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Outline

® Review of relational databases.
* Example Bayesian networks.
® Relational classification with Bayesian networks.
* Fundamental Learning Challenges.
® Defining model selection scores.
® Computing sufficient statistics.
® Work in Progress.
® Anomaly Detection.

® Homophily vs. social influence. new
: : > causal
® Player contribution to team result. questions
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Relational Databases
® 1970s: Computers are spreading. Many

organizations use them to store their data.
® Ad hoc formats
= hard to build general data management
systems.

= lots of duplicated effort.
® The Standardization Dilemma:
® Too restrictive: doesn’t fit users’ needs.

® Too loose: back to ad-hoc solutions.
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The Relational Format

* Codd (IBM Research 1970)
® The fundamental question: What kinds of

izzformation do users need to represent?

® Answered by first-order predicate logic!
(Russell, Tarski).

® The world consists of
® Individuals/entities.

* Relationships/links among them.
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Tabular Representation

A database is a finite model for an arbitrary first-order logic Vocabulary.

Students S Professor P
Name intelligence(S) ranking(S) teaching
Jack 3 1 Name popularity(P) Ability(P)
Kim 2 1 Oliver 3 1
Paul 1 2 David 2 1

Prof(C)

Oliver
David
Oliver

Key fields are underlined.

Nonkey fields are deterministic functions of key fields.

k Ullman, J. D. (1982), Principles of Database Systems 6/39




Data Format Is Complex

ER-Diagram of the Mondial Database
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Database Management Systems

® Maintain data in linked tables.

* Structured Query Language (SQL) allows fast data retrieval.
* E.g, find all CMU students who are statistics majors with gpa > 3.0.

® Multi-billion dollar industry, $15+ bill in 2006.
® [BM, Microsoft, Oracle, SAP.

® Much interest in analysis (data mining, business intelligence,

predictive analytics, OLAP...)
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Relationship to Single Data Table

* Single data table = finite model for Jack
monadic first-order predicates.
© Single population. 3 1
Students S
Name intelligence(S) ranking(S)
Jack 3 1 3 2
Kim 2 1
Paul 1 2
Paul
1 2
9/39
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Relationship to Network Analysis

* A single-relation social network = finite model for single
binary predicate (“Friend(X,Y)”).
® General network allows:
* Different types of nodes (“actors”).
® Labels on nodes.
* Different types of (hyper)edges.

e [abels on edges.
See Newman (2003).

e Observation A relational database is equivalent to a general

network as described.

Newman, M. E. J. 2003. The structure and function of complex networks. SIAM Review 45, 167-256. 10739
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Example: First-order model as a
network

brother
person
king

brother

ft leg

Russell and Norvig, “A Modern Introduction to Artificial Intelligence”, Fig. 8.2. 11739
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Bayesian Networks for Relational Databases

Russell and Norvig, “Artificial Intelligence”, Ch.14..6, 3rd ed.
D.Heckerman, Chris Meek & Koller, D. (2004), 'Probabilistic models for relational data', Technical report, Microsoft Research.
Poole, D. (2003), First-order probabilistic inference, IJCAI pp. 985-991.
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Random Selection Semantics for Bayes Nets

gender(Y) Friend(X,Y)

O,

coffee_dr(X) ¢ gender(X)

P(gender(X) = male, gender(Y) = male, Friend(X,Y) =
true, coffee_dr(X) = true) = 30%

means

“if we randomly select a user X and a user Y, the
probability that both are male and that X drinks
cottee is 30%.
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Bayesian Network Examples

® Mondial Network

* University Network
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Random Selection Semantics for
Random Variables

Population

People

Halpern, “An analysis of first-order logics of probability”, Al Journal 1990.
Bacchus, “Representing and reasoning with probabilistic knowledge”, MIT Press 1990.

Population variables

Parametrized Random Variables

X

Random Selection
from People.
P(X = Anna) = 2.

Gender(X)
Gender of selected person.
P(Gender(X) = W) = 2.

Y

Random Selection
from People.

P(Y = Anna) = V2.

Friend(X,Y) =
T if selected people are

friends, F otherwise
P(Friend(X,Y) =T) = 1.

Gender(Y)
Gender of selected person.
P(Gender(Y) =W) = .

15739
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Inference: Relational Classification
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Independent Individuals and Direct Inference

P(rank(S)=hi| Intelligence(S) = hi) = 70%

Intelligence(S)

N

rank(S)

® Query: What is P(rank(bob) = hi | intelligence(bob) = hi)?

