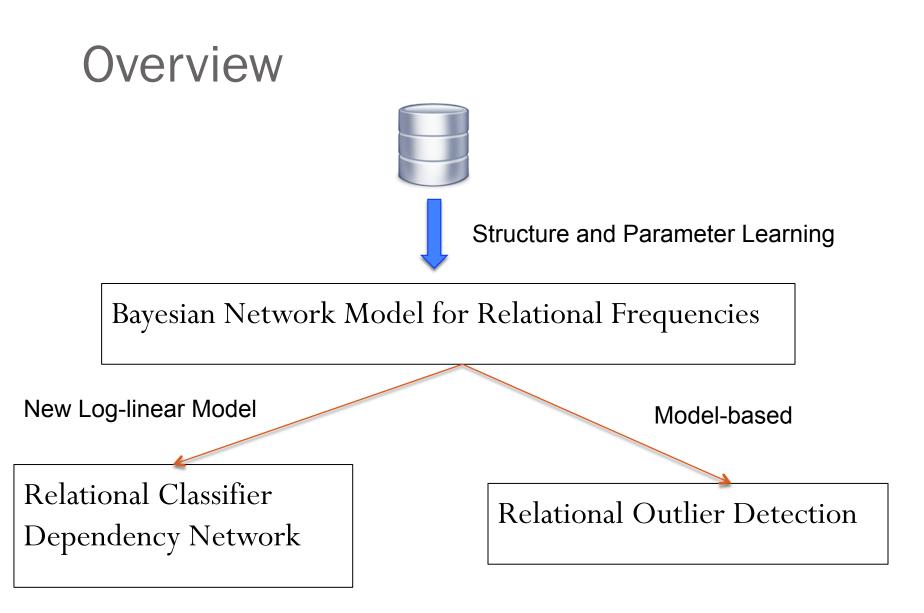
School of Computing Science Simon Fraser University Vancouver, Canada





Relational Data and Logic

Lise Getoor

David Poole

Stuart Russsell

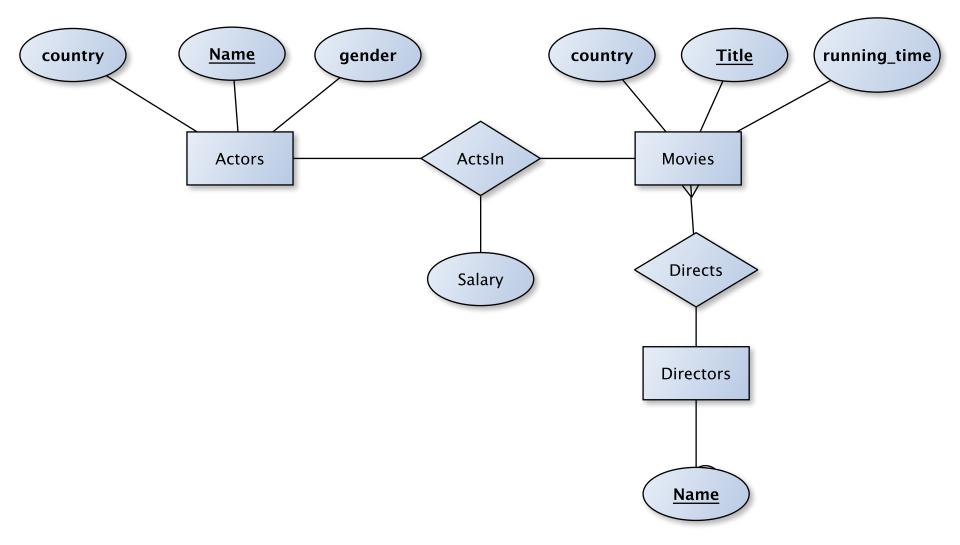
Database Management Systems

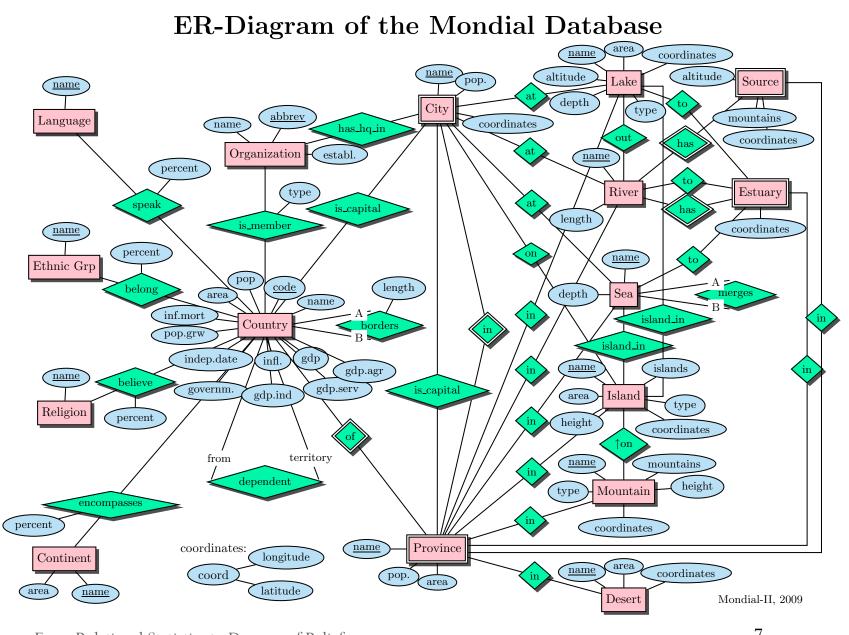
- Maintain data in linked tables.
- Structured Query Language (SQL) allows fast *data retrieval*.
 - E.g., find all movie ratings > 4 where the user is a woman.
- Multi-billion dollar industry, \$Bn 15+ in 2006.
- IBM, Microsoft, Oracle, SAP, Peoplesoft.
- Much interest in analysis (big data, data mining, business intelligence, predictive analytics, OLAP...)

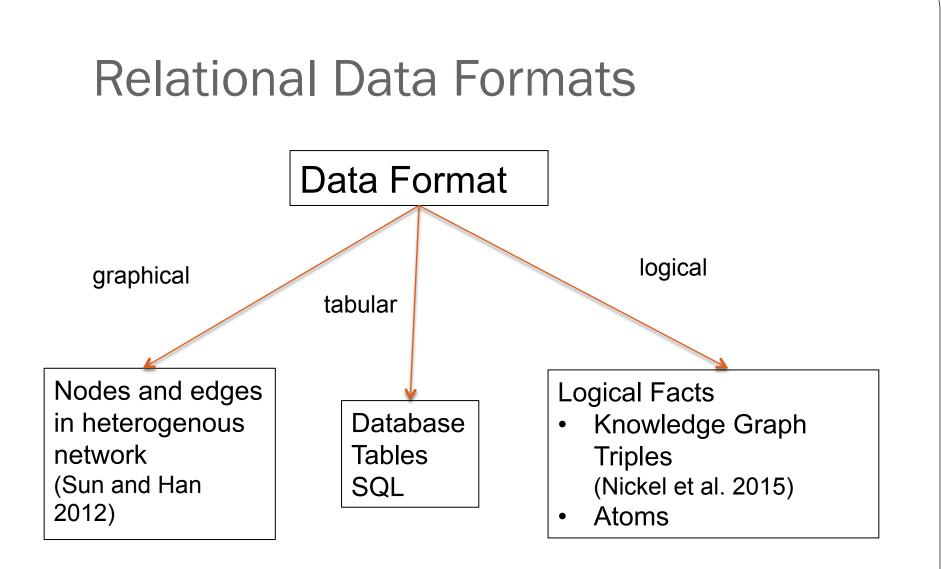
The Relational Data Model

- Codd (IBM Research 1970)
- The fundamental question: What kinds of information do users need to represent?
- Answered by first-order predicate logic! (Russell, Tarski).
- The world consists of
 - Individuals/entities.
 - Relationships/links among them.

