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Statistical-Relational Learning (SRL) 

o Recent growing field. 
o  Intersection of Machine Learning, Artificial Intelligence   

and Database Systems. 
o Applications for structured/linked/relational data. 

§  Link-based Classification 
§  Relational Query Optimization. 
§  Information Extraction 
§  Outlier Detection  
.... 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 

SRL ML AI DB 
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Statistical-Relational Model Learning 

o Extends traditional machine learning from single-table to 
multiple interrelated tables. 

o Provides integrated statistical analysis of data sources. 
o Typically a log-linear model = product of factors. 
o Our work:  

provides database system support for learning a generative 
log-linear model of the entire input database. 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 

Traditional Machine Learning Relational Learning  
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Challenges for Programming Model Structure Learning 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 

Programming graphical model learning for relational data is hard. 

o Multi-relational data is NOT self-describing. 
§  Need to query metadata.  

o  Structured models with structured components. 
o Event counts across multiple tables. 

§  expensive and error-prone. 

o Large parameter space. 
§  > 1M sometimes. 
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The Solution: SQL Scripts All the Way 

o  Store relational model inside the database*. 
    [As well as relational data.] 
o  SQL for creating, transforming, storing sets of models. 
o  SQL for querying metadata from DB catalog. 
o Native SQL support for complex counts [count(*)]. 
o  SQL for computing and storing parameter values. 

§  >1M parameters no problem. 

o  SQL is standardized 
§  system is portable, works out of the box. 

*Daisy W, Eirinaios M, Garofalakis, M and Hellerstein, M.  BayesStore: Managing Large, Uncertain Data 
Repositories with Probabilistic Graphical Models, Proc. VLDB 2008  
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Contributions 

o Identifying new system requirements for multi-
relational model learning that go beyond single table 
machine learning.  

o An integrated set of SQL-based solutions for 
providing these system capabilities. 

o SQL can do more than we think! 
o All code and datasets are available online*. 

*Qian, Z.; Schulte, O.  The BayesBase System. http://www.cs.sfu.ca/~oschulte/BayesBase 
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Related Works 

o  BayesStore, Tuffy: complementary 
§  push model inside the database too 
§  leverage database techniques for 

inference/parameter learning,  
    not model learning. 

o  Madlib, MLBase, Bismarck, 
MauveDB, Unipivot... 
§  leverage database techniques for 

single-table learning. 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 
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System Overview 
o  Each component is stored, constructed and managed 

using database tables and SQL. 
o  Components are integrated using SQL as well.  

Variable 
Manager 

Count Database:  
CDB 

Random Variable  
DataBase: VDB  Input DataBase   

analyzes 
schema 

MetaData about 
random variables 

cross-table counts/ 
sufficient statistics 

Count 
Manager 

computes 
sufficient 
statistics 

Model Structure 

Parameters 

Models Database: 
MDB 

Graphical Model +  
Parameter Values 

Model 
Manager 

Learns Model 
Structure  

Contingency 
Table 

relational data 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 
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Running Example 

Entity-Relationship Diagram for University Domain 

registration 

grade satisfaction 

RA 

salary capability 

professor 

prof_id popularity teachingability 

course 

course_id 

rating 
diff 

student 

student_id 

intelligence 

ranking 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 
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The Model Manager 
Goal: Learn First-Order Bayesian Network Structure*. 

o  Nodes = Random Variables  
o  Edges are stored in Database tables 
o  Model selection scores are also stored 

§  not shown (BIC, AIC, BDeu) 

Child Parent 
Capability(P,S)  RA(P,S) 
Capability(P,S)  Salary(P,S) 
Teachingability(P)  Popularity(P) 
Teachingability(P)  RA(P,S) 

… … 

  RA(P,S) 

Capability(P,S) 

Popularity(P) 

Salary(P,S) 

Ranking(S) Teachingability(P) 

intelligence(S) 

*Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach Prentice Hall, 2010. 
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The Random Variable Database 
Metadata about random variables stored in database tables.  
o  Domain of possible values. 
o  Pointer to corresponding data table/column. 
    ... 
Table Name Column Headers in Random Variable Database 

