Learning Bayesian Networks for Relational Databases

Oliver Schulte School of Computing Science Simon Fraser University Vancouver, Canada

Outline

- Review of relational databases.
- Example Bayesian networks.
- Relational classification with Bayesian networks.
- Fundamental Learning Challenges.
 - Defining model selection scores.
 - Computing sufficient statistics.
- Work in Progress.
 - Anomaly Detection.
 - Homophily vs. social influence.
 - Player contribution to team result. 4

new causal questions

Relational Databases

Relational Databases

- 1970s: Computers are spreading. Many organizations use them to store their data.
- Ad hoc formats
 - ⇒ hard to build general data management systems.
 - \Rightarrow lots of duplicated effort.
- The Standardization Dilemma:
 - Too restrictive: doesn't fit users' needs.
 - Too loose: back to ad-hoc solutions.

The Relational Format

- Codd (IBM Research 1970)
- The fundamental question: What kinds of information do users need to represent?
- Answered by first-order predicate logic! (Russell, Tarski).
- The world consists of
 - Individuals/entities.
 - Relationships/links among them.

Tabular Representation

A database is a finite model for an *arbitrary* first-order logic vocabulary.

Students S				
<u>Name</u>	intelligence(S)	ranking(S)		
Jack	3	1		
Kim	2	1		
Paul	1	2		

Registration(S,C)					
<u>Name</u>	<u>Number</u>	grade	satisfaction		
Jack	101	А	1		
Jack	102	В	2		
Kim	102	А	1		
Kim	103	А	1		
Paul	101	В	1		
Paul	102	С	2		

	Professor P	
		teaching
<u>Name</u>	popularity(P)	Ability(P)
Oliver	3	1
David	2	1

Course C					
<u>Number</u>	Prof(C)	rating(C)	difficulty(C)		
101	Oliver	3	1		
102	David	2	2		
103	Oliver	3	2		

Key fields are underlined.

Nonkey fields are deterministic **functions of key fields**.

Ullman, J. D. (1982), Principles of Database Systems

Data Format Is Complex

ER-Diagram of the Mondial Database

Database Management Systems

- Maintain data in linked tables.
- Structured Query Language (SQL) allows fast *data retrieval*.
 - E.g., find all CMU students who are statistics majors with gpa > 3.0.
- Multi-billion dollar industry, \$15+ bill in 2006.
- IBM, Microsoft, Oracle, SAP.
- Much interest in analysis (data mining, business intelligence, predictive analytics, OLAP...)

Relationship to Single Data Table

- Single data table = finite model for *monadic* first-order predicates.
- Single population.

Students S				
<u>Name</u>	intelligence(S)	ranking(S)		
Jack	3	1		
Kim	2	1		
Paul	1	2		

Relationship to Network Analysis

- A single-relation social network = finite model for single binary predicate ("Friend(X,Y)").
- General network allows:
 - Different types of nodes ("actors").
 - Labels on nodes.
 - Different types of (hyper)edges.
 - Labels on edges.
 - See Newman (2003).
- **Observation** A relational database is equivalent to a general network as described.

Example: First-order model as a network

Russell and Norvig, "A Modern Introduction to Artificial Intelligence", Fig. 8.2.

Bayesian Networks for Relational Databases

Russell and Norvig, "Artificial Intelligence", Ch.14.6, 3rd ed.

D.Heckerman, Chris Meek & Koller, D. (2004), 'Probabilistic models for relational data', Technical report, Microsoft Research. Poole, D. (2003), First-order probabilistic inference, *IJCAI*, pp. 985-991.

Random Selection Semantics for Bayes Nets

 $P(gender(X) = male, gender(Y) = male, Friend(X, Y) = true, coffee_dr(X) = true) = 30\%$

means

"if we randomly select a user X and a user Y, the probability that both are male and that X drinks coffee is 30%. Learning Bayes Nets for Relational Data

Bayesian Network Examples

- Mondial Network
- University Network

Random Selection Semantics for Random Variables

Halpern, "An analysis of first-order logics of probability", AI Journal 1990. Bacchus, "Representing and reasoning with probabilistic knowledge", MIT Press 1990.

Inference: Relational Classification

Independent Individuals and Direct Inference

- Query: What is P(rank(bob) = hi | intelligence(bob) = hi)?
- Answer: 70%.

The direct inference principle $\bigwedge^{\operatorname{rank} = ?} P(\phi(X) = p) \rightarrow P(\phi(a)) = p$ where ϕ is a first-order formula with free variable X, *a* is a constant.

Halpern, "An analysis of first-order logics of probability", AI Journal 1990.

intelligence = hi.