Entity-Relationship Diagram IMDb







 Sun, Y. & Han, J. (2012), Mining Heterogeneous Information Networks: Principles and Methodologies, Morgan & Claypool Publishers.
 Nickel, M.; Murphy, K.; Tresp, V. & Gabrilovich, E. (2015), 'A Review of Relational Machine Learning for Knowledge Graphs', *ArXiv e-prints*.

Logical Representation

- Standard in database theory.
- <u>Unify</u> logic and probability.

Edsger Dijkstra by Hamilton Richards

- <u>Equational logic</u> (Dijkstra and Scholten 1990) is especially similar to random variable concepts in statistics.
 - Represent relational information using **functions** (functors) (Poole 2003).
 - Single table data : All functions take 1 argument (Nickel et al. 2015).
 - Relational data: Some functions take > 1 argument.

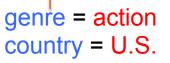
Poole, D. (2003), First-order probabilistic inference, *in 'IJCAI'*.
Getoor, L. & Grant, J. (2006), 'PRL: A probabilistic relational language', *Machine Learning 62(1-2), 7-31*.
Russell, S. & Norvig, P. (2010), *Artificial Intelligence: A Modern Approach, Prentice Hall*.
Ravkic, I.; Ramon, J. & Davis, J. (2015), 'Learning relational dependency networks in hybrid domains', *Machine Learning*.
Dijskstra & Scholten (1990), *Predicate calculus and program semantics, Springer Verlag*.

Function Representation Example

gender = Man

gender = Man country = U.S. country = U.S. gender = Woman gender = Woman country = U.S. country = U.S.

True \$500K



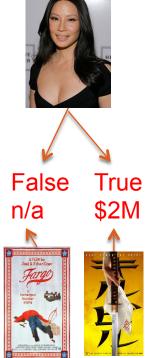
False False

n/a

n/a

genre = action country = U.S.

False True \$5M n/a

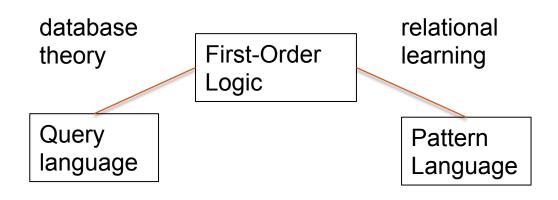


ActsIn salary

10

First-Order Logic

An expressive formalism for specifying relational conditions.



Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', Machine Learning, 1--45.

First-Order Logic: Terms

- A <u>constant</u> refers to an individual.
 - e.g. "Fargo"
- A <u>logical variable</u> refers to a class of individuals
 - e.g. "Movie" refers to Movies.
- A ground term is of the form $f(a_1, ..., a_n)$
 - e.g. "salary(UmaThurman, Fargo)"
- A <u>first-order term</u> is of the form $f(t_1,..,t_n)$ where at least one of the t_i is a first-order variable.
 - e.g. "salary(Actor, Movie)".

Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', *Machine Learning*, 1—45.

Formulas (Equational Logic)

- A (conjunctive) formula is a conjunction $term_1 = value_1, \dots, term_n = value_n.$
 - ActsIn(Actor, Movie) = T, gender(Actor) = W
- A ground formula contains only constants.
 - ActsIn(UmaThurman, KillBill) = T, gender(UmaThurman) = W

Two Kinds of Probability

Frequencies vs. Single Event Probabilities

Joe Halpern

Fahim Bacchus

Frequencies/Proportions

• Classical statistics aims to estimate population frequencies or proportions.

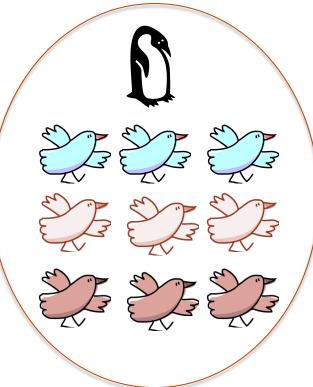
Proportion

90% of birds fly.

0% of planes have crashed because of a turbulence.

5% of Brusselians speak only Dutch at home.

51.1% of U.S. voters voted for Barack Obama.



Probabilities for Single Events

- *Bayesian* statistics emphasizes assigning probabilities to single events.
 - Including the values of model parameters.

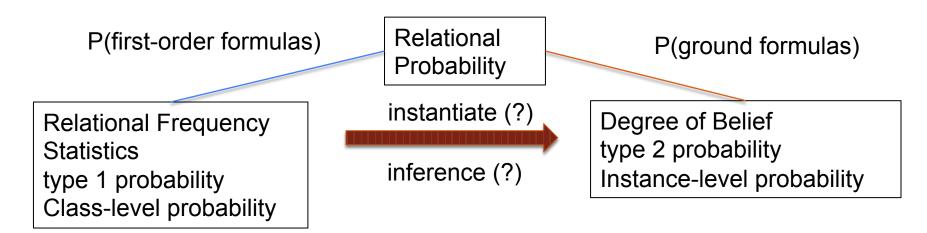
Proportion	Instance
90% of birds fly.	The probability that Tweety flies is 90%.
0% of planes have crashed because of a turbulence.	The probability that Flight 3202 to Brussels crashes because of a turbulence is 0%.
5% of Brusselians speak only Dutch.	Given that Marc lives in Brussels, the probability that he speaks only Dutch is 5%.
	The probability that the mean $\mu = 0$ for a Gaussian distribution is 0.01.

