Discovery of Conservation Laws via Matrix Search

Oliver Schulte and Mark S. Drew School of Computing Science Simon Fraser University Vancouver, Canada oschulte@cs.sfu.ca

Outline

- Problem Definition: Scientific Model Discovery as Matrix Search.
- Algorithm for discovering maximally simple maximally strict conservation laws.
- Comparison with:
 - Particle physics Standard Model (quark model).
 - Molecular structure model.

The Matrix Search Model

- (Valdes, Zytkow, Simon AAAI 1993) Modelling reactions in chemistry, physics, engineering.
- n entities participating in m reactions.
- Input: **Reaction integer matrix** $R_{m \times n}$.
- Output: **Hidden feature integer matrix** Q_{nxq} s.t. RQ = 0.
- *Q* classifies reactions as "possible" or "impossible".

Example: Particle Physics

Reactions and Quantities represented as Vectors (Aris 69; Valdés-Pérez 94, 96)

- *i* = 1,...*n* entities
- r(i) = # of entity i among reagents # of entity i among products.

Particle	1	2	3	4	5	6	7
Process	p	π^0	μ^{-}	e^+	e^{-}	ν_{μ}	$\overline{\nu}_e$
$\mu^- \rightarrow e^- + \nu_\mu + \overline{\nu}_e$	0	0	1	0	-1	-1	-1
$p \rightarrow e^+ + \pi^0$	1	-1	0	-1	0	0	0
$p+p \rightarrow p+p+\pi^0$	0	-1	0	0	0	0	0

Particle	1	2	3	4	5	6	7
Quantity	p	π^0	μ^{-}	e^+	e^{-}	ν_{μ}	$\overline{\nu}_e$
Baryon Number	1	0	0	0	0	0	0
Electric Charge	1	0	-1	1	-1	0	0

A quantity is **conserved** in a reaction if and only if the corresponding vectors are **orthogonal**.

Conserved Quantities in the Standard Model

- Standard Model based on Gell– Mann's quark model (1964).
- Full set of particles:
 n = 193.
- Quantity →
 Particle
 Family
 (Cluster).

	Particle	Charge	Baryon#	Tau#	Electron#	Muon#
1	Σ^{-}	-1	1	0	0	0
2	$\overline{\Sigma}^+$	1	-1	0	0	0
3	n	0	1	0	0	0
4	\overline{n}	0	-1	0	0	0
5	p	1	1	0	0	0
6	$\frac{p}{\overline{p}}$	-1	-1	0	0	0
7	π^+	1	0	0	0	0
8	π^-	-1	0	0	0	0
9	π^0	0	0	0	0	0
10	γ	0	0	0	0	0
11	τ^{-}	-1	0	1	0	0
12	τ^+	1	0	-1	0	0
13	ν_{τ}	0	0	1	0	0
14	$\overline{\nu}_{\tau}$	0	0	-1	0	0
15	μ_	-1	0	0	0	1
16	μ^+	1	0	0	0	-1
17	ν_{μ}	0	0	0	0	1
18	$\overline{\nu}_{\mu}$	0	0	0	0	-1
19	e^{-}	-1	0	0	1	0
20	e^+	1	0	0	-1	0
21	ν_e	0	0	0	1	0
22	$\overline{\nu}_e$	0	0	0	-1	0

The Learning Task (Toy **Example**)

Given:

- 1. fixed list of known detectable 1. # of quantities particles.
- 2. Input reactions

Not Given:

- 2. Interpretation of quantities.

Reactions

$$\mu^- \to e^-$$
$$p + p \to p + p + \pi^0$$

Output

Reaction Matrix R

$$\begin{pmatrix}
0 & 0 & 1 & -1 \\
0 & -1 & 0 & 0
\end{pmatrix}$$
Learning Quantity
$$\begin{pmatrix}
1 & 1 \\
0 & 0 \\
0 & -1
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$$

Cols in Q are conserved, so RQ = 0.

Chemistry Example

- Langley et al. 1987.
- Reactions among Chemical Substances

Substance	1	2	3	4	5
Reaction	Hydrogen	Nitrogen	Oxygen	Ammonia	Water
2 Hydrogen + 1 Oxygen \rightarrow 2 Water = $2s_1 + s_2 \rightarrow 2s_5$	2	0	1	0	-2
$3 \text{ Hydrogen} + 1 \text{ Nitrogen} \rightarrow 2 \text{ Ammonia}$ = $3s_1 + s_2 \rightarrow 2s_4$	3	1	0	-2	0

- Interpretation: #element atoms in each substance molecule.
- #element atoms conserved in each reaction!

	Element Substance	H	N	0
1	Hydrogen	2	0	0
2	Nitrogen	0	2	0
3	Oxygen	0	0	2
4	Ammonia	3	1	0
5	Water	2	0	1

The Totalitarian Principle

- There are many matrices Q satisfying RQ = O——how to select?
- Apply classic "maximally specific criterion" from version spaces (Mitchell 1990).
- Same general intuition used by physicists:
 - "everything that can happen without violating a conservation law does happen." Ford 1963.
 - "anything which is not prohibited is compulsory".
 Gell-Mann 1960s.
- Learning-theoretically optimal (Schulte and Luo COLT 2005)

Maximal Strictness (Schulte IJCAI 09)

Definition. Q is maximally strict for R if Q allows a minimal superset of R.