- Suppose that Sam has friends Alice, John, Kim, Bob,...
- Direct inference specifies
 P(gender(sam) = Man | gender(alice) = Woman) = .6
 but not
 P(gender(sam) = Man | gender(alice), gender(john), gender(kim), gender(bob)....).

Random Selection Classification

- Basic idea: log-conditional probability →expected log-conditional probability wrt random instantiation of free first-order variables.
- Good predictive accuracy (Schulte et al. 2012, Schulte et al. 2014).

 $\begin{aligned} \mathsf{P}(\mathsf{gender}(\mathsf{sam}) = \mathsf{Woman} \mid \mathsf{gender}(\mathsf{Y}) = \mathsf{Woman}, \ \mathsf{F}(\mathsf{sam},\mathsf{Y}) = \mathsf{T}) = .6 \\ \mathsf{P}(\mathsf{gender}(\mathsf{sam}) = \mathsf{Woman} \mid \mathsf{gender}(\mathsf{Y}) = \mathsf{Man}, \ \mathsf{F}(\mathsf{sam},\mathsf{Y}) = \mathsf{T}) = .4 \end{aligned}$

gender(sam)

Friend(sam,Y)

gender(Y)	ln(CP)	proportion	product
female	$\ln(0.6) = -0.51$	40%	$-0.51 \times 0.4 = -0.204$
male	$\ln(0.4) = -0.92$	60%	$-0.92 \times 0.6 = -0.552$
score	gender(sam) = Woman		-0.204-0.552 = -0.756
score	gender(sam) = Man		=-0.67

gender(Y

Defining Joint Probabilities

- Knowledge-based Model Construction: Instantiate graph with first-order nodes to obtain graph with instance nodes.
- Fundamental problem: DAGs are not closed under instantiation.
- Alternative: relational dependency networks.

Wellman, M.; Breese, J. & Goldman, R. (1992), 'From knowledge bases to decision models', *Knowledge Engineering Review* 7, 35--53.
Neville, J. & Jensen, D. (2007), 'Relational Dependency Networks', *Journal of Machine Learning Research* 8, 653--692.
Heckerman, D.; Chickering, D. M.; Meek, C.; Rounthwaite, R.; Kadie, C. & Kaelbling, P. (2000),
'Dependency Networks for Inference, Collaborative Filtering, and Data Visualization', *Journal of Machine Learning Research* 1, 49-75.

Likelihood-Based Learning

Wanted: a likelihood function

database

Problems

- Multiple Tables.
- Dependent data points
- Products are not normalized
- ➢ Pseudo-likelihood

Users

Name	Smokes	Cancer
Anna	Т	Т
Bob	Т	F

Friend

Name1	<u>Name2</u>
Anna	Bob
Bob	Anna

The Random Selection Log-Likelihood

- 1. Randomly select instances $X_1 = x_1, ..., X_n = x_n$ for each first-order variable in BN.
- 2. Look up their properties, relationships in database.
- 3. Compute log-likelihood for the BN assignment obtained from the instances.
- 4. L^{R} = expected log-likelihood over uniform random selection of instances.

		Hyper	entity]	Hyperfe	atures			
Smokes(X) Friend(X,Y)	Γ	Х	Y	F(X,Y)	S(X)	S(Y)	C(Y)	P_B^{γ}	$ln(P_B^{\gamma})$
	γ_1	Anna	Bob	Т	Т	Т	F	0.105	-2.254
	γ_2	Bob	Anna	Т	Т	Т	Т	0.245	-1.406
	γ_3	Anna	Anna	F	Т	Т	Т	0.263	-1.338
$Smokes(Y) \rightarrow Cancer(Y)$	γ_4	Bob	Bob	F	Т	Т	F	0.113	-2.185

$L^R = -(2.254 + 1.406 + 1.338 + 2.185)/4 \approx -1.8$

Schulte, O. (2011), A tractable pseudo-likelihood function for Bayes Nets applied to relational data, *in 'SIAM SDM'*, *pp. 462-473*. 24/39

Equivalent Closed-Form

For each node, find the *expected log-conditional probability*, then sum.

$\ln P^*(D B) = \sum_{\text{nodes } i \text{ values } k} \sum_{\substack{k \text{ parent-states } j \\ P_D(v_i = k, p_{a_i} = j)} \sum_{\substack{k \in i \\ P_B(v_i = k, p_{a_i} = j)}} \sum_{k \in i \\ P_B($	$a_i = i$)
Database D	
frequency of	Parameter
co-occurrences of	of Bayes
child node value	net
and parent state	

Pseudo-likelihood Maximization

Proposition For a given database D, the parameter values that maximize the pseudo likelihood are the empirical conditional frequencies in the database.

