Mind Change Optimal Learning Of Bayes Net Structure

Oliver Schulte School of Computing Science Simon Fraser University Vancouver, Canada oschulte@cs.sfu.ca

with Wei Luo (SFU, wluoa@cs.sfu.ca) and Russ Greiner (U of Alberta, greiner@cs.ualberta.ca)

Outline

- 1. Brief Intro to Bayes Nets (BNs).
- 2. Language Learning Model for BN Structure Learning.
- 3. Mind Change Complexity of BN Learning.
- 4. Mind Change, Convergence Time Optimality.
- 5. NP-hardness of Optimal Learner.

Bayes Nets: Overview

Very widely used graphical formalism for probabilistic reasoning and KR in AI and machine learning.

Nodes = Variables of Interest.

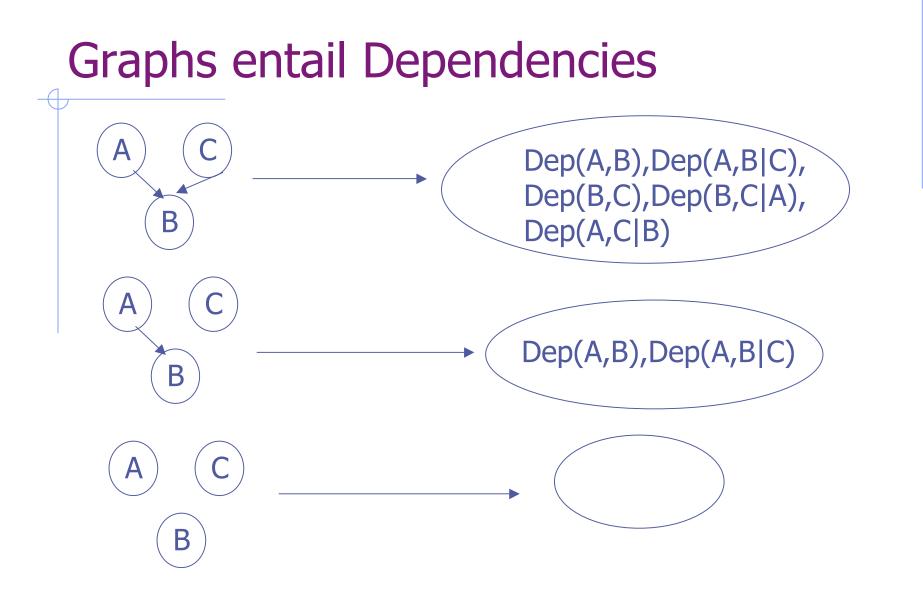
Arcs = direct "influence", "association".

Structure represents probabilistic <u>conditional dependencies</u> (correlations).

Example of Bayes Net Structure



Season, Wet.

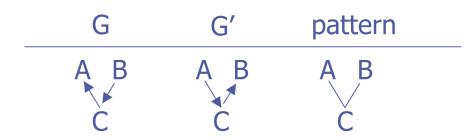


Pattern = DAG Equivalence Class

Write Dep(G) for the dependencies defined by DAG G.

♦ Natural Equivalence relation: $G \approx G' \Leftrightarrow$ Dep(G) = Dep(G').

✤ A partially directed graph, called a **pattern**, represents the equivalence class for a given DAG G.



Constraint-Based BN Learning as Language Learning

Constraint-Based Approach: Learn BN from *(in)dependency information*. Spirtes, Glymour, Shines (2000); Pearl and Verma (2000); Margaritis and Thrun (1999); Cheng and Greiner (2001).

Bayes Net Gold paradigm

conditional dependence: Dep(X,Y|Z) Z= set of variables

dependency relation

pattern

index

language

string

A **BN learner** maps a sequence of dependencies (repetitions allowed) to a pattern or to ?.

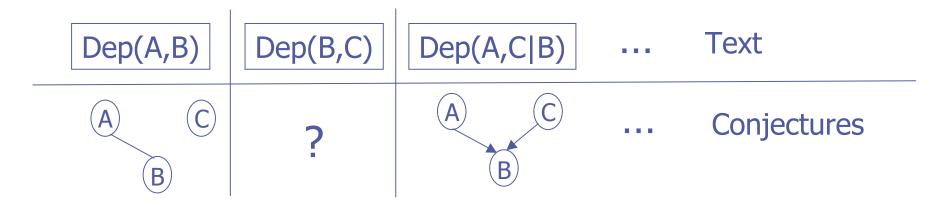
Mind Change Optimal Learning of Bayes Net Structure

Identification with Bounded Mind Changes

♦ Learner Ψ changes its mind on text T at stage k+1 $\Psi(T[k]) \neq \Psi(T[k+1])$ or $\Psi(T[k]) \neq$? and $\Psi(T[k+1]) =$?.

