Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees

Guiliang Liu, Oliver Schulte, Wang Zhu, Qingcan Li Machine Learning Lab,

PROBLEM DEFINITION

Understand the knowledge learned by Deep Reinforcement Learning (DRL) Model

PROBLEM

MOTIVATION

Recent Success of Deep Reinforcement Learning

Game Environment

Physical Environment

MOTIVATION

MIMIC LEARNING

Interpretable Mimic Learning

- Transfer the knowledge from deep model to transparent structure (e.g. Decision Tree).
- Train the transparent model with the same input and soft output from neural networks.

MIMIC LEARNING

MIMIC LEARNING FOR DRL

Experience Training Setting

- Recording observation signals *I* and actions *a* during DRL training.
- Input them to a mature DRL model, obtain the soft output Q(I, a).
- Generates data for batch training.

MIMIC LEARNING

MIMIC LEARNING FOR DRL

Active Play Setting

- Applying a mature DRL model to interact with the environment.
- Record a labelled transition $Tt = \langle I_t, a_t, r_t, I_{t+1}, \hat{Q}(I_t, a_t) \rangle$
- Repeat until we have training data for the *active learner* to finish sufficient updates over mimic model.

MIMIC LEARNING

MODEL

Linear Model U Tree (LMUT):

- **U tree**: an online reinforcement learning algorithm with a tree structure representation.
- LMUT allows CUT leaf nodes to contain a linear model, rather than simple constants.
- LMUT builds a Markov Decision Process (MDP) from the interaction data between environment and deep model.

MODEL

MODEL

Training the Linear Model U Tree (LMUT):

- Data Gathering Phase: it collects transitions ($Tt = < I_t, a_t, r_t, I_{t+1}, \hat{Q}(I_t, a_t) >$) on leaf nodes and prepares for fitting linear models and splitting nodes.
- Node Splitting Phase:

(1) LMUT scans the leaf nodes and updates their linear model with *Stochastic Gradient Descent (SGD)*.

(2) If SGD achieves sufficient improvement, LMUT determines a *new split* and adds the resulting leaves to the current partition cell.

EMPIRICAL EVALUATION

Evaluate the mimic performance of LMUT

• Evaluation environments:

Baseline Methods:

(1) For the **Experience Training** environment: Classification And Regression Tree (CART), M5-(Regression/Model)Tree.

(2) For the **Active Play** environment: Fast Incremental Model Trees (FIMT).

EMPIRICAL EVALUATION

•

EMPIRICAL EVALUATION

Fidelity: Regression Performance

• Evaluate how well our LMUT approximates the soft output from Q function in a Deep Q-Network (DQN).

Table 2: Result of Mountain Car						
Method		Evaluation Metrics				
		MAE	RMSE	Leaves		
	CART	0.284	0.548	1772.4		
Expe-	M5-RT	0.265	0.366	779.5		
rience	M5-MT	0.183	0.236	240.3		
Train-	FIMT	3.766	5.182	4012.2		
ing	FIMT-AF	2.760	3.978	3916.9		
	LMUT	0.467	0.944	620.7		
Active Play	FIMT	3.735	5.002	1020.8		
	FIMT-AF	2.312	3.704	712.4		
	LMUT	0.475	1.015	453.0		

Table	3:	Re	sul	t (of	Car	t I	P	ol	6
					-			•		_

Method		Evaluation Metrics				
		MAE	RMSE	Leaves		
	CART	15.973	34.441	55531.4		
Expe-	M5-RT	25.744	48.763	614.9		
rience	M5-MT	19.062	37.231	155.1		
Train-	FIMT	43.454	65.990	6626.1		
ing	FIMT-AF	31.777	50.645	4537.6		
	LMUT	13.825	27.404	658.2		
Activo	FIMT	32.744	62.862	2195.0		
Play	FIMT-AF	28.981	51.592	1488.9		
	LMUT	14.230	43.841	416.2		

Table 4: Result of Flappy Bird

Method		Evaluation Metrics					
		MAE	RMSE	Leaves			
Expe-	CART	0.018	0.036	700.3			
rience	M5-RT	0.027	0.041	226.1			
Train-	M5-MT	0.016	0.030	412.6			
ing	LMUT	0.019	0.043	578.5			
Active	LMUT	0.094	0.050	220 N			
Play	LIVIOI	0.024	0.050	225.0			

(MAE = Mean Absolute Error, RMSE=Root Mean Square Error.)

• LMUT achieves a better fit to the neural net predictions with a much smaller model tree.

EMPIRICAL EVALUATION

EMPIRICAL EVALUATION

Matching Game Playing Performance:

- Evaluate by directly *playing the games with mimic model* ٠ computing the Average Reward Per Episode (ARPE).
- LMUT achieves the Game Play Performance APER closest to • the DQN. Table 5: Game Playing Performance
- The batch learning models ٠ have strong fidelity in regression, but they do not perform as well in game playing as the DQN.

Table 5. Game I laying I enormance					
Model		Game Environment			
		Mountain Car	Cart Pole	Flappy Bird	
Deep Model	DQN	<i>-126.43</i>	175.52	123.42	
Basic Model	CUT	-200.00	20.93	78.51	
	CART	-157.19	100.52	79.13	
	M5-RT	-200.00	65.59	42.14	
Experience	M5-MT	-178.72	49.99	78.26	
Training	FIMT	-190.41	42.88	N/A	
	FIMT-AF	-197.22	37.25	N/A	
	LMUT	-154.57	145.80	97.62	
Active Play	FIMT	-189.29	40.54	N/A	
	FIMT-AF	-196.86	29.05	N/A	
	LMUT	-149.91	147.91	103.32	

EMPIRICAL EVALUATION

INTERPRETABILITY

Feature Influence:

• In a LMUT model, feature values are used as splitting thresholds to form partition cells for input signals.

$$Inf_{f}^{N} = (1 + \frac{|w_{Nf}|^{2}}{\sum_{j=1}^{J} |w_{Nj}|^{2}})(var_{N} - \sum_{c=1}^{C} \frac{Num_{c}}{\sum_{i=1}^{C} Num_{i}}var_{c})$$

• We evaluate the influence of a splitting feature by the total variance reduction of the Q values.

Table 6: Feature Influence					
	Feature				
Mountain	Velocity	376.86			
Car	Position	171.28			
	Pole Angle	30541.54			
Cart	Cart Velocity	8087.68			
Pole	Cart Position	7171.71			
	Pole Velocity At Tip	2953.73			

INTERPRETABILITY

INTERPRETABILITY

Rule Extraction:

- The rules are presented in the form of partition cells (constructed by the splitting features in LMUT).
- Each cell describes a games situation (similar Q values) to be analyze.

INTERPRETABILITY

INTERPRETABILITY

Super-pixel Explanation:

- Deep models for image input can be explained by super-pixels.
- We highlight the pixels that have feature influence > 0.008 along the splitting path from root to the target partition cell.

• We find 1) most splits are made on the first image 2) the first image is often used to locate the pipes and the bird, while the remaining images provide further information about the bird's velocity.

INTERPRETABILITY

THANK YOU!

For more information: Poster: #xxx My homepage: <u>http://www.galenliu.com/</u>

Q&A