Heckerman, D. (1998), A tutorial on learning with Bayesian networks, *in 'NATO ASI on Learning in graphical models'*, *pp. 301--354*.



de Finetti 1937: La Prévision: ses lois logiques, ses sources subjectives, Annales de l'Institut Henri Poincaré

Two Kinds of Relational Probabilities



The Halpern instantiation principle:

$$P(\varphi(X)) = \rho) \rightarrow P(\varphi(c)) = \rho$$

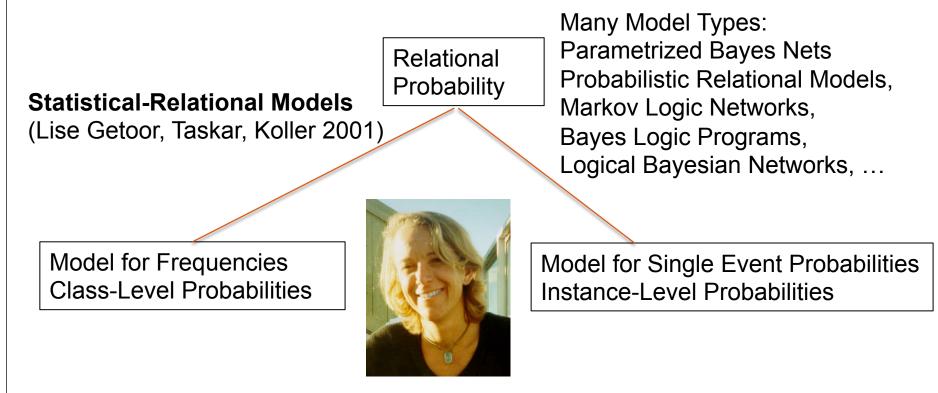
where φ is a formula with free logical variable *X*, and *c* is a constant instantiating *X*.

Halpern, J.Y. (1990), 'An analysis of first-order logics of probability', Artificial Intelligence 46(3), 311--350.

Examples of the Instantiation Principle

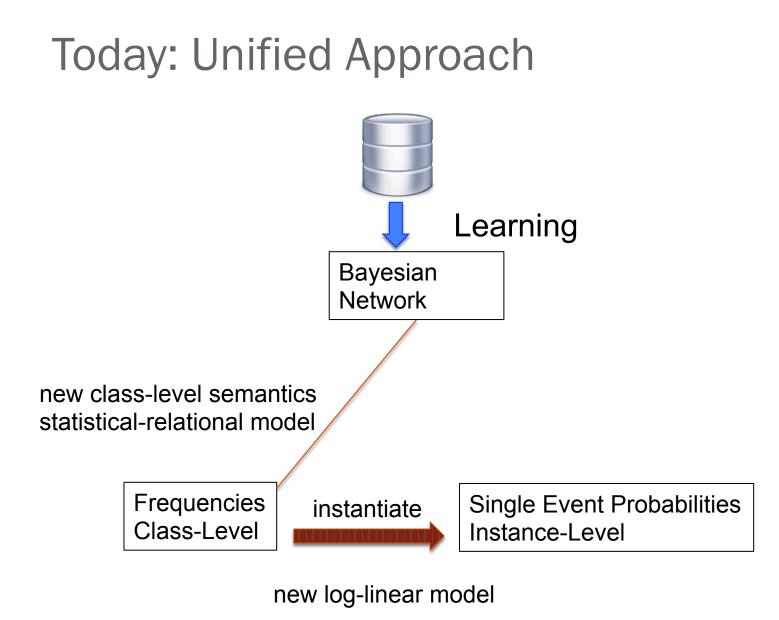
First-Order	Ground Instance
90% of birds fly.	The probability that Tweety flies is 90%.
P(Flies(B)) = 90%	P(Flies(tweety)) = 90%
0% of planes have crashed because of a turbulence.	The probability that Flight 3202 to Brussels crashes because of a turbulence is 0%.
$P(Turbulence_Crash(Plane)) = 0\%.$	$P(Turbulence_Crash(3202)) = 0\%.$
x% of Brusselians speak Dutch.	Given that Marc lives in Brussels, the probability that he speaks Dutch is $x\%$.
P(SpeaksOnly(Person,dutch) FromBrussels(Person)) = 5%.	P(SpeaksOnly(marc,dutch) FromBrussels(marc)) = 5%.

Previous SRL Work: Different Models for Different Probabilities



Getoor, L. (2001), 'Learning Statistical Models From Relational Data', PhD thesis, Department of Computer Science, Stanford University. Getoor, L.; Taskar, B. & Koller, D. (2001), 'Selectivity estimation using probabilistic models', *ACM SIGMOD Record* 30(2), 461—472.

20



Relational Frequencies

Joe Halpern

Fahim Bacchus

Applications of Relational Frequency Modelling

- First-order rule learning (e.g., "women users like movies with women actors").
- Strategic Planning (e.g., "increase SAT requirements to decrease student attrition").
- Query Optimization (Getoor, Taskar, Koller 2001).
 Class-level queries support selectivity estimation →
 optimal evaluation order for SQL query .

Relational Frequencies

- Database probability of a first-order formula = number of satisfying instantiations/ number of possible instantiations.
- Examples:
 - $P_D(gender(Actor) = W) = 2/4.$
 - $P_D(gender(Actor) = W, ActsIn(Actor, Movie) = T) = 2/8.$

The Grounding Table

- P(gender(Actor) = W, ActsIn(Actor, Movie) = T, genre(Movie) = Action) = 2/8
- frequency = #of rows where the formula is true/# of all rows

Logical Variable

- Single data table that correctly represents relational frequencies.
- Schulte 2011, Riedel, Yao, McCallum (2013)

Actor	Movie	gender(Actor)	ActsIn(Actor,Movie)	genre(Movie)
Brad_Pitt	Fargo	М	F	Action
Brad_Pitt	Kill_Bill	Μ	F	Action
Lucy_Liu	Fargo	W	F	Action
Lucy_Liu	Kill_Bill	W	Т	Action
Steve_Buscemi	Fargo	М	Т	Action
Steve_Buscemi	Kill_Bill	Μ	F	Action
Uma_Thurman	Fargo	W	F	Action
Uma_Thurman	Kill_Bill	W	Т	Action

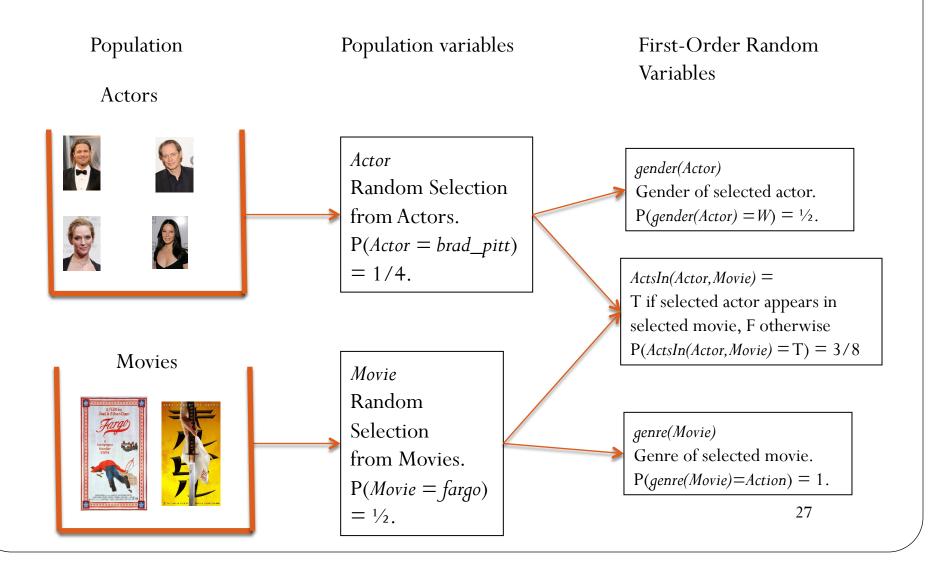
Random Selection Semantics (Terms)