Proposition. Q is maximally strict for R iff the columns of Q are a basis for the nullspace of R. nullspace of $R = null(R) = \{v: Rv = 0\}$

the smallest generalization of observed reactions R = linear span of R

larger generalization of observed reactions R

Unobserved allowed reactions

Maximally Simple Maximally Strict Matrices (MSMS)

- L1-norm |M| of matrix M = sum of absolute values of entries.
- Definition. Conservation matrix Q is an MSMS matrix for reaction matrix R iff Q minimizes /Q/ among maximally strict matrices.

Minimization Algorithm

- Problem. Minimize L1-norm |Q|, subject to nonlinear constraint: Q columns are basis for nullspace of R.
- Key Ideas.
- 1. Preprocess to find a basis V of null(R). Search space = $\{X \text{ s.t. } Q = VX\}$. X is small continuous change-of-basis matrix.
- 2. Discretize after convergence.
 - 1. Set small values to 0.
 - 2. Multiply by lcd to obtain integers.

Example: Chemistry

Input Data

Substance	1	2	3	4	5
Reaction	Hydrogen	Nitrogen	Oxygen	Ammonia	Water
2 Hydrogen + 1 Oxygen \rightarrow 2 Water = $2s_1 + s_2 \rightarrow 2s_5$	2	0	1	0	-2
3 Hydrogen + 1 Nitrogen \rightarrow 2 Ammonia = $3s_1 + s_2 \rightarrow 2s_4$	3	1	0	-2	0

Minimization Program

$$\begin{pmatrix} 2/3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1/2 & 0 \\ 2/3 & 0 & 1/2 \end{pmatrix} \qquad \text{multiply by Icd}$$

	Element Substance	H	N	0
1	Hydrogen	2	0	0
	Nitrogen	0	2	0
3	Oxygen	0	0	2
4	Ammonia	3	1	0
5	Water	2	0	1

MSMS Matrix

Pseudo Code

Algorithm 1 Minimization Scheme for Finding a Maximally Simple Maximally Strict Conservation Law Matrix

- 1. Given a set of input reactions R find an orthonormal basis V for the nullspace of R. The basis V is an $n \times q$ matrix.
- 2. Let any linear combination of V be given by Q = VX, with X an $q \times q$ set of coefficients.

Initialize X to $X_0 = I$, where I is the identity matrix of dimension q.

Define $\mathcal{I}_1(X) = |VX|$, the L1-norm of the matrix VX.

Define $\mathcal{I}_2(X) = \sum (X^T X - I)^2$.

- 3. Minimize $\mathcal{I}_1 + \alpha \mathcal{I}_2$ over X, with α constant, subject to the following constraint:
 - (a) To derive an integer version \widetilde{Q} , we assign Q = VX; $\widehat{\mathbf{q}}_k = \mathbf{q}_k/max(\mathbf{q}_k)$, k = 1..q; $\widehat{Q}\left(\widehat{Q} < \varepsilon\right) = 0$; $\widetilde{Q} = sgn(\widehat{Q})$.
 - (b) \widetilde{Q} must have full rank: $rank(\widetilde{Q}) = q$.

Comparison with Standard Model

- Implementation in Matlab, use built-in null function. Code available on-line.
- Dataset
 - complete set of 193 particles (antiparticles listed separately).
 - included most probable decay for each unstable particle \Rightarrow 182 reactions.
 - Some others from textbooks for total of 205 reactions.

Results

- S = Standard Model Laws.
- Q = output of minimization.

α	Families Recovered	Runtime (sec)	$\mathcal{I}(Q)$	$\mathcal{I}(S)$	L1(Q)	L1(S)	difference Q vs. S
20	4/4	16.44	22.67	22.31	22.21	21.96	C replaced by linear combination
10	4/4	15.74	22.20	22.31	21.96	21.96	C replaced by linear combination
0	n/a	6.95	15.92	22.31	15.92	21.96	invalid local minimum

Ex2: charge given as input.

α	Families Recovered	Runtime (sec)	$\mathcal{I}(Q)$	$\mathcal{I}(S)$	L1(Q)	L1(S)	difference Q vs. S
20	2/4	7.68	16.65	15.55	16.63	15.52	E , M replaced by linear combination
10	4/4	8.40	15.55	15.55	15.52	15.52	exact match
0	n/a	10.68	11.52	15.55	11.52	15.52	invalid local minimum

Conclusion

- Conservation Matrix Search problem: for input reactions R, solve RQ=0.
- New model selection criterion: choose maximally simple maximally strict Q.
- Efficient local search optimization.
- Comparison with Standard quark Model
 - Predictively equivalent.
 - (Re)discovers particle families-predicted by theorem.
- MSMS criterion formalizes scientists' objective.

Thank You

• Any questions?

The Family Determination Theorem: Illustration

Any alternative set of 4 Q#s with disjoint carriers

Simplicity and Particle Families

Theorem (Schulte and Drew 2006). Let *R* be a reaction data matrix. If there is a maximally strict conservation matrix *Q* with disjoint entity clusters, then

- The clusters (families) are uniquely determined.
- There is a unique MSMS matrix Q^* .