Pvariables 

Pvid TABLE_NAME 
C course 
P prof 
S student 

1Variables 

1VarID COLUMN_NAME Pvid 
diff(C) diff C 
intelligence(S) intelligence S 
popularity(P) popularity P 

2Variables 
2VarID COLUMN_NAME1 COLUMN_NAME2 Pvid1 Pvid2 
capability(P,S) p_id s_id P S 
grade(C,S) c_id s_id C S 

Relationship 
RVarID TABLE_NAME COLUMN_NAME1 COLUMN_NAME2 Pvid1 Pvid2 
RA(P,S) RA p_id s_id P S 
Registered(C,S) Registered c_id s_id C S 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 
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The Count Manager 
Goal: for a conjunctive query, compute the instantiation count = result set size. 

o  Stored in Contingency Table. 
o  Main computational cost in learning. 

Problem: need to generate SQL queries for arbitrary variable lists. 
Solution: use Meta Data + Meta Queries 
General Form of Count Query: 

SELECT COUNT(*) AS Count, <VARIABLE-LIST>  FROM <TABLE-LIST> 
GROUP BY <VARIABLE-LIST>   WHERE <Join-Conditions> 

    Meta-Queries    Entries 

CREATE VIEW Select_List AS  
SELECT   RVarID, CONCAT(‘COUNT(*)',' as "count"') AS Entries   
FROM      VDB.Relationship 
UNION DISTINCT  
SELECT   RVarID, AVarID AS Entries   
FROM       VDB.Relationship_Attributes; 

COUNT(*) as “count" 

`Popularity(P)`  

`Teachingability(P)`  

`Intelligence(S)` 

`Ranking(S)`  

CREATE VIEW From_List AS  
SELECT     RVarID, CONCAT('@database@.',TABLE_NAME) AS Entries  
FROM    VDB.Relationship_FOvariables  
UNION DISTINCT  
SELECT     RVarID, CONCAT('@database@.',TABLE_NAME) AS Entries 
FROM    VDB.Relationship; 

@database@.prof AS P 

@database@.student AS S 

@database@.RA  AS `RA` 
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The Parameter Manager 
Goal: Learn  Bayesian Network Parameters  

o  Stored in Conditional Probability (CP) database table.  
o  Maximum Likelihood  Estimates: easy SQL given Contingency Table. 

1.  CT_Table  
JOIN   
CT_Table 

2.  Group By CT Table  
(from Count Manager) CP table 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 
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Results 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 

Movielens Mutagenesis UW-CSE Mondial Hepatitis IMDB 

# Database Tuples 1,010,051 14,540 712 870 12,927 1,354,134 

# Sufficient Statistics 252 1,631 2,828 1,746,870 12,374,892 15,538,430 

SS Computing Time (s) 2.7 1.67 3.84 1,112.84 3,536.76 7,467.85 

#BN Parameters 292 721 241 339 569 60,059 

1 

10 

100 

1,000 

10,000 

100,000 

1,000,000 

10,000,000 

100,000,000 

Database and 
performance 
statistics for 
FactorBase 

Task: learning a multi-relational Bayesian network 
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Orders of 
magnitude 
improvements 
in speed and 
scalability. 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 

Movielens Mutagenesis UW-CSE Mondial Hepatitis IMDB 

RDN_Boost 5,562 118 15 27 251 100,000 

MLN_Boost 100,000 49 19 42 230 100,000 

FactorBase-Total 1.12 1 1 102 286 524.25 

FactorBase-Count 0.39 0.15 0.27 61.82 186.15 439.29 

0 

10 

1,000 

100,000 

Comparison with other statistical-relational learning  
(Markov Logic Network learning using gradient boosting) 
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Other Tasks 
o  Use Natural Join + Group By for evaluating log-linear expressions. 
o  Compute Log-likelihood, compute Class Label Distribution. 
o  Block Access for Test Instance Predictions è scales to >1M instances. 

Log-likelihood 

6

basic parameter estimation method for Bayesian networks. The
maximum likelihood estimates equal the observed frequency
of a child value given its parent values.

SQL Implementation With Natural Join. Given the sufficient
statistics in a contingency table, a conditional probability table
containing the maximum likelihood estimates can be computed
by aggregation using SQL as in the example below.

