Three Applications of Means-Ends Epistemology **Oliver Schulte Department of Philosophy and School of Computing Science** Simon Fraser University Vancouver, Canada oschulte@cs.sfu.ca

Outline

Inference

A Goodmanian Riddle of Induction

Will a particle reaction be observed?

Explaining Observed Correlations with **Causal Models**

Find conservation laws explaining which

The Means-Ends Approach to Inductive

Three Applications of Means-Ends Epistemology - Caltech

Induction in Particle Physics

reactions are observed.

Philosophical Roots of Means-Ends Epistemology (Learning Theory)

Peirce:

Peirce

Reichenbach

Putnam

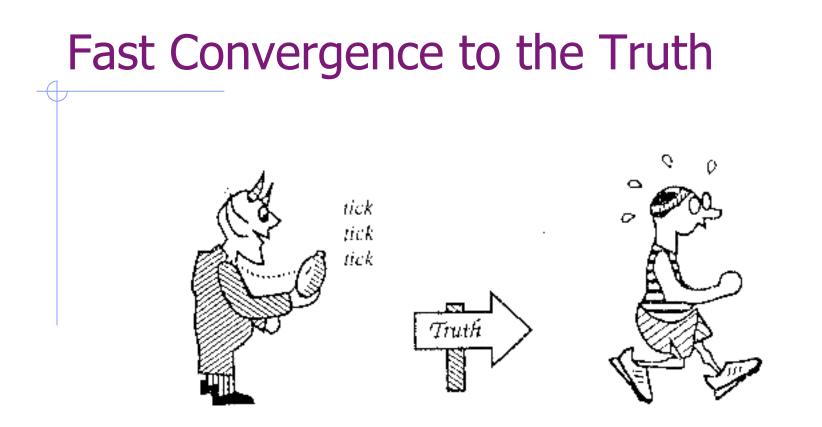
• In inquiry, some things are settled, some are in doubt.

•Inquiry settles on true opinion in the limit.

<u>Reichenbach</u>, "Vindication of Induction": guaranteed convergence to the right opinion.

Glymour, Kelly

Convergence to the Correct Theory in the Limit of Inquiry

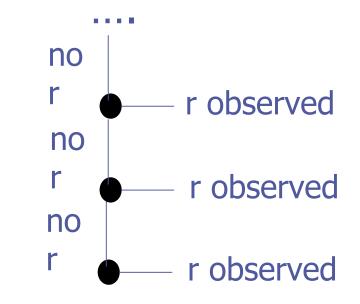


Inductive Axiology

- Consider epistemic goals **in addition to** long-run convergence (Putnam 1965)
- Analyze relationship between different goals,
 e.g.:
- Fast Convergence

• Stable Convergence - avoid theory changes (Plato, Putnam 1965, "epistemic conservatism" Sklar 1975, Kuhn)

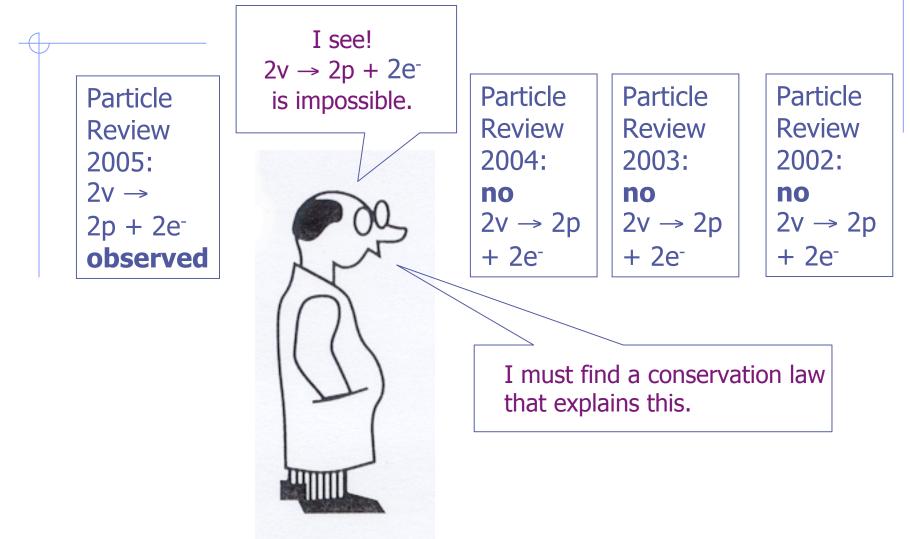
Mistake Bounds - avoid false predictions



Reliable Stable Convergence: An Example

Is a certain reaction possible?, e.g. $r = n + n \rightarrow p + p + e^{-} + e^{-}$

Rules


- Inquirer makes conjecture ("yes", "no", ?)
- Demon shows experimental outcomes ("observed" or not).
- Inquirer pays for abandoning "yes" or "no".