Logical Random Variable P(Movie = Fargo) = 1/2

Actor	Movie	gender(Actor)	ActsIn(Actor,Movie)	genre(Movie)
Brad_Pitt	Fargo	М	F	Action
Brad_Pitt	Kill_Bill	М	F	Action
Lucy_Liu	Fargo	W	F	Action
Lucy_Liu	Kill Bill	W	Т	Action
Steve_Buscemi	Fargo	М	Т	Action
		М	F	Action
		W	F	Action
		W	Т	Action
	Brad_Pitt Brad_Pitt Lucy_Liu Lucy_Liu Steve_Buscemi Steve_Buscemi Uma_Thurman	Brad_Pitt Fargo Brad_Pitt Kill_Bill Lucy_Liu Fargo	Brad_Pitt Fargo M Brad_Pitt Kill_Bill M Lucy_Liu Fargo W Lucy_Liu Kill_Bill W Steve_Buscemi Fargo M Steve_Buscemi Kill_Bill M Uma_Thurman Fargo W	Brad_PittFargoMFBrad_PittKill_BillMFLucy_LiuFargoWFLucy_LiuKill_BillWTSteve_Buscemi FargoMTSteve_Buscemi Kill_BillMFUma_Thurman FargoWT

Halpern, J.Y. (1990), 'An analysis of first-order logics of probability', Artificial Intelligence 46(3), 311--350.

Random Selection Semantics



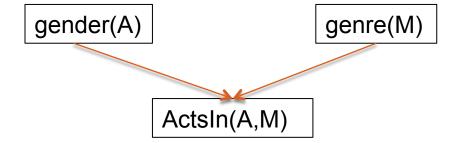
Bayesian Networks for Relational Statistics

Statistical-Relational Models (SRMs) Random Selection Semantics for Bayesian Networks

Bayesian Network Model for Relational Frequencies

Bayesian networks for relational data

- A first-order Bayesian network is a Bayesian network whose nodes are first-order terms (Wang et al. 2008).
- aka parametrized
 Bayesian network (Poole 2003, Kimmig et al. 2014).



Wang, D. Z.; Michelakis, E.; Garofalakis, M. & Hellerstein, J. M. (2008), BayesStore: managing large, uncertain data repositories with probabilistic graphical models, in ,VLDB Endowment, , pp. 340--351. Kimmig, A.; Mihalkova, L. & Getoor, L. (2014), 'Lifted graphical models: a survey', *Machine Learning*, *1--45*.

Random Selection Semantics for First-Order Bayesian Networks

 P(gender(Actor) = W, ActsIn(Actor, Movie) = T, genre(Movie) = Action) = 2/8

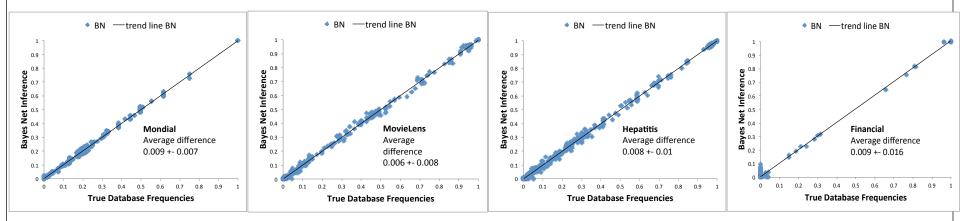
gender(A) genre(M) ActsIn(A,M)

"if we randomly select an actor and a movie, the probability is 2/8 that the actor appears in the movie, the actor is a woman, and the movie is an action movie"

• Demo.

Bayesian Networks are Excellent Estimators of Relational Frequencies

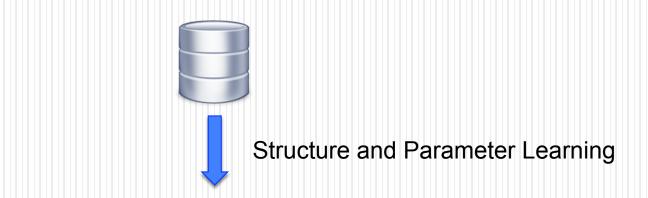
- Queries Randomly Generated.
- Example: P(gender(A) = W | ActsIn(A, M) = true, genre(M) = drama)?
- Learn and test on entire database as in Getoor et al. 2001.



Schulte, O.; Khosravi, H.; Kirkpatrick, A.; Gao, T. & Zhu, Y. (2014), 'Modelling Relational Statistics With Bayes Nets', Machine Learning 94, 105-125.

31

How to upgrade propositional Bayesian network learners to firstorder logic



Bayesian Network Model for Relational Frequencies

How to upgrade single-table Bayesian network learners to multi-relational data

Follow Luc's advice!

- 1. Search the space of *functors/predicates*, not literals. (Kersting and de Raedt 2007).
- 2. Organize search using the specialization/refinement *lattice* of models (Laer and de Raedt 2001).
- 3. Follow *the generalization principle* (Knobbe 2006): When we apply a relational model to a single i.i.d. data table, it should give the same result as the propositional model.

Kersting, K. & de Raedt, L. (2007), Bayesian Logic Programming: Theory and Tool'Introduction to Statistical Relational Learning', MIT Press, , pp. 291-318.

Laer, W. V. & de Raedt, L. (2001), How to upgrade propositional learners to first-order logic: A case study'Relational Data Mining', Springer Verlag, .

Knobbe, A. J. (2006), Multi-relational data mining, Vol. 145, Ios Press.

General Structure Learning Schema

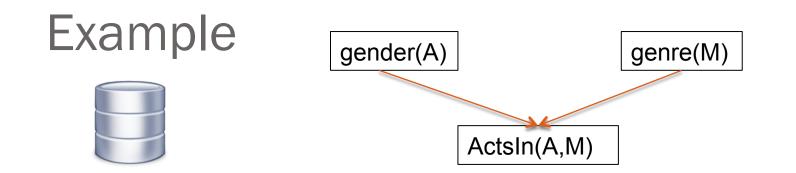
After Kimmig et al. 2014.

- 1. Initialize graph G := empty.
- 2. While not converged do
 - a. Generate candidate graphs. *Iattice search*
 - b. For each candidate graph C, learn parameters $\theta_{\rm C}$ that maximize score(C, θ , dataset). relational
 - c. $G := \operatorname{argmax}_{C} \operatorname{score}(C, \theta_{C}, \operatorname{dataset})$. Score
- 3. check convergence criterion.

Scoring Bayesian Networks for Relational Data

The Random Selection Pseudo Likelihood Function

- 1. Randomly select a grounding for **all** first-order variables in the first-order Bayesian network.
- 2. Compute the log-likelihood for the attributes of the selected grounding.
- 3. Pseudo log-likelihood = expected loglikelihood for a random grounding.
 Generalizes i.i.d. log-likelihood.