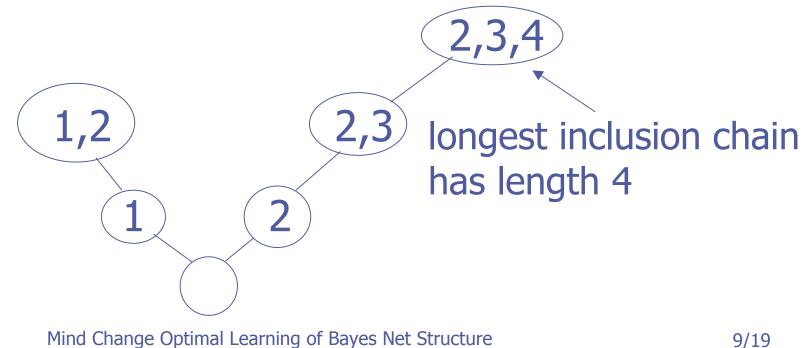
★ Learner Ψ identifies language collection \mathcal{L} with k mind changes $\Leftrightarrow \Psi$ identifies \mathcal{L} and changes its mind at most k times on any text for a language in \mathcal{L} .

* \mathcal{L} is identifiable with k mind changes \Leftrightarrow there is a learner Ψ that identifies \mathcal{L} with k mind changes.



Inclusion Depth and Mind Change Bounds

Proposition (Luo and Schulte 2006) Suppose that \mathcal{L} has finite thickness. Then the best mind change bound for \mathcal{L} is given by the length of the longest **inclusion chain** $L_1 \subset L_2 \subset ... L_k$ formed by languages in \mathcal{L} .



Mind Change Optimal Learning of Bayes Net Structure

Mind Change Complexity of BN Learning

Let \mathcal{L}_V be the collection of dependency relations definable by Bayes nets with variables V.

Theorem The longest inclusion chain in \mathcal{L}_V is of length $\binom{|V|}{2} =$ the number of edges in a complete graph.

Maximal Length Inclusion Chain Α all dependencies В С Α Dep(A,B),Dep(A,B|C), Dep(B,C), Dep(B,C|A),В Dep(A,C|B) С Α Dep(A,B),Dep(A,B|C) В С Α В

Mind Change Optimal Learning

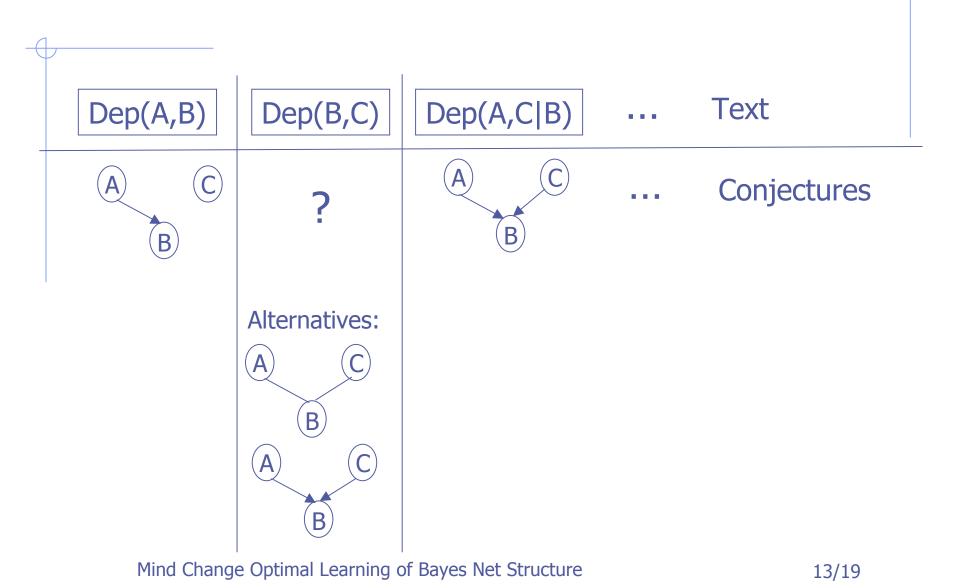
★ Learner Ψ is MC-optimal for language collection $\mathcal{L} \Leftrightarrow$ if given any data sequence σ, the learner Ψ identifies \mathcal{L} with the best possible mind change bound for the language collection {L: L is in \mathcal{L} and consistent with σ}.

