From Learning Theory to Particle Physics

Oliver Schulte School of Computing Science Simon Fraser University Vancouver, Canada

SFU

The Logic of Reliable Inquiry (ca. 1994)

Long-Run Reliability

• Key concept: Inquiry ought to settle on the right answer eventually, no matter what the evidence.

The Long Run in the Short Run?

- Reichenbach's pragmatic vindication of induction: a version of long-run reliability for estimating probabilities.
- Salmon's critique: Long-run reliability does not constrain the short run.
- Kelly's suggestion: What if we add success criteria *in addition to* long-run reliability?

Hans Reichenbach," The Theory of Probability", 1949, UC Press.

Glymour, Clark and Eberhardt, Frederick, {Hans Reichenbach", *The Stanford Encyclopedia of Philosophy* (Fall 2014 Edition). Wesley Salmon, "Hans Reichenbach's vindication of induction", *Erkenntnis* 1991.

Learning and Steady Convergence

The New Riddle of Induction

Goodman (1983). "Grue applies to all things examined before t just in case they are green but to other things just in case they are blue."

Schulte, O. (1996), 'Means-Ends Epistemology', The British Journal for the Philosophy of Science 79(1), 141--147. 6/17

Unnatural Generalizations May Lead to Two Mind Changes

Goodman (1983). "Grue applies to all things examined before t just in case they are green but to other things just in case they are blue."

Schulte, O. (1996), 'Means-Ends Epistemology', The British Journal for the Philosophy of Science 79(1), 141--147. 7/17

Solution to the New Riddle

Proposition

The natural projection rule is the only inductive method that

- is guaranteed to arrive at the right generalization about emerald colors.
- 2. changes its generalization at most once.
- minimizes convergence time (time-admissibility)

Other Applications

- Causal graph learning:
 - output the graph that explains the observed correlations with the *least number of edges*.
- Discovering molecular structure of chemical substances.
- Learning conservation laws in particle physics.

Luo, W. & Schulte, O. (2006), 'Mind Change Efficient Learning', Information and Computation 204, 989--1011.

Learning Conservation Laws in Particle Physics

Conserved Quantities in the Standard Model

- Standard Model based on Gell-Mann's quark model (1964).
- Full set of particles: n = 193.
- Quantity ↔
 Particle Family (Cluster).

	Particle	Charge	Baryon#	Tau#	Electron#	Muon#
1	Σ^{-}	-1	1	0	0	0
2	$\overline{\Sigma}^+$	1	-1	0	0	0
3	n	0	1	0	0	0
4	\overline{n}	0	-1	0	0	0
5	p	1	1	0	0	0
6	\overline{p}	-1	-1	0	0	0
7	π^+	1	0	0	0	0
8	π^{-}	-1	0	0	0	0
9	π^0	0	0	0	0	0
10	γ	0	0	0	0	0
11	τ^{-}	-1	0	1	0	0
12	τ^+	1	0	-1	0	0
13	ν_{τ}	0	0	1	0	0
14	$\overline{\nu}_{\tau}$	0	0	-1	0	0
15	μ^{-}	-1	0	0	0	1
16	μ^+	1	0	0	0	-1
17	ν_{μ}	0	0	0	0	1
18	$\overline{\nu}_{\mu}$	0	0	0	0	-1
19	e^-	-1	0	0	1	0
20	e^+	1	0	0	-1	0
21	ν_e	0	0	0	1	0
22	$\overline{\nu}_e$	0	0	0	-1	0

The Learning Task (Toy Example)

Given:

- 1. fixed list of known detectable particles.
- 2. Input reactions

Not Given:

- 1. # of quantities
- 2. Interpretation of quantities.

The Mind-Change Optimal Method

- **Proposition** The mind-change optimal method selects a set of conservation laws that rule out as *many unobserved reactions as possible*.
- aka Gell-Mann's Totalitarian Principle: 'Anything which is not prohibited is compulsory'.
- Ford's Plentitude Principle (1963): "Everything which *can* happen without violating a conservation law *does* happen."

Matches Standard Model!

Discovering Neutrinos

- Extend mind-change optimality to discovery conservation laws + *unobserved entities*.
- In some cases, positing unobserved neutrinos helps to rule out unobserved reactions.
- ➤ Well-known example: if v_e = v_e, then the <u>neutrino-less double beta decay</u> n + n → p + p + e⁻ + e⁻ should be possible.

Elliott and Engel (May 2004):

"What aspects of still-unknown neutrino physics is it most important to explore? ...it is clear that the absolute mass scale and whether **the neutrino is** a Majorana or Dirac particle are crucial issues (ie $v_e = \overline{v}_e$?).

Discovering a New Critical Experiment

- The mind-change optimal method for finding unobserved particles can be implemented using the Smith Normal Form.
- > Compute from actual accelerator data:

If $v_e = v_e$, then the reaction Y + $\Lambda^0 \rightarrow$ p + e⁻ + μ^+ + $\mu^$ should be possible.

- But this reaction fails another constraint: Conserving fermion number mod 2.
- Thanks to <u>Matt Strasser</u>

Summary: Theory

- Mind-change optimal learning: converge to a correct hypothesis with a minimum number of theory changes.
- If a mind change bound exists, there is a *unique* timeadmissible method that attains it.
- Applications solve for this method.
 - Riddle of Induction: conjecture "all emeralds are green" until blue one is observed.
 - Causal graphs: conjecture simplest graph consistent with observed correlations.
 - Learning conservation laws: rule out as many unobserved reactions as possible. Possibly with neutrinos.

The End

• Thank you!