
School of Computing Science Simon Fraser University

Vancouver, Canada



A Hierarchy of Independence Assumptions for Multi-Relational Bayes Net Classifiers



### Outline

- Multi-Relational Classifiers
- Multi-Relational Independence Assumptions
- Classification Formulas
- Bayes Nets
- Evaluation

### **Database Tables**

- Tables for Entities, Relationships
- Can visualize as network

| Course      |        |            |  |  |
|-------------|--------|------------|--|--|
| <u>c-id</u> | Rating | Difficulty |  |  |
| 101         | 3      | 1          |  |  |
| 102         | 2      | 2          |  |  |

|             | Student      |         |  |  |  |
|-------------|--------------|---------|--|--|--|
| <u>s-id</u> | Intelligence | Ranking |  |  |  |
| Jack        | ???          | 1       |  |  |  |
| Kim         | 2            | 1       |  |  |  |
| Paul        | 1            | 2       |  |  |  |

| Ranking = 1 | Diff = 1 |
|-------------|----------|
| Jack 1      | 101      |
| Registr     | ation    |

|             | Professor  |            |  |  |  |
|-------------|------------|------------|--|--|--|
| <u>p-id</u> | Popularity | Teaching-a |  |  |  |
| Oliver      | 3          | 1          |  |  |  |
| Jim         | 2          | 1          |  |  |  |

|             | Registration |       |              |  |  |
|-------------|--------------|-------|--------------|--|--|
| <u>s-id</u> | <u>c.id</u>  | Grade | Satisfaction |  |  |
| Jack        | 101          | А     | 1            |  |  |
| Jack        | 102          | В     | 2            |  |  |
| Kim         | 102          | А     | 1            |  |  |
| Paul        | 101          | В     | 1            |  |  |

Link-based Classification *Target table*: Student *Target entity*: Jack *Target attribute (class)*: Intelligence

### **Extended Database Tables**

|             | Registration |       |              | Student     |              |         | Course      |        |            |
|-------------|--------------|-------|--------------|-------------|--------------|---------|-------------|--------|------------|
| <u>s-id</u> | <u>c.id</u>  | Grade | Satisfaction | <u>s-id</u> | Intelligence | Ranking |             |        |            |
| Jack        | 101          | Α     | 1            |             | <u> </u>     |         | <u>c-id</u> | Rating | Difficulty |
|             |              |       |              | Jack        | ???          | 1       | 101         | 3      | 1          |
| Jack        | 102          | В     | 2            | Kim         | 2            | 1       |             |        |            |
| Kim         | 102          | Α     | 1            | Paul        | 1            | 2       | 102         | 2      | 2          |
| Paul        | 101          | В     | 1            |             |              |         |             |        |            |
|             |              |       | Ļ            |             |              | ļ       |             | Ļ      |            |

| <u>s-id</u> | <u>c.id</u> | Grade | Satisfaction | Intelligence | Ranking | Rating | Difficulty |
|-------------|-------------|-------|--------------|--------------|---------|--------|------------|
| Jack        | 101         | А     | 1            | ???          | 1       | 3      | 1          |
| Jack        | 102         | В     | 2            | ???          | 1       | 2      | 2          |
| Kim         | 102         | А     | 1            | 2            | 1       | 2      | 2          |
| Paul        | 101         | В     | 1            | 1            | 2       | 3      | 1          |

A Hierarchy of Independence Assumptions

| Multi-Relational (                                                                                | Classifiers                                  |
|---------------------------------------------------------------------------------------------------|----------------------------------------------|
| Count relational features                                                                         | Aggregate<br>relational features             |
| Log-Linear Models                                                                                 | Propositionalization                         |
| Example:<br>1. use number of A,s number of Bs,                                                    | Example: use average grade<br>Disadvantages: |
| 2. $\ln(P(class)) = \Sigma x_i w_i - Z$                                                           | <ul> <li>loses information</li> </ul>        |
| Disadvantage: slow learning                                                                       | • slow to learn (up to several CPU days)     |
| + Independence<br>Assumptions                                                                     |                                              |
| Log-Linear Models With Independencies<br>+ Fast to learn<br>-Independence Assumptions may be only |                                              |
| A Hierarchy of Independence Assumptions                                                           | 5/18                                         |

### Independence Assumptions

A Hierarchy of Independence Assumptions

# Independence Assumptions: Naïve Bayes

| <u>s-id</u> | <u>c.id</u> | Grade | Satisfaction | Intelligence | Ranking | Rating | Difficulty |
|-------------|-------------|-------|--------------|--------------|---------|--------|------------|
| Jack        | 101         | А     | 1            | ???          | 1       | 3      | 1          |
| Jack        | 102         | В     | 2            | ???          | 1       | 2      | 2          |
| Kim         | 102         | А     | 1            | 2            | 1       | 2      | 2          |
| Paul        | 101         | В     | 1            | 1            | 2       | 3      | 1          |

#### Naive Bayes:

non-class attributes are independent of each other, given the target class label. Legend: Given the blue information, the yellow columns are independent.