® Answer: 70%.

The direct inference principle
P(P (X) =p) 2P(D(a)) = p

where @ is a first-order formula with free variable X,

a 1s a constant.

Halpern, “An analysis of first-order logics of probability”, Al Journal 1990.

A intelligence = hi.
rank = ?
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g Direct Inference is insufficient for
related individuals

gender(Y) | | Friend(X)Y)

./

[ P(gender(X) = Woman |gender(Y) = Woman, F(X,Y) =T)=. } gender(X)

P(gender(X) = Woman| gender(Y) = Man, F(X,Y) =T) = .4

® Suppose that Sam has friends Alice, John, Kim, Bob,...

* Direct inference specities
P(gender(sam) = Man | gender(alice) = Woman) = .6
but not
P(gender(sam) = Man | gender(alice), gender(john),
gender(kim), gender(bob)....).

Learning Bayesian Networks for Relational Databasesa 18/39
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Random Selection Classification

® Basic idea: log—conditional probability eexpected log—conditional probability

wrt random instantiation of free first-order variables.

® Good predictive accuracy (Schulte et al. 2012, Schulte et al. 2014).

gender(Y) | | Friend(sam,Y)

e

[P(gender(sam) = Woman | gender(Y) = Woman, F(sam,Y) = T)= .GJ/ gender(sam)

P(gender(sam) = Woman | gender(Y) = Man, F(sam,Y)=T) = .4

gender() In(CP)

female In(0.6) = -0.51 40% -0.51x0.4=-0.204
male In(0.4) = -0.92 60% -0.92x0.6 =-0.552
score gender(sam) = Woman -0.204-0.552 = -0.756
score gender(sam) = Man =-0.67
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Defining Joint Probabilities

o Knowledge—based Model Construction: Instantiate graph

with first-order nodes to obtain graph with instance nodes.

¢ Fundamental problem: DAGs are not closed under

Instantiation.

e Alternative: relational dependency networks.

Neville, ]. & Jensen, D. (2007), 'Relational Dependency Networks', Journal of Machine Learning Research 8, 653--692.
Heckerman, D.; Chickering, D. M.; Meck, C.; Rounthwaite, R.; Kadie, C. & Kaelbling, P. (2000),

20/39
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Wellman, M.; Breese, ]. & Goldman, R. (1992), 'From knowledge bases to decision models', Knowledge Engineering Review 7, 35--53.

'Dependency Networks for Inference, Collaborative Filtering, and Data Visualization', Journal of Machine Learning Research 1, 49—75.
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The Cyclicity Problem

Gender(Y) Friend(X,Y)

\/

Gender(X) Template Bayesian Network

Grounding: Instantiate
population variables
with constants

Friend(bob,anna) Friend(anna,bob) Instantiated
Inference
l Graph
gender(bob) gender(anna)
Friend(bob,bob) Friend(anna,anna)
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Likelihood-Based Learning

ing Bayesian Networks for Relational Databases
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database

@ Bayesian Network

Likelihood,
e.g.-3.5

Problems
® Multiple Tables.
® Dependent data points

» Products are not normalized

» Pseudo-likelihood

k Learning Bayesian Networks for Relational Databasesa

Wanted: a likelihood function

Users
Name Smokes | Cancer
Anna T T
Bob T F
Friend
Namel Name?
Anna Bob
Bob Anna
23/39
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The Random Selection Log-Likelihood

1. Randomly select instances X, = x,,...,X =x_ for each first-order variable in

BN.

2. Look up their properties, relationships in database.

3. Compute log-likelihood for the BN assignment obtained from the

Instances.

4. IR = expected log—likelihood over uniform random selection of instances.

Smokes(X)| | Friend(X,Y)

\

Smokes(Y) > Cancer(Y)

Hyperentity Hyperfeatures
I X Y F(X)Y) | S(X) | S(Y) | C(Y) PL | In(P})
71 | Anna | Bob T T T F 0.105 | -2.254
v2 | Bob | Anna T T T T 0.245 | -1.406
~v3 | Anna | Anna F T T T 0.263 | -1.338
~4 | Bob Bob F T T F 0.113 | -2.185

[R=-(2.254+1.406+1.338+2.185)/4 = -1.8

Schulte, O. (2011), A tractable pseudo-likelihood function for Bayes Nets applied to relational data, in 'SIAM SDM', pp. 462-473.
24/39
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In P*(D|B) =

ISR

nodes i values k parent-states j

|

Database D
frequency of
co-occurrences of
child node value
and parent state

For each node, tind the expected log-

conditional probability, then sum.