The Bad News

- Sufficient Statistics are harder to compute than for i.i.d. data.
 - e.g. find the number of (X,Y) such that **not** *Friend*(*X*, *Y*) *and neither X nor Y has cancer*.
- <u>Scoring</u> models is computationally more expensive than <u>generating</u> candidate models.

Kennes, R. & Smets, P. (1990), Computational aspects of the Moebius transformation, '*UAI*', *pp. 401-416*. Schulte, O.; Khosravi, H.; Kirkpatrick, A.; Gao, T. & Zhu, Y. (2014), 'Modelling Relational Statistics With Bayes Nets', *Machine Learning* 94, 105-125.

Anomaly Detection

Anomaly Detection with Generative Models

Cansado, A. & Soto, A. (2008), 'Unsupervised anomaly detection in large databases using Bayesian networks', *Applied Artifical Intelligence 22(4), 309—330.* http://www.bayesserver.com/Techniques/AnomalyDetection.aspx

Anomaly Detection with Generative Models

Cansado, A. & Soto, A. (2008), 'Unsupervised anomaly detection in large databases using Bayesian networks', *Applied Artifical Intelligence 22(4), 309—330.* http://www.bayesserver.com/Techniques/AnomalyDetection.aspx

New Anomaly Measure

New Anomaly Measure

Anomaly Metric Correlates With Success

Unusual Teams have worse standing. N = 20.

	<i>P</i> (Likelihood- ratio , Standing)
Top Teams	0.62
Bottom Teams	0.41

Unusual Movies have higher ratings. N = 3060.

Genre	P (Likelihood- ratio , avg-rating)
Film-Noir	0.49
Action	0.42
Sci-Fi	0.35
Adventure	0.34
Drama	0.28

Riahi, F.; Schulte, O. & Liang, Q. (2014), 'A Proposal for Statistical Outlier Detection in Relational Structures', AAAI-StarAI Workshop on Statistical-Relational AI.

Causal Questions

Relationships vs. Attributes

- Do relationships cause attributes? E.g., Homophily.
- Do attributes cause relationships? E.g., social influence.
- Can we tell?

Social Influence

Homophily

http://www.acthomas.ca/academic/acthomas.htm

Shalizi, C. R. & Thomas, A. C. (2011), 'Homophily and contagion are generically confounded in observational social network studies', *Sociological Methods & Research 40(2), 211–239*.

Individual Causal Contributions to Group Results

- Important Problem in Sports Statistics: How much did a player contribute to a match result?
- Sabermetrics.
- Actual Causation.

Pearl, J. (2000), Causality: Models, Reasoning, and Inference, Ch. 10.

Player-Based Approaches: Ice Hockey

- Basic question: what difference does the *presence of a player* make? Examples:
 - Logistic regression of which team scored given a presence indicator variable for each player (Grammacy et al. 2013).
 - Log-linear model of goal-scoring rate given a presence indicator variable for each player (Thomas et al. 2013).

• Major problem: distinguish players from same line.

Gramacy, R.; Jensen, S. & Taddy, M. (2013), 'Estimating player contribution in hockey with regularized logistic regression.', *J* ournal of Quantitative Analysis in Sports 9, 97-111. Thomas, A.; Ventura, S.; Jensen, S. & Ma, S. (2013), 'Competing Process Hazard Function Models for Player Ratings in Ice Hockey', *The Annals of Applied Statistics* 7(3), 1497-1524.

Action-Based Approaches

- Basic question: What difference does an *action* make?
- > Model causal effect of action on goal.
- Player contribution = sum of scores of player's actions.
 - Schuckers and Curro (2013), McHall and Scarf (2005; soccer).
- Can action effect models be improved with causal graphs?
 - Model Selection.
 - Model causal chains.

Schuckers, M. & Curro, J. (2013), Total Hockey Rating (THoR): A comprehensive statistical rating of National Hockey League forwards and defensemen based upon all on-ice events, *in '7th Annual MIT Sloan Sports Analytics Conference'*.

Run Tetrad on NHL data (preliminary)

Summary

- Relational data: common and complex.
- Random selection semantics for logic answers fundamental statistical questions in a principled way.
 - inference.
 - (pseudo)-likelihood function.
- Computing sufficient statistics is hard.
 - Fast Moebius transform helps.
- Anomaly detection as an application in progress.
- New Causal Questions:
 - do attributes cause relationships or vice versa?
 - how much does an individual contribute to a group result (e.g., a goal in sports).

Collaborators

The End

• Any questions?

Structure Learning

- In principle, just replace singletable likelihood by pseudo likelihood.
- Efficient new algorithm (Khosravi, Schulte et al. AAAI 2010). Key ideas:
 - Use single-table BN learner as black box **module**.
 - Level-wise search through table join lattice. Results from shorter paths are propagated to longer paths.

Phase 1: Entity tables