### Path Independence

| <u>s-id</u> | <u>c.id</u> | Grade | Satisfaction | Intelligence | Ranking | Rating | Difficulty |
|-------------|-------------|-------|--------------|--------------|---------|--------|------------|
| Jack        | 101         | А     | 1            | ???          | 1       | 3      | 1          |
| Jack        | 102         | В     | 2            | ???          | 1       | 2      | 2          |
| Kim         | 102         | А     | 1            | 2            | 1       | 2      | 2          |
| Paul        | 101         | В     | 1            | 1            | 2       | 3      | 1          |

#### Naive Bayes:

non-class attributes are independent of each other, given the target class label.

#### Path Independence:

Links/paths are independent of each other, given the attributes of the linked entities. Legend: Given the blue information, the yellow rows are independent.

### Influence Independence

| <u>s-id</u> | <u>c.id</u> | Grade | Satisfaction | Intelligence | Ranking | Rating | Difficulty |
|-------------|-------------|-------|--------------|--------------|---------|--------|------------|
| Jack        | 101         | А     | 1            | ???          | 1       | 3      | 1          |
| Jack        | 102         | В     | 2            | ???          | 1       | 2      | 2          |
| Kim         | 102         | А     | 1            | 2            | 1       | 2      | 2          |
| Paul        | 101         | В     | 1            | 1            | 2       | 3      | 1          |

Legend: Given the blue information, the yellow columns are independent from the orange columns

#### Naive Bayes:

non-class attributes are independent of each other, given the target class label.

#### Path Independence:

Links/paths are independent of each other, given the attributes of the linked entities.

#### Influence Independence:

Attributes of the target entity are independent of attributes of related entities, given the target class label.

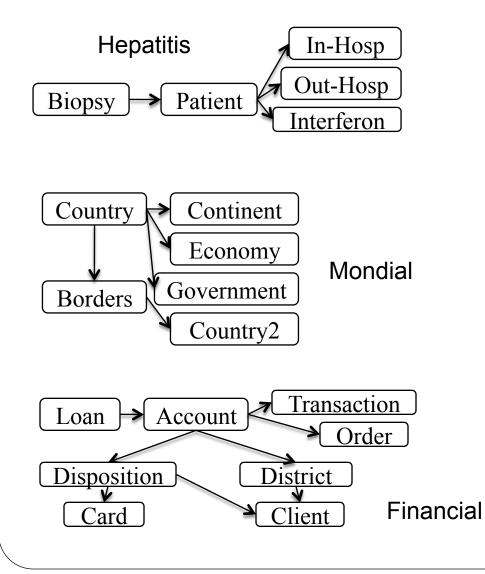
#### Path-Class Independence:

the existence of a link/path is independent of the class label.

## **Classification Formulas**

- Can rigorously derive log-linear prediction formulas from independence assumptions.
- Path Independence: predict max class for: log(P(class | target attributes)) + sum over each table, each row: [log(P(class | information in row)) – log(P(class | target atts))]
- PI + Influence Independence: predict max class for: log(P(class | target attributes)) + sum over each table, each row: [log(P(class | information in row)) – log(prior P(class))]