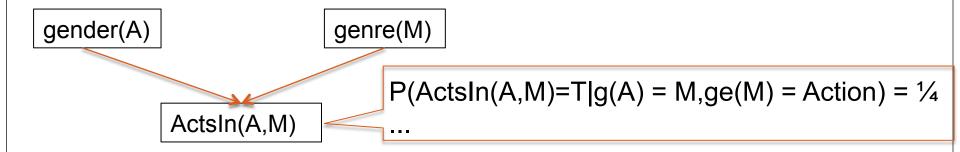


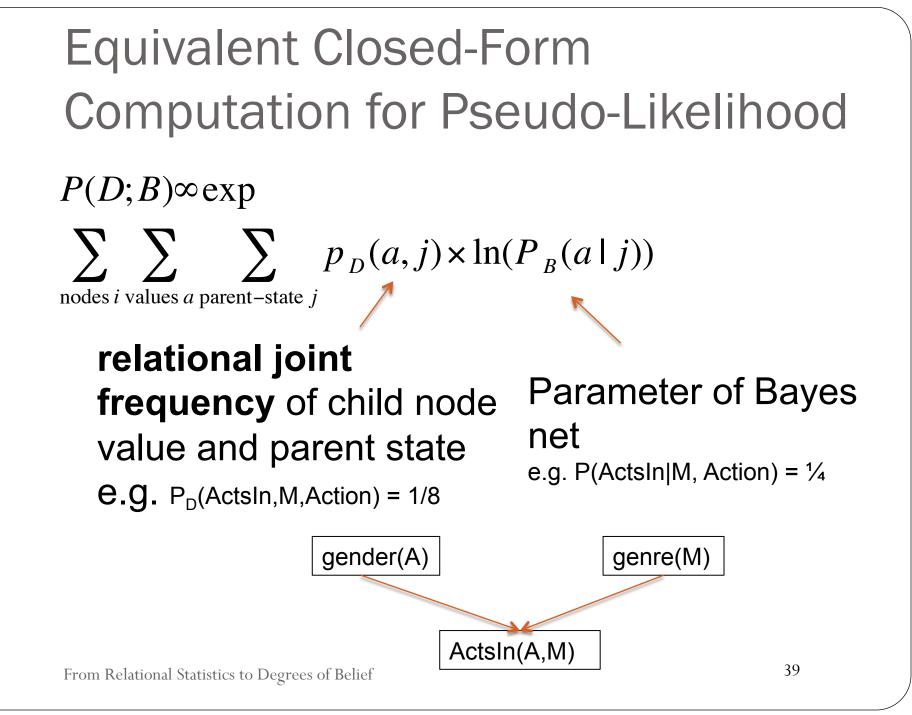
Prob	Α	Μ	gender(A)	ActsIn(A,M)	genre(M)	P _B	ln(P _B)
1/8	Brad_Pitt	Fargo	М	F	Action	3/8	-0.98
1/8	Brad_Pitt	Kill_Bill	М	F	Action	3/8	-0.98
1/8	Lucy_Liu	Fargo	W	F	Action	2/8	-1.39
1/8	Lucy_Liu	Kill_Bill	W	Т	Action	2/8	-1.39
1/8	Steve_Buscemi		М	Т	Action	1/8	-2.08
1/8	Steve_Buscemi	Kill_Bill	М	F	Action	3/8	-0.98
1/8	Uma_Thurman		W	F	Action	2/8	-0.98
1/8	Uma_Thurman	Kill_Bill	W	Т	Action	2/8	-1.39
						0.27 geo	-1.32 arith

Schulte, O. (2011), A tractable pseudo-likelihood function for Bayes Nets applied to relational data, *in 'SIAM SDM'*, *pp.* 37 462-473.

Observed Frequencies Maximize Pseudo-Likelihood

Proposition The random selection pseudo log-likelihood is maximized by setting the Bayesian network parameters to the observed conditional frequencies.





Parameter Learning

Maximum Likelihood Estimation

From Relational Statistics to Degrees of Belief

Computing Parameter Estimates

- Need to compute a contingency table with grounding counts.
- Well researched for all true relationships.
 SQL Count(*) Virtual Join Partition Function Reduction

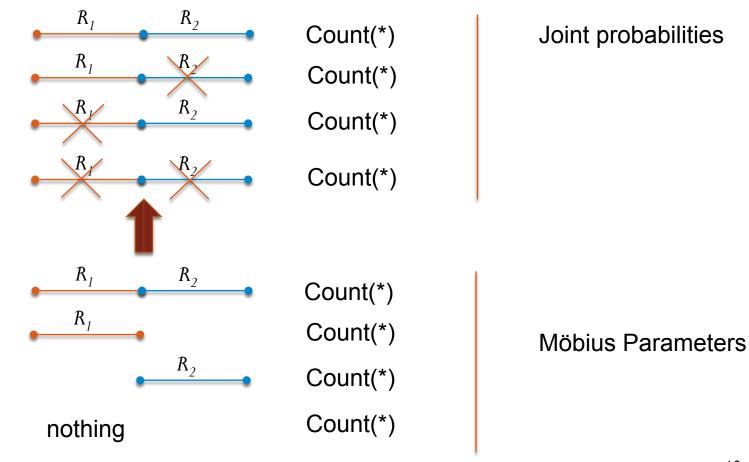
Yin, X.; Han, J.; Yang, J. & Yu, P. S. (2004), CrossMine: Efficient Classification Across Multiple Database
Relations, in 'ICDE'.
Venugopal, D.; Sarkhel, S. & Gogate, V. (2015), Just Count the Satisfied Groundings: Scalable Local-
Search and Sampling Based Inference in MLNs, in AAAI, 2015, pp. 36063612.

g(A)	Acts(A,M)	ge(M)	count
М	F	Action	3
М	F	Action	3
W	F	Action	2
W	Т	Action	2
Μ	Т	Action	1
М	F	Action	3
W	F	Action	2
W	Т	Action	2

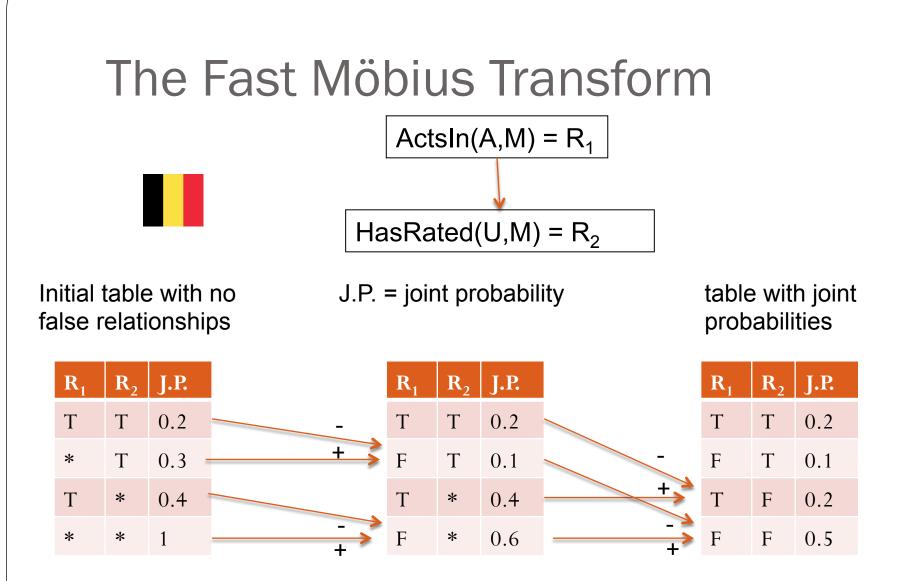
41

The Möbius Extension Theorem for negated relations

For two link types



Learning Bayes Nets for Relational Dataa



Kennes, R. & Smets, P. (1990), Computational aspects of the Möbius transformation, *in 'UAI'*, *pp.* 401-416.