♦ **Proposition** A BN learner identifying \mathcal{L} is MCoptimal ⇔ for all dependency sequences σ , if there is no <u>unique</u> edge-minimal pattern consistent with σ , then Ψ(σ) = ?.

Proof follows from general characterization of MC-optimality in Luo and Schulte (2005,2006).

Mind Change Optimal Learning of Bayes Net Structure12/19

Example of Mind Change Optimal Learner



Convergence Time

- Convergence Time = number of observed dependencies important to minimize
- *Def* (Gold) Learner Ψ is **uniformly faster** than learner $\Phi \Leftrightarrow$
 - 1. Ψ converges at least as fast as Φ on every text T, and
 - 2. Ψ converges strictly faster on some text T.

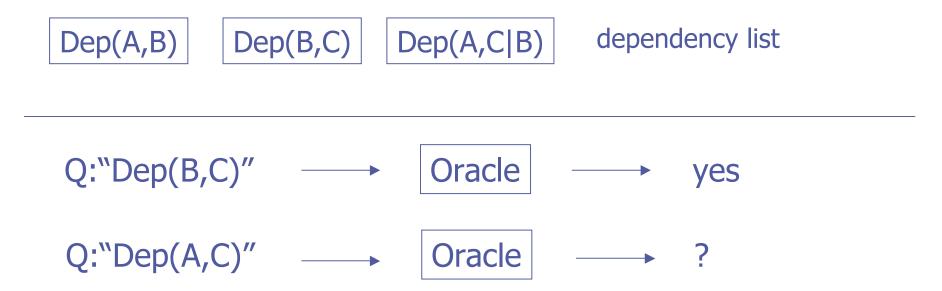
Define

 $\Psi_{\text{fast}}(\sigma) = \begin{cases} G & \text{if } G \text{ is the unique edge - minimal pattern consistent with } \sigma \\ ? & \text{otherwise} \end{cases}$

Proposition The learner Ψ_{fast} is uniformly faster than any other MC-optimal BN learner.

Complexity Analysis

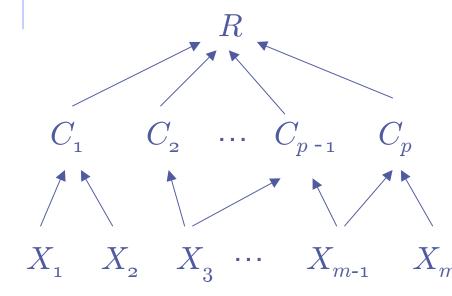
A list of dependencies is compactly represented by a **dependency oracle**.



Unique *k* **O-cover** Given a dependency oracle O, and a bound *k*, is there a DAG G covering the dependencies in O with $\leq k$ edges s.t. all other DAGs G' covering the dependencies in O have more edges than G?

NP-hardness result

Theorem Unique X3set-Cover reduces to Unique k O-Cover. So if P = RP, then UMOC is NP-hard. Basic Idea: Construct a dependency oracle that forces a tree.



- ✤ Universe: X₁,...,X_m.
- ✤ Sets: C₁,..,C_p.

All elements mustbe dependent on R.

Conclusion

Constraint-based approach to BN learning analyzed as language learning problem.

✤ Mind Change Complexity = $\binom{n}{2}$, where *n* is the number of variables.

Number of edges: new intuitive notion of simplicity for a BN, based on learning theory.

Unique fastest mind-change optimal method is NP-hard.

Future Work

Heuristic Implementation of MC-optimal Learner (GES search).

Leads to a new BN learning algorithm with good performance.

References

W. Luo and O. Schulte. *Mind change efficient learning.* In COLT 2005, pages 398-412.

 W. Luo and O. Schulte. *Mind change efficient learning*. Information and Computation 204:989-1011, 2006.

THE END