Causal Modelling for Relational Data

Oliver Schulte School of Computing Science Simon Fraser University Vancouver, Canada

Outline

- Relational Data vs. Single-Table Data
- Two key questions
 - Definition of Nodes (Random Variables)
 - Measuring Fit of Model to Relational Data
- **Previous Work**
- Parametrized Bayes Nets (Poole 2003), Markov Logic Networks (Domingos 2005).
- The Cyclicity Problem.
- New Work
- The Learn-and-Join Bayes Net Learning Algorithm.
- A Pseudo-Likelihood Function for Relational Bayes Nets.

Single Data Table Statistics

Traditional Paradigm Problem

- Single population
- Random variables = attributes of population members.
- "flat" data, can be represented in single table.

Organizational Database/Science

- Structured Data.
- Multiple Populations.
- Taxonomies, Ontologies, nested Populations.
- Relational Structures.

Relational Databases

- Input Data: A finite (small) model/interpretation/possible world.
- \Rightarrow Multiple Interrelated Tables.

Link based Classification

• P(diff(101))?

Link prediction

• P(Registered(jack, 101))?

Relational Data: what are the random variables (nodes)?

- A **functor** is a function symbol with 1st-order variables f(X), g(X, Y), R(X, Y).
- Each variable ranges over a **population** or domain.
- A Parametrized Bayes Net (PBN) is a BN whose nodes are functors (Poole UAI 2003).
- Single-table data = all functors contain the same single free variable *X*.

Example: Functors and Parametrized Bayes Nets

- Parameters: conditional probabilities P(child | parents).
- e.g., P(wealth(Y) = T | wealth (X) = T, Friend(X,Y) = T)
- defines joint probability for every conjunction of value assignments.

Domain Semantics of Functors

- Halpern 1990, Bacchus 1990
- Intuitively, P(Flies(X) | Bird(X)) = 90% means "the probability that a randomly chosen bird flies is 90%".
 Think of a variable X as a random variable that selects a member of its associated population with uniform probability.
- Then functors like f(X), g(X, Y) are functions of random variables, hence themselves random variables.

Domain Semantics: Examples

•
$$P(S = jack) = 1/3.$$

- $P(age(S) = 20) = \sum_{s:age(s)=20} 1 / |S|$. $P(Friend(X, Y) = T) = \sum_{x,y:friend(x,y)} 1 / (|X| |Y|)$. In general, the domain frequency is the number of satisfying instantiations or groundings, divided by the total possible

number of groundings.

•The database tables define a set of populations with attributes and links **→** database distribution over functor values.

Defining Likelihood Functions for Relational Data

- Need a quantitative measure of how well a model fits the data.
- Single-table data consists of identically and independently structured entities (IID).
- Relational data is not IID.
- \Rightarrow Likelihood function \neq simple product of instance likelihoods.

Knowledge-based Model Construction

- Ngo and Haddaway, 1997; Koller and Pfeffer, 1997; Haddaway, 1999.
- •1st-order model = template.
- Instantiate with individuals from database (fixed!) \rightarrow ground model.
- Isomorphism DB facts \Leftrightarrow assignment of values \rightarrow **likelihood measure** for DB.

- How do we combine information from different related entities (courses)?
- Aggregate properties of related entities (PRMs; Getoor, Koller, Friedman).
 Combine probabilities (PLPs: Peole
- Combine probabilities. (BLPs; Poole, deRaedt, Kersting.)

Causal Modelling for Relational Data - CFE 2010

- With recursive relationships, get cycles in ground model even if none in 1st-order model.
- Jensen and Neville 2007: "The acyclicity constraints of directed models severely constrain their applicability to relational data."

Hidden Variables Avoid Cycles

• Assign unobserved values *u(jack)*, *u(jane)*.

- Probability that Jack and Jane are friends depends on their unobserved "type".
- In ground model, *rich(jack)* and *rich(jane)* are correlated given that they are friends, but neither is an ancestor.
- Common in social network analysis (Hoff 2001, Hoff and Rafferty 2003, Fienberg 2009).
- \$1M prize in Netflix challenge.
- Also for multiple types of relationships (Kersting et al. 2009).
- Computationally demanding.

Causal Modelling for Relational Data - CFE 2010

Undirected Models Avoid Cycles

• Potential functions defined over cliques

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

<i>Z</i> =	$\sum_{i=1}^{n}$		$\left[\Phi_{c}(x_{c})\right]$
	x	С	

Smoking	Cancer	Φ(S,C)
False	False	4.5
False	True	4.5
True	False	2.7
True	True	4.5

Causal Modelling for Relational Data -CFE 2010

18

Markov Logic Networks

- Domingos and Richardson ML 2006
- An MLN is a set of formulas with weights.
- Graphically, a Markov network with functor nodes.
- \blacksquare Solves the combining and the cyclicity problems.
- For every functor BN, there is a predictively equivalent MLN (the moralized BN).

New Proposal

- Causality at token level (instances) is underdetermined by type level model.
 - Cannot distinguish whether wealth(jane) causes wealth(jack), wealth (jack) causes wealth(jane) or both (feedback).
- Focus on type-level causal relations.
- How? Learn model of Halpern's database distribution.
- For token-level inference/prediction, convert to undirected model.