SELECT count/temp.parent_count as CP,
capability(P,S), RA(P,S), salary(P,S)
FROM capability(P,S)_CT
NATURAL JOIN
(SELECT sum(Count) as parent_count,
RA(P,S), salary(P,S)
FROM capability(P,S)_CT
GROUP BY RA(P,S), salary(P,S) ) as temp

C. Model Score Computation
A typical model selection approach is to maximize the

likelihood of the data, balanced by a penalty term. For instance,
the Akaike Information Criterion (AIC) is defined as follows

AIC (G,D) ⌘ ln(P bG(D))�#par(G)

where bG is the BN G with its parameters instantiated to be
the maximum likelihood estimates given the database D, and
#par(G) is the number of free parameters in the structure G.
The number of free parameters for a node is the product of
(the possible values for the parent nodes) ⇥ (the number of
the possible values for the child node -1). Given the likelihood
and the number of parameters, the AIC column is computed
as AIC = loglikelihood �#par . Model selection scores other
than AIC can be computed in a similar way given the model
likelihood and number of parameters.

1) Parameter Number Computation: To determine the num-
ber of parameters of the child node @parVar-ID@, the number
of possible child and parent values can be found from the
VDB .Domain table in the Random Variable Database.

2) Likelihood Computation: As explained in Section II-A,
the log-likelihood can be computed by multiplying the in-
stantiation counts of a factor by its value. Assuming that
instantiation counts are represented in a contingency table and
factor values in a factor table, this multiplication can be ele-
gantly performed using the Natural Join operator. For instance,
the log-likelihood score associated with the Capability(P, S)
family is given by the SQL query below.

SELECT Capability(P,S), SUM
(MDB.Capability(P,S)_CPT.cp *
CDB.Capability(P,S)_CT.count)
AS loglikelihood
FROM MDB.Capability(P,S)_CPT
NATURAL JOIN CDB.Capability(P,S)_CT

The aggregate computation in this short query illustrates
how well SQL constructs support complex computations with
structured objects. This completes our description of how the
modules of FACTORBASE are implemented using SQL. We
next show how these modules support a key learning task:
computing the predictions of an SRL model on a test instance.

VI. TEST SET PREDICTIONS

Computing probabilities over the label of a test instance is
important for several tasks. 1) Classifying the test instance,
which is one of the main applications of a machine learning
system for end users. 2) Comparing the class labels predicted
against true class labels is a key step in several approaches to
model scoring [13]. 3) Evaluating the accuracy of a machine
learning algorithm by the train-and-test paradigm, where the
system is provided a training set for learning and then we
test its predictions on unseen test cases. We first discuss how
to compute a prediction for a single test case, then how to
compute an overall prediction score for a set of test cases.
Class probabilities can be derived from Equation 1 as follows
[13, Sec.2.2.2]. Let Y denote a ground par-RV to be classified,
which we refer to as the target variable. For example, a
ground atom may be Intelligence(jack). In this example, we
refer to jack as the target entity. Write X�Y for a database
instance that specifies the values of all ground par-RVs, except
for the target, which are used to predict the target node. Let
[X�Y , y] denote the completed database instance where the
target node is assigned value y. The log-linear model uses the
likelihood P ([X�Y , y]) as the joint score of the label and the
predictive features. The conditional probability is proportional
to this score:

P (y|X�Y) / P ([X�Y , y]) (2)

where the joint distribution on the right-hand side is defined
by Equation 1, and the scores of the possible class labels need
to be normalized to define conditional probabilities.

SQL Implementation. The obvious approach to computing
the log-linear score would be to use the likelihood computation
of Section V-C for the entire database. This is inefficient
because only instance counts that involve the target entity
change the classification probability. This means that we need
only consider query instantiations that match the appropriate
logical variable with the target entity (e.g., S = jack).

For a given set of random variables, target entity instantia-
tion counts can be represented in a contingency table that we
call the target contingency table. Figure 8 shows the format
of a contingency table for target entities jack resp. jill.

sid Count Cap.(P,S) RA(P,S) Salary(P,S) 
Jack 5 N/A N/A F 
Jack 5 4 high T 
…. …. …. …. …. 