Mean-Ends Analysis for "Is this reaction possible?"

Proposition All inference rules that converge to the right answer with at most one mind change conjecture ? or "reaction is forbidden" until the reaction is observed.

Induction in Particle Physics

Additive Conservation Laws

	Particle	Charge	Baryon #	Tau#	Electron #	Muon#
1	Σ^{-}	-1	1	0	0	0
2	$\frac{\Sigma^{-}}{\Sigma^{+}}$	1	-1	0	0	0
3	Σ^0	0	1	0	0	0
4	$\overline{\Sigma}^{0}$	0	-1	0	0	0
5	n	0	1	0	0	0
6	\overline{n}	0	-1	0	0	0
7	p	1	1	0	0	0
8	$\frac{p}{\overline{p}}$	-1	-1	0	0	0
9	K^0	0	0	0	0	0
10	\overline{K}^{0}	0	0	0	0	0
11	K^+	1	0	0	0	0
12	K^-	-1	0	0	0	0
13	π^+	1	0	0	0	0
14	π^{-}	-1	0	0	0	0
15	π^0	0	0	0	0	0
16	γ	0	0	0	0	0
17	τ^{-}	-1	0	1	0	0
18	τ^+	1	0	-1	0	0
19	$\frac{\nu_{\tau}}{\overline{\nu}_{\tau}}$ μ^{-}	0	0	1	0	0
20	$\overline{\nu}_{\tau}$	0	0	-1	0	0
21	μ^{-}	-1	0	0	0	1
22	μ^+	1	0	0	0	-1
23	ν_{μ}	0	0	0	0	1
24	$\frac{\overline{\nu}_{\mu}}{e^{-}}$	0	0	0	0	-1
25		-1	0	0	1	0
26	e^+	1	0	0	-1	0
27	ν_e	0	0	0	1	0
28	$\overline{\nu}_e$	0	0	0	-1	0

Table 1: Some Common Particles and Quantum Number Assignments

Assuming the empirical adequacy of Conservation Principles entails unobserved reactions

Hypothetical Scenario

observed reactions

 $\Sigma^{-} \rightarrow \pi^{-} + n$ $\pi^{-} \rightarrow \mu^{-} + \nu_{\mu}$ $\mu^{-} \rightarrow e^{-} + \nu_{\mu} + \bar{\nu_{e}}$ $n \rightarrow e^{-} + \bar{\nu_{e}} + p$ $p + p \rightarrow p + p + \pi$ not yet observed reactions

 $n \rightarrow e^{-} + \overline{v_e}$ $p + p \rightarrow p + p + \pi + \pi$ \uparrow entailed

The Strict Inference Method

Strict Method: suppose that reaction r has not been observed so far.

- If there is no possible conservation principle that rules out r, conjecture that r is possible.
- If some possible conservation principle rules out r, conjecture that r is forbidden, and introduce a conservation principle to explain why.

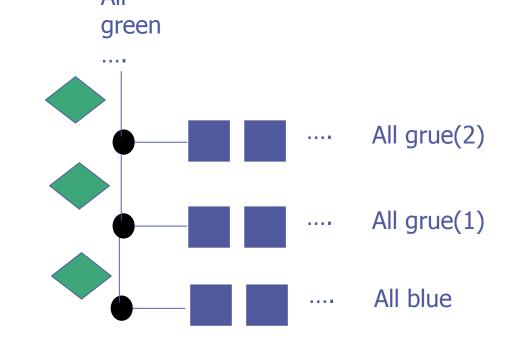
• Nobel Laureate Cooper (1970): "In the analysis of events among these new particles, where the forces are unknown and the dynamical analysis, if they were known, is almost impossibly difficult, one has tried by observing *what does not happen* to find selection rules, quantum numbers, and thus the symmetries of the interactions that are relevant." Means-Ends Justification for Maximally Strict Inferences

Theorem. Suppose we have *n* known particles. The strict inference method is the **only** inference rule that

- 1. is guaranteed to eventually arrive at an empirically adequate set of conservation principles, and
- 2. changes its predictions at most *n* times.

The Naturalist's Question: Comparison with Practice

Finding: The standard laws Electric Charge, Baryon#, Muon#, Electron#, Tau# form a maximally strict set for the current reaction data.