### **Relationship to Previous Formulas**

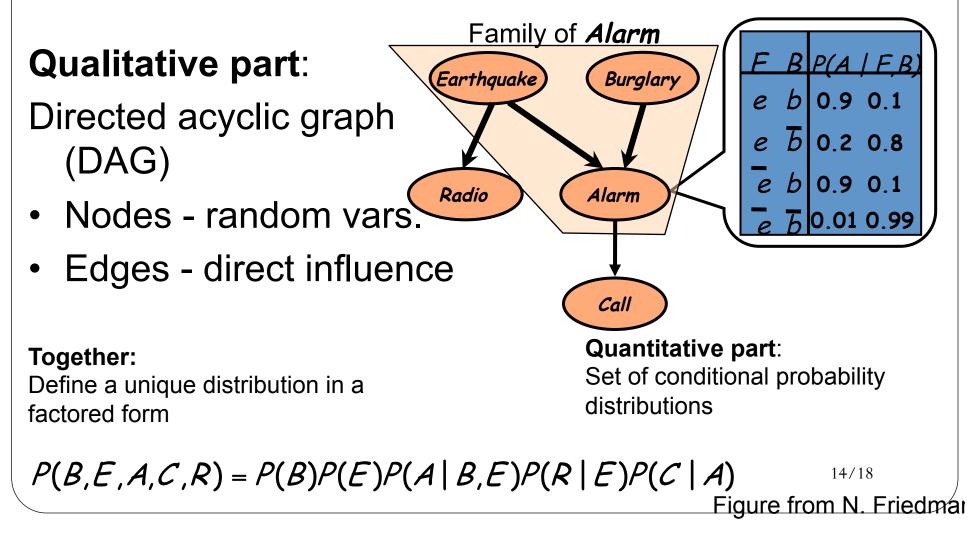

| Assumption                  | Previous Work with Classification<br>Formula                                           |
|-----------------------------|----------------------------------------------------------------------------------------|
| Path Independence           | none; our new model.                                                                   |
| PI + Influence Independence | Heterogeneous Naive Bayes Classifier<br>Manjunath et al. ICPR 2010.                    |
| PI + II + Naive Bayes       | Exists + Naive Bayes (single relation only)<br>Getoor, Segal, Taskar, Koller 2001      |
| PI + II + NB + Path-Class   | Multi-relational Bayesian Classifier<br>Chen, Han et al. Decision Support Systems 2009 |

A Hierarchy of Independence Assumptions

### **Evaluation**

A Hierarchy of Independence Assumptions

### Data Sets and Base Classifier




- Standard Databases KDD Cup, UC Irvine
- MovieLens not shown.

#### Classifier

- Can plug in any singletable probabilistic *base classifier* with classification formula.
- We use **Bayes nets**.

### What is a Bayes net? Compact representation of joint probability distributions via conditional independence



## Independence-Based Learning is Fast

| weakest    | strongest  |
|------------|------------|
| assumption | assumption |

|           | Bayes Net Classifiers |       |       |       | Other Methods |       |
|-----------|-----------------------|-------|-------|-------|---------------|-------|
| Dataset   | PIC                   | HNBC  | E-NB  | MRNBC | MLN           | Tilde |
| Hepatitis | 7.43                  | 7.01  | 2.07  | 2.07  | 3902          | 853   |
| Financial | 28.31                 | 23.21 | 15.01 | 15.01 | NT            | 2429  |
| MovieLens | 25.32                 | 17.67 | 5.31  | 5.31  | 960           | 1100  |
| Mondial   | 5.41                  | 5.08  | 1.89  | 1.89  | 5.44          | 0.3   |

Training Time in seconds

A Hierarchy of Independence Assumptions

## Independence-Based Models are Accurate

weakest assumption

strongest assumption

| Accuracy  | Bayes Net Classifiers |      |      |       | Reference Methods |       |  |
|-----------|-----------------------|------|------|-------|-------------------|-------|--|
| Dataset   | PIC                   | HNBC | E-NB | MRNBC | MLN               | Tilde |  |
| Hepatitis | 0.80                  | 0.78 | 0.78 | 0.74  | 0.77              | 0.61  |  |
| Financial | 0.91                  | 0.90 | 0.89 | 0.81  | NT                | 0.89  |  |
| MovieLens | 0.66                  | 0.57 | 0.53 | 0.50  | 0.484             | 0.48  |  |
| Mondial   | 0.85                  | 0.82 | 0.78 | 0.82  | 0.76              | 0.71  |  |

 Similar results for F-measure, Area Under Curve

### Conclusion

- Several plausible independence assumptions/classification formulas investigated in previous work.
  - Organized in *unifying hierarchy*.
- New assumption: <u>multi-relational path independence</u>.
  - *most general*, implicit in other models.
- Big advantage: Fast scalable simple learning.
  - Plug in single-table probabilistic classifier.
- Limitation: no pruning or weighting of different tables.
   Can use logistic regression to learn weights (Bina, Schulte et al. 2013).

Bina, B.; Schulte, O.; Crawford, B.; Qian, Z. & Xiong, Y. "Simple decision forests for multi-relational classification", *Decision Support Systems*, **2013** 

## Thank you!

• Any questions?



A Hierarchy of Independence Assumptions