The Learn-and-Join Algorithm (AAAI 2010)

- Required: single-table BN learner *L*. Takes as input *(T,RE,FE)*:
 - Single data table.
 - A set of edge constraints (forbidden/required edges).
- Nodes: Descriptive attributes (e.g. *intelligence(S))* Boolean relationship nodes (e.g., *Registered(S,C)*).
- 1. RequiredEdges, ForbiddenEdges := emptyset.
- 2. For each entity table E_i :
 - a) Apply *L* to E_i to obtain BN G_i . For two attributes *X*, *Y* from E_i ,
 - b) If $X \rightarrow Y$ in G_i , then RequiredEdges $+= X \rightarrow Y$.
 - c) If $X \rightarrow Y$ not in G_i , then ForbiddenEdges $+= X \rightarrow Y$.
- 3. For each relationship table join (= conjunction) of size s = 1, ... k
 - a) Compute Rtable join, join with entity tables $:= J_{i}$.
 - b) Apply *L* to (J_i, RE, FE) to obtain BN G_i .
 - c) Derive additional edge constraints from G_i .
- 4. Add relationship indicators: If edge $X \rightarrow Y$ was added when analyzing join R_1 join R_2 ... join R_m , add edges $R_i \rightarrow Y$.

Causal Modelling for Relational Data - CFE 2010

Phase 1: Entity tables

22

Phase 2: relationship tables

Running time on benchmarks

Dataset	JBN	MLN	CMLN
University	$0.03 {+} 0.032$	5.02	11.44
MovieLens	1.2+120	NT	NT
MovieLens Subsample 1	0.05 + 0.33	44	121.5
MovieLens Subsample 2	0.12 + 5.10	2760	1286
Mutagenesis	0.5 + NT	NT	NT
Mutagenesis subsample 1	0.1 + 5	3360	900
Mutagenesis subsample 2	0.2 + 12	NT	3120

- Time in Minutes. NT = did not terminate.
- x + y = structure learning + parametrization.
- JBN: Our join-based algorithm.
- MLN, CMLN: standard programs from the U of Washington (Alchemy)

Causal Modelling for Relational Data - CFE 2010

Pseudo-likelihood for Functor Bayes Nets

- What likelihood function P(database,graph) does the learn-andjoin algorithm optimize?
- 1. Moralize the BN (causal graph).
- 2. Use the Markov net likelihood function for moralized BN---*without the normalization constant*.
- \succ $\Pi_{families}$. $P(child | parent)^{\#child-parent instances}$
- > pseudo-likelihood.

Features of Pseudo-likelihood P*

- Tractability: maximizing estimates = empirical conditional database frequencies!
- Similar to pseudo-likelihood function for Markov nets (Besag 1975, Domingos and Richardson 2007).
- Mathematically equivalent but conceptually different interpretation: expected log-likelihood for randomly selected individuals.

Halpern Semantics for Functor Bayes Nets (new)

- 1. Randomly select instances $X_1 = x_1, ..., X_n = x_n$. for each variable in BN.
- 2. Look up their properties, relationships.
- 3. Compute log-likelihood for the BN assignment obtained from the instances.
- 4. L^H = average log-likelihood over uniform random selection of instances.

Proposition $L^{H}(D,B) = ln(P*(D,B) \times c)$ where c is a (meaningful) constant. No independence assumptions!

Summary of Review

- Two key conceptual questions for relational causal modelling.
 - 1. What are the random variables (nodes)?
 - 2. How to measure fit of model to data?
- 1. Nodes = functors, open function terms (Poole).
- 2. Instantiate type-level model with all possible tokens. Use instantiated model to assign likelihood to the totality of all token facts.
- Problem: instantiated model may contain cycles even if type-level model does not.
- One solution: use undirected models.

Summary of New Results

- New algorithm for learning causal graphs with functors.
- +Fast and scalable (e.g., 5 min vs. 21 hr).
- +Substantial Improvements in Accuracy.
- <u>New pseudo-likelihood function for measuring fit of model</u> <u>to data.</u>
- Tractable parameter estimation.
- Similar to Markov network (pseudo)-likelihood.
- New semantics: expected log-likelihood of the properties of randomly selected individuals.

Open Problems

Learning

- Learn-and-Join learns dependencies among attributes, not dependencies among relationships.
- Parameter learning still a bottleneck.

Inference/Prediction

- Markov logic likelihood does not satisfy Halpern's principle: if P(φ(X)) = p, then P(φ(a)) = p where a is a constant. (Related to Miller's principle).
- Is this a problem?

Thank you!

• Any questions?

Causal Modelling for Relational Data - CFE 2010

Choice of Functors

- Can have complex functors, e.g.
 - Nested: wealth(father(father(X))).
 - Aggregate: AVG_C{grade(S,C): Registered(S,C)}.
- In remainder of this talk, use functors corresponding to
 - Attributes (columns), e.g., *intelligence(S)*, *grade(S,C)*
 - Boolean Relationship indicators, e.g. *Friend(X,Y)*.

Typical Tasks for Statistical-Relational Learning (SRL)

- Link-based Classification: given the links of a target entity and the attributes of related entities, predict the class label of the target entity.
- Link Prediction: given the attributes of entities and their other links, predict the existence of a link.