Using Presence and Absence of Relationships

- Fast Möbius Transform → almost free computationally!
- Allows us to find *correlations with relationships*.
 - *e.g.* users who search for an item on-line also watch a video about it.
- Relationship variables selected by standard data mining approaches (Qian et al 2014).
 - Interesting Association Rules.
 - Feature Selection Metrics.

Qian, Z.; Schulte, O. & Sun, Y. (2014), Computing Multi-Relational Sufficient Statistics for Large Databases, *in 'Computational Intelligence and Knowledge Management (CIKM)*', pp. 1249--1258.

Parameter Learning Time

- Fast Inverse Möbius transform (IMT) vs.
- Constructing **complement** tables using SQL.
- Times are in seconds.

Database	Parameters	#tuples	Complement	IMT	Ratio
Mondial	1618	814	157	7	22
Hepatitis	1987	12,447	18,246	77	237
Financial	10926	17,912	228,114	14,821	15
MovieLens	326	82,623	2,070	50	41

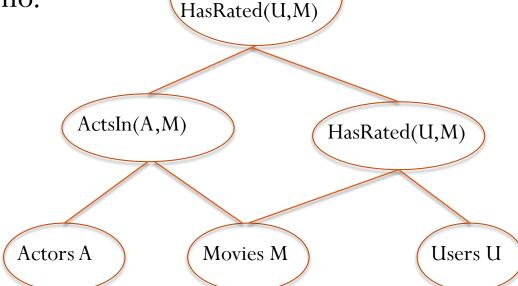
Möbius transform is much faster, 15-200 times.

Structure Learning: Lattice Search

From Relational Statistics to Degrees of Belief

Learning a Bayesian Multi-Net

- Score = pseudo log-likelihood parameter penalty
- Learn a Bayesian network for each relationship chain.
- Nodes and edges are propagated from shorter chains to smaller chains.



ActsIn(A,M),

Khosravi, H.; Schulte, O.; Man, T.; Xu, X. & Bina, B. (2010), Structure Learning for Markov Logic Networks with Many Descriptive Attributes, in 'AAAI', pp. 487-493.

Comparison With Luc's advice

- + Search in space of functions/predicates.
- + Generalizes i.i.d. BN learning.
- + Decompose specialization lattice into sublattices.
 - Each sublattice corresponds to relational path.
 - Lattices at the same level can be analyzed separately → distributed processing.
 - Results from lower levels are propagated to higher levels

 → dynamic programming style.
- First-order variables only \rightarrow half of theta-subsumption.

Fast Structure Learning

	#				
Dataset	Predicates	# tuples	RDN_Boost	MLN_Boost	Lattice
UW	14	612	15±0.3	19±0.7	1±0.0
Mondial	18	870	27±0.9	42±1.0	102±6.9
Hepatitis	19	11,316	251±5.3	230±2.0	286±2.9
Mutagenesis	11	24,326	118±6.3	49±1.3	1±0.0
MovieLens(0.1M)	7	83,402	44±4.5 min	31±1.87 min	1±0.0
MovieLens(1M)	7	1,010,051	>24 hours	>24 hours	10±0.1
Imdb(1.5M)	17	1,538,400	>24 hours	>24 hours	549

- Standard deviations are shown for cross-validation.
- Units are seconds/predicate or function

Fast Learning of Relational Dependency Networks

From Relational Statistics to Degrees of Belief

Bayesian Network Model for Relational Frequencies

New Log-linear Model

Relational Classifier

Dependency Network

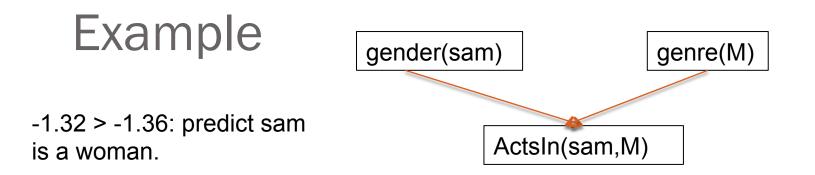
Predicting Ground Facts

- Many relational models aim to predict specific facts, e.g.
 - Will KAA Gent win the Belgian football league 2015-2016?
 - Is Spectre likely to do well at the box office?
- The problem: relational data feature *multiple instantiations* of the same pattern.
 - E.g. 1,000 men give Spectre a high rating, 1,200 women give spectre a high rating.
- Halpern's project: from relational frequencies, derive a probability distribution over possible worlds (models, databases). (Halpern 1990, 1992, 2006).

Bacchus, F.; Grove, A. J.; Koller, D. & Halpern, J.Y. (1992), From Statistics to Beliefs, *in 'AAAI'*, *pp. 602-608*. Halpern, J.Y. (2006), From statistical knowledge bases to degrees of belief: an overview, *in 'PODS'*, *ACM*, *, pp. 110—113*.

Bayesian Network Relational Classification

- Classification problem: Define P(Y*=y|X*=x) for ground termY* given values for all other terms X*.
- Strictly easier than defining joint probability P(Y = y, X = x).
- Basic idea: score labels by comparing *pseudo-likelihood* P(Y*=0,X*=x) to P(Y*=1,X*=x).
- Restrict pseudo-likelihood to relevant groundings that involve the target term.
- Generalizes propositional Bayesian Network classification formula.