Target Contingency Tables 

sid Count Cap.(P,S) RA(P,S) Salary(P,S) 
Jill 3 N/A N/A F 
Jill 7 4 high T 
… …. …. …. …. 

jill_Capability_(P,S)_CT 

jack_Capability_(P,S)_CT 

Figure 8. Target contingency tables for target = jack and for target = jill.

Parameters Counts Test Set 

Predictive Accuracy 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 
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Other Tasks 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 

Task: Block Access for Test Instance Predictions è scales to >1M instances. 

54.44	 61.79	

109.2	
80.18	

693.42	

18756	

5544.01	
4052.43	

957.37	 1064.12	

23210.52	

50	

500	

5000	

50000	

Movielens	 Mutagenesis	 Mondial	 UW-CSE	 HepaBBs	 IMDB	

Blocked	Instances	 Instance-by-instance	

?? 
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Summary and Conclusions 
o  Multi-relational model discovery requires new system capabilities. 
o  BayesStore Design Philosophy: Store data and models inside the 

database system. 
o  SQL is used to build and transform statistical objects inside the    

database 
§  Structured Graphical Model. 
§  Parameter Estimates. 
§  Sufficient Statistics (counts). 

o  Empirical evaluation: leveraging the RDBMS capabilities 
achieves scalable learning and fast model testing. 

o  Future Direction:  
 Integrate with relational inference systems (BayesStore, Tuffy). 
Distributed processing, in-memory computing (SparkSQL) 

 

FactorBase  Qian, Schulte DSAA 2015 @ Paris, France 
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Thanks for your attention. 
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Multi-Relational Sufficient Statistics 

�  Find correlations involving relationships. e.g. 
 
 
 

�  Compactness: summarize original data by counts. 

 
Previous Approaches 
�  Single-table data: row counts (σ selection only). 

�  Multiple tables: Table joins ⋈. 

user searches for item user watches video about item. 

user does not search for item user does not watch video about item 
? 

Why 
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Applications 
�  Feature Selection.  

Ø Does frequency of bank statement predict whether customer has loan? 

�  Association Rules. 
Ø  statement freq.(Acc) = monthly → HasLoan(Acc, Loan) =  ? .  

�  Bayesian Network Learning. 
�  ... 

Computing Sufficient Statistics  Qian, Schulte, Sun  CIKM 2014 @ Shanghai, China 
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Contingency Tables (ct-table)  

Computing Sufficient Statistics  Qian, Schulte, Sun  CIKM 2014 @ Shanghai, China 

capability	 intelligence	count	
1	 2	 3	
1	 3	 2	
2	 2	 3	
2	 3	 1	
3	 1	 2	
3	 2	 4	
3	 3	 1	
4	 1	 1	
4	 3	 4	
5	 1	 1	
5	 2	 3	

N/A	 1	 80	
N/A	 2	 65	
N/A	 3	 58	

Sum(count)	:				228	
Total	Tuples	:	 14	

�  Counts for conjunctive queries: 
Ø  capability = value1, intelligence = value2. 
Ø  capability = n/a: wasn’t RA. 

�  Conditional ct-table :  
Ø  e.g. given  capability = 1. 

Entity Table Primary Key # Tuples 

Professor p_id 6 
Student  s_id 38 

Cross Product 228 
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Count Diff. Rat. Pop. Teach. Intel. Rank. Cap. Sal. Grade Sat. RA Reg. 

1 1 1 1 2 3 1 3 High 1 1 T T 

1 1 2 1 2 2 2 n/a n/a 2 2 F T 

3 1 2 1 2 2 2 1 Med n/a n/a T F 

24 2 1 1 2 1 5 n/a n/a n/a n/a F F 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

1 2 1 2 2 1 4 n/a n/a 3 2 F T 
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Storing Sufficient Statistics in 
Database Tables 
�  New: large contingency table stored as database table. 