Pp(v; = k,pa; = j)In Pg(v; = k|pa; = j)

Equivalent Closed-Form

Parameter
of Bayes
net

-
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=T =T
Smokes(X), Friend(X,Y)
=T | Smokes(Y) r» Cancer(Y)
Users
Name Smokes | Cancer
Anna T T
Bob T F
Friend
Namel Name?
Anna Bob
Bob Anna
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Pseudo-likelihood Maximization

Proposition For a given database D, the
parameter values that maximize the pseudo
likelihood are the empirical conditional

frequencies in the database.

The Bad News

* Sufficient Statistics are harder to compute than for i.i.d. data.
* e.g. find the number of (X,Y) such that
not Friend(X,Y) and neither X nor Y has cancer.

* Scoring models is computationally more expensive than

generating candidate models.

-
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RA(S,P) =R,

Initial table with no
false relationships

R, R, P
T T 0.2 \T T 0.2

* T 0.3 + > F T 0.1
T * 04 \ T * 04
% ;> F * 0.6

Machine Learning 94, 105-125.

-

J.P. = joint probability

R, [P

/

+

v

T
&
T
R

Kennes, R. & Smets, P. (1990), Computational aspects of the Moebius transformation, 'UAI', pp. 401-416.
Schulte, O.; Khosravi, H.; Kirkpatrick, A.; Gao, T. & Zhu,Y. (2014), 'Modelling Relational Statistics With Bayes Nets',

T
T
F
F

The Fast Moebius Transform Finds
Negated Relationship Counts

Reg(S,C) = R,

table with joint
probabilities

0.2
0.1
0.2
0.5

27/39




-

Learn

Anomaly Detection
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Anomaly Detection with Generative
Models

new topic Anomaly

‘l’ Detection
relational data

not iid

iid data
feature
vectors

generative
model generative
for model
new relational for iid data
method | 921a new
\L /\methOd
anomaly anomaly | gener
score = score = alizes | anomaly
pseudo pseudo [ TT7"- » IS_'EOIF_i = ;
likelihood likelihood IKEIINOO
ratio

Cansado, A. & Soto, A. (2008), 'Unsupervised anomaly detection in large databases using Bayesian networks',

Applied Artifical Intelligence 22(4), 309—330.
Qttp: // Www.bayesserver. com/ Techniques/ AnomalyDetection.aspx
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Anomaly Detection with Generative
Models

new topic Anomaly

‘l’ Detection
relational data

not iid

iid data
feature
vectors

generative
model generative
for model
new relational for iid data
method | 921a new
\L /\methOd
anomaly anomaly | gener
score = score = alizes | anomaly
pseudo pseudo [ TT7"- » IS_'EOIF_i = ;
likelihood likelihood IKEIINOO
ratio

Cansado, A. & Soto, A. (2008), 'Unsupervised anomaly detection in large databases using Bayesian networks',

Applied Artifical Intelligence 22(4), 309—330.
Qttp: // Www.bayesserver. com/ Techniques/ AnomalyDetection.aspx
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New Anomaly Measure

population individual
restrict to
Complete target
Database | ingjvidual @ Individual
> Database
Bayes net Bayes net
1 Learning Learning
Algorithm Algorithm
Generic Individual
Bayes Bayes Net
Net \\\\\-i ‘(/////
generic individual
model model
likelihood likelihood
Lg Li
model
likelihood
ratio Lg/Li
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New Anomaly Measure

population individual
restrict to
Complete target
Database | jndividual @ Individual
> Database
Bayes net Bayes net
1 Learning Learning
Algorithm Algorithm
Generic Individual
Bayes Bayes Net
Net \ /
generic individual
model model
likelihood likelihood
Lg Li

N,

model
likelihood

ratio Lg/Li
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Success

Unusual Teams have worse
standing. N = 20.

Anomaly Metric Correlates With

Unusual Movies have
higher ratings. N = 3060.

0 (Likelihood- - 0 (Likelihood-
ratio , Standing Genre ratio , avg-rating

Top Teams 0.62

Bottom Teams 0.41

Film-Noir 0.49
Action 0.42
Sci-Fi 0.35
Adventure 0.34
Drama 0.28

Riahi, F.; Schulte, O. & Liang, Q. (2014, 'A Proposal for Statistical Outlier Detection in Relational Structures',

AAAI-StarAl Workshop on Statistical-Relational Al

33/39
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Causal Questions
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Relationships vs. Attributes

® Do relationships cause attributes? E.g., Homophily.