Α	M	gender(A)	ActsIn(A,M)	genre(M)	P _B	ln(P _B)
sam	Fargo	W	F	Action	2/8	-0.98
sam	Kill_Bill	W	Т	Action	2/8	-1.39
						-1.32 arith

A M	gender(A)	ActsIn(A,M)	genre(M)	P _B	ln(P _B)
sam Fargo	Μ	F	Action	3/8	-0.98
sam Kill_Bill	М	Т	Action	1/8	-1.39
					-1.36 arith

Schulte et al. (2014) 'Fast Learning of Relational Dependency Networks', in ILP 2014

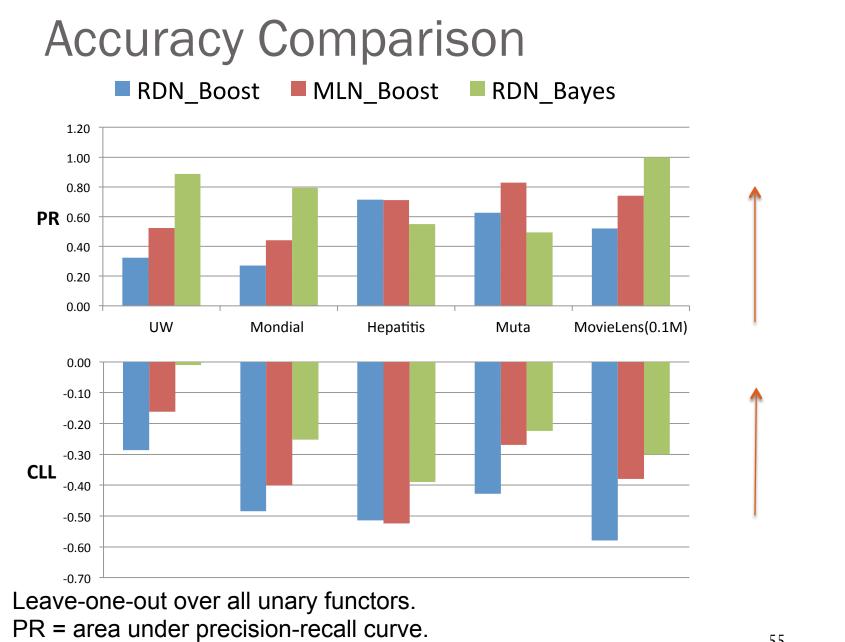
Dependency Networks

- aka Markov blanket networks (Hoffmann and Tresp 1998).
- Defined by a local conditional distribution for each random variable Y*: P(Y*=y|X*=x).
- We just showed Bayesian network \rightarrow dependency network.
- Can compare with other dependency network learning.
- Recall that this is very fast (<12 min on 1M tuples).
- Finds complex dependencies
 - e.g. gender(User) correlates with gender(Actor) in movies they have rated.

Hofmann, R. & Tresp, V. (1998), Nonlinear Markov networks for continuous variables, *in 'Advances in Neural Information Processing Systems'*, *pp. 521--527*. Heckerman, D.; Chickering, D. M.; Meek, C.; Roundthwaite, R.; Kadie, C. & Kaelbling, P. (2000), 'Dependency Networks for

54

Inference, Collaborative Filtering, and Data Visualization', JMLR 1, 49-75.

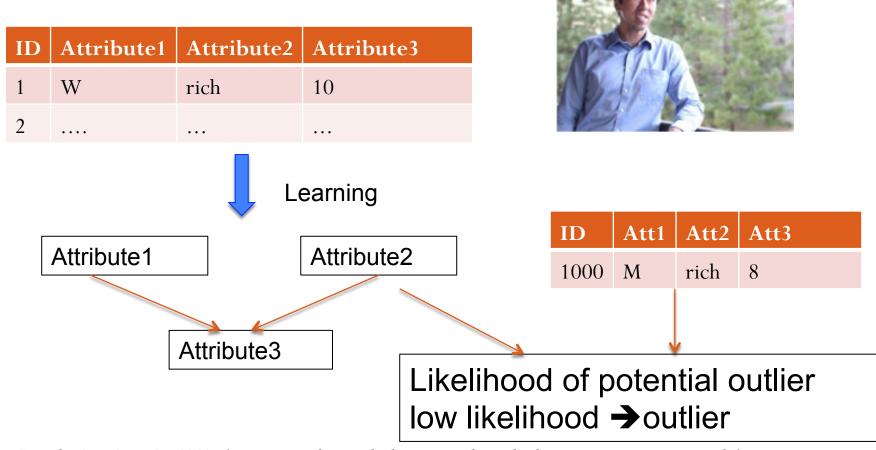


CLL: conditional log-likelihood

Model-Based Unsupervised Relational Outlier Detection

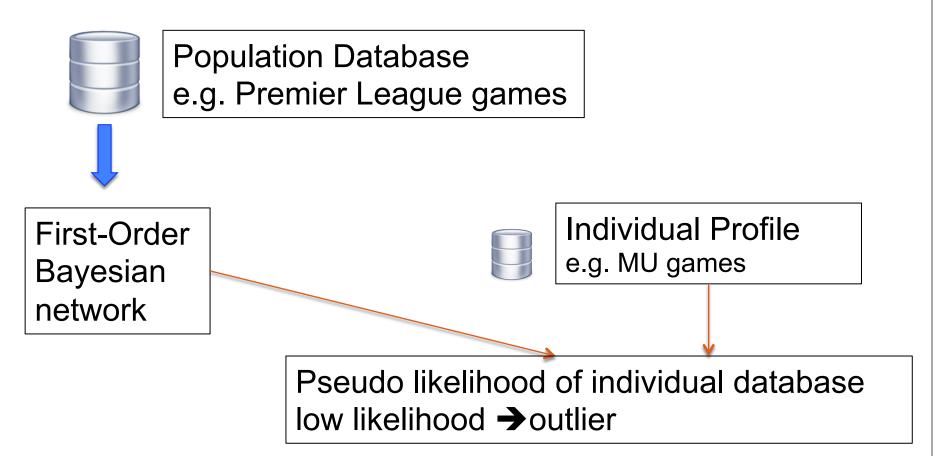
From Relational Statistics to Degrees of Belief

Model-Based Outlier Detection for I.I.D. data

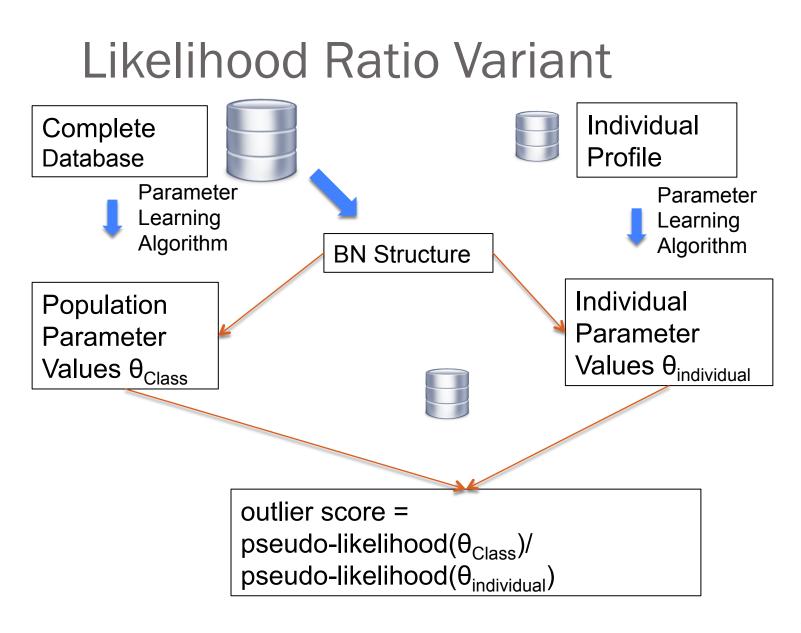


Cansado, A. & Soto, A. (2008), 'Unsupervised anomaly detection in large databases using Bayesian networks', *Applied Artifical Intelligence 22(4)*, 309--330.