Manipulate using SQL, Index, ... 
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Computing Sufficient Statistics: 
positive relationships only (e.g.RA=True) 

CREATE TABLE  ctT(RA)  AS  
SELECT count(*) as count, pop, teach, intel, rank, cap, salary, 'T' as RA  
FROM Professor P, Student S, RA  
WHERE RA.p_id = P.p_id AND RA.s_id = S.s_id  
GROUP BY pop, teach, intel, rank, cap, salary 

Computing Sufficient Statistics  Qian, Schulte, Sun  CIKM 2014 @ Shanghai, China 

count	 pop	 teach	 intel	 rank	 cap	 salary	 RA	
2	 2	 2	 3	 1	 4	 high	 T	
2	 2	 3	 1	 4	 3	 med	 T	
1	 1	 2	 2	 2	 1	 med	 T	
1	 1	 2	 2	 2	 2	 med	 T	
1	 1	 2	 2	 2	 3	 low	 T	
1	 1	 2	 3	 1	 3	 high	 T	
...	 ...	 ...	 ...	 ...	 ...	 ...	 ...	

cross-table count 
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Step 1: Contingency Table Cross Product 

�  Example: ct(Professor)      ct(Student) 

Count	 pop	 teach	
2	 1	 2	
1	 2	 2	
3	 2	 3	

Count	 intel	 rank	
6	 1	 4	
8	 1	 5	
5	 2	 2	
7	 2	 3	
1	 2	 4	
8	 3	 1	
3	 3	 2	

x 

ct(Professor) 

ct(Student) 

Count	 pop	 teach	 intel	 rank	
12	 1	 2	 1	 4	
16 1 2 1 5 
10	 1	 2	 2	 2	
14	 1	 2	 2	 3	
2	 1	 2	 2	 4	

16	 1	 2	 3	 1	
6	 1	 2	 3	 2	
6	 2	 2	 1	 4	
8	 2	 2	 1	 5	
5	 2	 2	 2	 2	
7	 2	 2	 2	 3	
...	 ...	 ...	 ...	 ...	

ct*(RA) 

x  !    ct*(RA) 
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Count Pop Teach Intel Rank 
16 1 2 3 1 
15 2 3 2 2 
18 2 3 1 4 …

 

…
 

…
 

…
 

…
 

Count Pop Teach Intel Rank 
1 1 2 3 1 
1 1 2 2 2 
1 2 2 2 4 …

 

…
 

…
 

…
 

…
 

RA 
F 

Count Pop Teach Intel Rank 
15 1 2 3 1 
16 2 3 2 3 
21 2 3 3 1 …

 

…
 

…
 

…
 

…
 

RA 
T 

∪ 

Count Pop Teach Intel Rank RA 
15 1 2 3 1 F 
1 1 2 3 1 T 
1 1 2 2 2 T ... 

... 

... 

... 

... 

... 

ct*(RA) ctT(RA) 

Final Result: Contingency Table for RA relationship 

ct(RA) 

Step 2: Contingency Table Subtraction 
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Datasets for Evaluation 

Dataset	 #Relationship 
Tables/ Total	 # Columns	 # Rows	

UW-CSE	 2/4	 14	 712	
Mondial	 2/4	 18	 870	
HepaBBs	 3/7	 19	 12,927	
Mutagenesis	 2/4	 11	 14,540	
Financial	 3/7	 15	 225,932	
Movielens	 1/3	 7	 1,010,051	
IMDB	 3/7	 17	 1,354,134	

7 Real-world Datasets (over 1M rows). 

Computing Sufficient Statistics  Qian, Schulte, Sun  CIKM 2014 @ Shanghai, China 
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Computation Time 
�  Never enumerates cross product of primary keys. 
�  Complexity: nearly linear in size of the required output. 
    (non-trivial)   #ct_operation = O(#SS * log (#SS))  

(Time in seconds.) 

Dataset #Sufficient Statistics 
(SS) 

Cross Product 
Time 

Our Dynamic 
Program Time 

Movielens 252 703.99 2.70 
Mutagenesis 1,631 1,096.00 1.67 
UW-CSE 2,828 350.30 3.84 
Mondial 1,746,870 132.13 1,112.84 
Financial 3,013,011 N.T. 1,421.87 
Hepatitis 12,374,892 N.T. 3,536.76 
IMDB 15,538,430 N.T. 7,467.85 