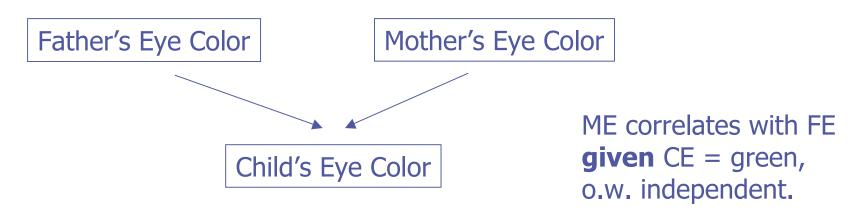

Physicists have acted as if they are following the methodology described so far. <u>Program</u>

Green and Grue

Goodman (1983). "Grue applies to all things examined before t just in case they are green but to other things just in case they are blue."

Rules

- Inquirer projects generalization (e.g. "all green")
- Demon chooses color of next emerald.
- Inquirer pays for mistaken predictions.


Means-Ends Justification for The Natural Projection Rule

Theorem. Given the possible observation sequences shown before, the natural projection rule (project "all green") is the **only** projection rule that

- 1. is guaranteed to eventually arrive at an empirically adequate generalization about emerald colors, and
- 2. makes at most 1 false prediction.

Learning Causal Models from Correlations

- Hume: causes are inferred from "constant conjunctions".
- Reichenbachian principle: every correlation has a causal explanation, e.g. by common cause.
- Need to consider conditional correlations.

Causal Graphs and Conditional Correlations

- A 3-variable graph (A,B,C) entails the following correlations.
 - A correlates with B if there is a link A—B (either direction), or a path A→C→B or A←C←B or A←C→B.
 - A correlates with B given
 C if there is a link A—B or a path A→C←B.

Father's Eye Color

Mother's Eye Color

• FE corr CE

Child's Eye Color

- ME corr CE
- FE corr ME given CE

Causal Learning from Correlations

Children may show spots on their stomachs. A doctor wonders whether there is a causal connection with measles or an allergic reaction.

Measles

Rules

• Inquirer proposes causal graph or ?.

• Demon chooses next correlation(s) or "nothing new".

• Inquirer pays for abandoning a causal model.

Spots

Allergy

The Mind-Change Optimal Causal Learner

Consider the following causal learner: Given a list of observed correlations, if there is a graph G consistent with the observations such that all other consistent graphs have more edges than G, output G. Otherwise output ?.

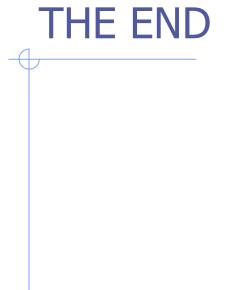
Explain the observed correlations with the fewest direct causal links.

Notes on Causal Learning Result

- The edge-minimizer is the fastest causal learner that minimizes mind changes no matter what correlations are observed.
- A variant: conjecture the set of graphs that are consistent with the observed correlations and have a minimum number of edges.
- There is no fast program for computing minimum-edge graphs (Schulte, Greiner, Luo 2007).

Extensions and Directions

- Characterize deep structure of inductive problem (point-set topology).
- Relate to other aims (speed, simplicity).
- Relate to "categorical imperatives", e.g. Bayesian conditioning, minimal belief change postulates.
- \clubsuit Address computational questions \rightarrow algorithmic learning theory.


Summary

- Means-Ends Analysis: Convergence to the truth, stable and fast convergence, correct predictions.
- ♦ For specific problems, a set of inductive goals → methods that achieve these goals.
- ♦ 3 Illustrations/Applications:
 - Conservation laws in particle physics: conjecture maximally strict law sets.
 - Goodmanian Riddle: conjecture "all emeralds are green".
 - Learning Causal Models: Conjecture the model that explains the observed correlations with a minimum number of direct causal links (edges).

These are instantiations of a single generic mind change optimal inference rule.

References

- 1. "Inferring Conservation Principles in Particle Physics: A Case Study in the Problem of Induction". Schulte, O. (2000). *British Journal for the Philosophy of Science.*
- 2. "Mind-Change Efficient Learning", W. Luo and O. Schulte (2006). *Information and Computation*, 204:989--1011.
- "Mind Change Optimal Learning of Bayes Net Structure".
 O.Schulte, W. Luo and R. Greiner (2007), in *Proceedings of the 20th Annual Conference on Learning Theory*, pp. 187-202.
- 4. "Causation, Prediction and Search", Sprites, Glymour and Scheines (2000).

Three Applications of Means-Ends Epistemology - Caltech

25/24