® Do attributes cause relationships? E.g., social influence.

e Can we tell?

Social Influence Homophily
gender(Y) | | Friend(X,Y) gender(Y) gender(X)
gender(X) Friend(X,Y)

http:/ /www.acthomas.ca/academic/acthomas.htm

Shalizi, C. R. & Thomas, A. C. (2011), 'Homophily and contagion are generically confounded
in observational social network studies', Sociological Methods & Research 40(2), 211--239. 35/39
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Individual Causal Contributions to Group Results

N

* Important Problem in Sports

Statistics: How much did a player

contribute to a match result?

e Sabermetrics.

® Actual Causation.

Pearl, ]. (2000), Causality: Models, Reasoning, and Inference, Ch. 10.

| INTEGRATED SERIES IN INFORMATION SYSTEMS 26




Player-Based Approaches: Ice Hockey

® Basic question: what difference does the
presence of a player make? Examples:
® Logistic regression of which team scored
given a presence indicator variable for
each player (Grammacy et al. 2013).
® Log-linear model of goal-scoring rate
given a presence indicator variable for

each player (Thomas et al. 2013).

® Major problem: distinguish players from

same line.

Gramacy, R.; Jensen, S. & Taddy, M. (2013), 'Estimating player contribution in hockey with regularized logistic regression.', |
ournal of Quantitative Analysis in Sports 9, 97-111.
Thomas, A.; Ventura, S.; Jensen, S. & Ma, S. (2013), 'Competing Process Hazard Function Models for Player Ratings in Ice Hockey',
The Annals of Applied Statistics 7(3), 1497-1524.

37/39
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Action-Based Approaches

® Basic question: What difference does an action make?
» Model causal effect of action on goal.

* Player contribution = sum of scores of player’s actions.

® Schuckers and Curro (2013), McHall and Scart (2005; soccer).
* Can action effect models be improved with causal graphs?

® Model Selection.

® Model causal chains.

Schuckers, M. & Curro, J. (2013), Total Hockey Rating (THoR): A comprehensive statistical rating of National Hockey

League forwards and defensemen based upon all on-ice events, in '7th Annual MIT Sloan Sports Analytics Conference’.

-
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Run Tetrad on NHL data (preliminary)
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Summary

e Relational data: common and complex.

e Random selection semantics for logic answers fundamental statistical

questions in a principled way.
® inference.
* (pseudo)-likelihood function.
* Computing sufficient statistics is hard.
® Fast Moebius transform helps.
® Anomaly detection as an application in progress.
® New Causal Questions:
® do attributes cause relationships or vice versa?
® how much does an individual contribute to a group result (e.g., a goal

in sports).

Learning Bayesian Networks for Relational Databasesa 40/39




-

Collaborators
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Zhensong | Fatemeh
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The End

L Any questions?

Learning Bayesian Networks for Relational Databases
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Structure Learning

® In principle, just replace single-

table likelihood by pseudo
likelihood.

e Efficient new algorithm
(Khosravi, Schulte et al. AAAI

Registered(S,C), TA(S,C), Teaches(P,C)

Registered(S,C), Registered(S,C), TA(S,C),
TA(S',C) Teaches(P,C) Teaches(P,C)
2010). Key ideas: 1 Teaches(P.C)

5
® Use single-table BN learner as '
black box module. @

e Level-wise search through

table join lattice. Results from
shorter paths are propagated to

longer paths.
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Phase 1: Entity tables

Students BN learner L

Name intelligence ranking —
Jack 3

Kim 2
Paul 1

intelligence(S)

Course BN learner L

Prof- Prof-

Number rating difficulty popularity teachablity teach-ability(p(C))

101 3 1 1 2
102 2 2 2 2
103 3 y 1 1

popularity(p(C))

Learning Bayesian Networks for Relational Databases 44/39
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Phase 2: relationship tables

Registration Student Course
S:Name C.number grade satisfaction| intelligence ranking rating difficulty Popularity Teach-ability

Jack 101 A 1 3 1 3 1 1 2

intelligence(S) teach-ability(p(C))
BN learner L .
l popularity(p(C))

intelligence(S) teach-ability(p(C))

satisfaction(S,C) popularity(p(C))
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Phase 3: add Boolean relationship
indicator variables

intelligence(S)

teach-ability(p(C))

satisfaction(S,C) popularity(p(C))

teach-ability(p(C))

satisfaction(S,C) popularity(p(C)) F&E




