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Abstract

We describe NTS-NOTEARS, a score-based structure learning method for time-series data to learn

dynamic Bayesian networks (DBNs) that captures nonlinear, lagged (inter-slice) and instantaneous

(intra-slice) relations among variables. NTS-NOTEARS utilizes 1D convolutional neural networks

(CNNs) to model the dependence of child variables on their parents; 1D CNN is a neural function

approximation model well-suited for sequential data. DBN-CNN structure learning is formulated as a

continuous optimization problem with an acyclicity constraint, following the NOTEARS DAG learning

approach. We show how prior knowledge of dependencies (e.g., forbidden and required edges) can

be included as additional optimization constraints.
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Research Gaps

Method Score-Based Nonlinear Temporal Instantaneous Edges Acyclic

cMLP 3 3 3 7 3

Economy-SRU 3 3 3 7 3

GVAR 3 3 3 7 3

VAR-LINGAM 3 7 3 3 3

PCMCI+* 7 3 3 3 3

TCDF* 3 3 3 3 7

NOTEARS 3 7 7 3 3

GraN-DAG 3 3 7 3 3

NOTEARS-MLP 3 3 7 3 3

DYNOTEARS* 3 7 3 3 3

NTS-NOTEARS 3 3 3 3 3

Table 1. Difference between existing methods and NTS-NOTEARS. Starred methods are evaluation baselines.

NTS-NOTEARS MODEL

Temporal CNNModel

We utilize 1D CNNs:

exploit a sequential or grid topology in the input data. A general MLP does not incorporate data

order information.

Current MLP-based methods concatenate the data. Data concatenation with large datasets may

cause memory issues and slow down the training speed.

We train d CNNs jointly where the j-th CNN predicts the expectation of the target variableXt
j at each

time step t ≥ K + 1 given preceding and instantaneous input variables:
E[Xt

j|PA(Xt
j)] = CNN j({Xt−k : 1 ≤ k ≤ K},Xt

−j)
where

PA(Xt
j) denotes the parents of X

t
j that are defined by the trained CNNs.

K is a hyperparameter denoting the maximum lag (order).

The convolutional weights w.r.t. the child variable in the intra-slice t are set to 0.

For the j-th CNN, the kernel weights are denoted by φj , the remaining parameters by ψj , and
θj = {φj, ψj}.

From Local CNNs to Model Weights

φki,j ⊂ θj denotes the m kernel weight parameters for input variable X
k
i in the first convolutional

layer of the j-th CNN.

Each entryW k
ij in the weighted adjacency matrixW represents the dependency strength of a

directed edge from variable Xk
i to variable X

K+1
j .

W k
ij = ||φki,j||L2 for k = 1, . . . , K + 1 (1)

TRAINING OBJECTIVE

The training objective comprises four components for local functions:

1. Matching the observed child values given the parents.

2. A sparsity penalty for the CNN weights.

3. A regularization term for all parameters.

4. A NOTEARS cyclicity penalty to drive the induced weights to define an acyclic graph.

Let L denote the least-squares loss, φkj be the concatenation of the φ
k
i,j vectors, and θ = {θ1, . . . , θd}.

The constrained training objective function is defined as:

min
θ
F (θ)

subject to h(WK+1) = 0
where

F (θ) = 1
T −K

·
T∑

t=K+1

d∑
j=1

L(Xt
j,CNN θj({Xt−k : 1 ≤ k ≤ K},Xt

−j)) +
K+1∑
k=1

λk1 · ||φkj ||L1 + 1
2
λ2 · ||θj||L2

h(WK+1) = tr(eW
K+1◦WK+1

) − d = 0

tr(A) and eA are the trace and matrix exponential of matrix A, respectively, and ◦ is element-wise
product. The function h enforces the acyclicity constraint among intra-slice dependencies.

Optimization

We use the L-BFGS-B algorithm to optimize the unconstrained objective.

min
θ
F (θ) + ρ

2
· (h(WK+1))2 + α · h(WK+1) (2)

FROM PRIOR KNOWLEDGE TO OPTIMIZATION CONSTRAINTS

Allowing prior knowledge is often necessary for real-world applications, e.g. forbidden and required

edges. Such knowledge can be formalized as constraints on the dependency weightsW k
ij:

b denotes a dependency strength as prior knowledge specified by user

m is the number of kernels of the convolutional layer of each CNN

Each b is scaled in the following way before being applied to the L-BFGS-B algorithm:

b̄ =
√
b2

m
(3)

Let θ = {θ̇, θ̄} where θ̇ denotes free parameters and θ̄ denotes constrained parameters with lower
bounds l and upper bounds u, representing prior knowledge according to Equation (3). The objective
function (2) becomes

min
θ̇,l1≤θ̄1≤u1,l2≤θ̄2≤u2,...

F (θ) + ρ

2
(h(WK+1))2 + αh(WK+1)

EVALUATION

Figure 1. The average running time over 10 datasets measured in seconds.

Method Lorenz 96 fMRI

DYNOTEARS 0.855 (± 0.016) 0.475 (± 0.020)

TCDF 0.459 (± 0.017) 0.347 (± 0.059)

PCMCI+ 0.637 (± 0.028) 0.502 (± 0.045)

NTS-NOTEARS 0.996 (± 0.002) 0.628 (± 0.023)

Table 2.Mean F1-scores (± SE) computed with Lorenz 96 and fMRI benchmarks.

(a) NTS-NOTEARS (b) DYNOTEARS

Figure 2. The DBNs estimated by NTS-NOTEARS and DYNOTEARS with real-world ice hockey data.