Model-Based Outlier Detection for Relational Data



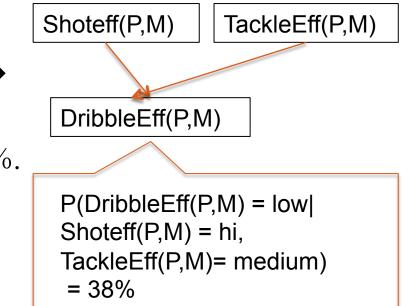
"Model-based Outlier Detection for Object-Relational Data". Riahi and Schulte (2015). IEEE SSCI. Maervoet, J.; Vens, C.; Vanden Berghe, G.; Blockeel, H. & De Causmaecker, P. (2012), 'Outlier Detection in Relational Data: A Case Study in Geographical Information Systems', *Expert Systems With Applications* 39(5), 4718–4728. 58



Example Terms in Outlier Metrics

Striker Edin Dzeko.

- Pseudo log-likelihood:
 - Shoteff(dzeko,M) = hi, TackleEff(dzeko,M) = medium → DribbleEff(dzeko,M) = low. Support=26% Confidence = 50%.
- Pseudo log-likelihood 26% x ln(38%).
- Pseudo Log-likelihood ratio
 26% x (ln(38%)-ln(50%)).



Novak, P. K.; Lavrac, N. & Webb, G. I. (2009), 'Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining', *The Journal of Machine Learning Research 10*, 377--403.

Interpretable (and Accurate)

Top Outliers from Selected Normal Classes:

- Strikers
- Midfielders
- Drama

			Strikers ((Normal) vs. Goalies (C	Jutlier)			
PlayerName	Position	ELD Rank	ELD Max Node	ELD Node Score	FD Max feature Value	Object Probability	Class Probability	
Edin Dzeko	Striker	1	DribbleEfficiency	83.84	DE=low	0.16	0.5	
Paul Robinson	Goalie	2	SavesMade	49.4	SM=Medium	0.3	0.04	
Michel Vorm	Goalie	3	SavesMade	85.9	SM=Medium	0.37	0.04	
	Midfielders (Normal) vs. Strikers (Outlier)							
PlayerName	Position	ELD Rank	ELD Max Node	ELD Node Score	FD Max feature Value	Object Probability	Class Probability	
Robin Van Persie	Striker	1	ShotsOnTarget	153.18	ST=high	0.34	0.03	
Wayne Rooney	Striker	2	ShotsOnTarget	113.14	ST=high	0.26	0.03	
Scott Sinclair	Midfielder	6	DribbleEfficiency	71.9	DE=high	0.5	0.3	
·	· · ·		Drama (N	Normal) vs. Comedy (O	Jutlier)			
MovieTitle	Genre	ELD Rank	ELD Max Node	ELD Node Score	FD Max feature Value	Object Probability	Class Probability	
Brave Heart	Drama	1	ActorQuality	89995.4	a_quality=4	0.93	0.42	
Austin Powers	Comedy	2	Cast_Position	61021.28	Cast_Num=3	0.78	0.49	
Blue Brothers	Comedy	3	Cast_Position	24432.21	Cast_num=3	0.88	0.49	

Riahi, S. and Schulte, O. (2015). 'Model-based Outlier Detection for Object-Relational Data' IEEE Symposium Series on Computing Intelligence. Forthcoming.

Summary, Review, Open Problems

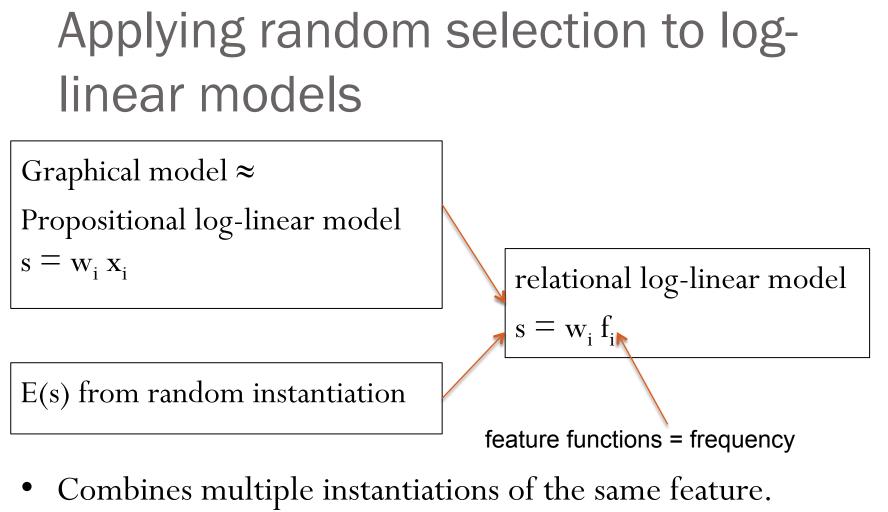
From Relational Statistics to Degrees of Belief

Random Selection Semantics for First-Order Logic

- First-order variables and first-order terms are viewed as random variables.
- Associates relational frequency with each first-order formula.

Joe Halpern

Fahim Bacchus



• Defines relational pseudo log-likelihood score Bayes net.

Log-linear Models With Proportions

- Frequencies are on the same scale [0,1]: addresses "illconditioning" (Lowd and Domingos 2007).
- Surprisingly expressive: can "simulate" combining rules (Kazemi et al. 2014).
- Also effective for dependency networks with hybrid data types (Ravkic, Ramon, Davis 2015).
- Random selection semantics provides a theoretical foundation.

Lowd, D. & Domingos, P. (2007), Efficient Weight Learning for Markov Logic Networks, in 'PKDD', pp. 200—211. Kazemi, S. M.; Buchman, D.; Kersting, K.; Natarajan, S. & Poole, D. (2014), Relational Logistic Regression, *in 'Principles of Knowledge Representation and Reasoning:*, *KR 2014*. Ravkic, I.; Ramon, J. & Davis, J. (2015), 'Learning relational dependency networks in hybrid domains', *Machine Learning*.

Learning results

- Random selection *pseudo-likelihood score* for Bayesian networks.
- Closed-form *parameter estimation*.
 - Fast Möbius transform for computing parameters with *negated relationships*.
- Structure Learning: Decompose the *lattice of relationship chains*.
- Fast learning, competitive accuracy for:
 - modeling relational frequencies.
 - relational dependency networks.
 - relational outlier detection.

Open Problems

- Learning with constants (theta-subsumption).
- Generalize model scores like AIC, BIC with positive and negative relationships.
 - need to scale penalty terms as well as feature counts.

Thank you!

• Any questions?

From Relational Statistics to Degrees of Belief