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Abstract

This paper aims to be a friendly introduction to formal learning the-
ory. I introduce key concepts at a slow pace, comparing and contrasting
with other approaches to inductive inference such as con�rmation theory.
A number of examples are discussed, some in detail, such as Goodman�s
Riddle of Induction. I outline some important results of formal learning
theory that are of philosophical interest. Finally, I discuss recent devel-
opments in this approach to inductive inference.

1 Introduction: Convergence to the Truth

The purpose of this article is to provide a brief and friendly introduction to
some of the key mathematical concepts of formal learning theory. Understand-
ing these concepts is essential for following the philosophical and mathematical
development of the theory. The reader may �nd further discussion and defence
of the basic philosophical ideas in this volume, as well as in sources such as ([20],
[30], [9], [11], [36], [38]).
Learning theory addresses the question of how we should draw conclusions

based on evidence. Philosophers have noted since antiquity that if we are inter-
ested in questions of a general nature, the evidence typically does not logically
entail the answer. To start with a well-worn example, any �nite number of
black ravens is logically consistent with some future raven not being black. In
such cases, logical deduction based on the evidence alone does not tell us what
general conclusions to draw. The question is what else should govern our infer-
ences. One prominent idea is that we should continue to seek something like a
logical argument from evidence as premises to theory as conclusion. Such an
argument is not guaranteed to deliver a true conclusion, but something other
than truth. For example, we may seek a type of argument to the e¤ect that,
given the evidence, the conclusion is probable, con�rmed, justi�ed, warranted,
rationally acceptable etc.1

1For a fairly detailed but brief comparison of formal learning theory with various ways of
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Formal learning theory begins with an alternative response to the under-
determination of general conclusions by evidence. Empirical methods should
reliably deliver the truth just as logical methods do. But unlike deduction,
inductive inquiry need not terminate with certainty. In the learning-theoretic
conception of inductive success, a method is guaranteed to eventually arrive
at the truth, but this does not mean that after some �nite time, the method
yields certainty about what the right generalization is: An inquirer can be in
the possession of the truth without being certain that she is. A philosophical
forerunner of this idea is Peirce�s notion that science would �nd the truth �in the
limit of inquiry�, but need never yield certainty [28]. As his fellow pragmatist
William James put it, �no bell tolls�when science has found the right answer
[16]. Reichenbach�s pragmatic vindication of induction applied this conception
of empirical success to the problem of estimating probabilities (interpreted as
limits of relative frequencies) [31]. Reichenbach�s student Hilary Putnam showed
how the idea could be developed into a general framework for inductive inference
[29, 30].2 The notion of success in the limit of inquiry is subtle and requires some
getting used to. I will illustrate it by working through two simple examples.

2 First Example: Black Ravens

Consider the problem of investigating whether all ravens are black. Imagine an
ornithologist who tackles this problem by examining one raven after another.
There is exactly one observation sequence in which only black ravens are found;
all others feature at least one nonblack raven. Figure 1 illustrates the possible
observation sequences.
If the world is such that only black ravens are found, we would like the

ornithologist to settle on this generalization. (It may be possible that some
nonblack ravens remain forever hidden from sight, but even then the generaliza-
tion "all ravens are black" at least gets the observations right.) If the world is
such that eventually a nonblack raven is found, then we would like the ornithol-
ogist to arrive at the conclusion that not all ravens are black. This speci�es a
set of goals of inquiry. For any given inductive method that might represent
the ornithologist�s disposition to adopt conjectures in the light of the evidence,
we can ask whether that method measures up to these goals or not. There are
in�nitely many possible methods to consider; we will look at just two, a scepti-
cal one and one that boldly generalizes. The bold method conjectures that all
ravens are black after seeing that the �rst raven is black. It hangs on to this
conjecture unless some nonblack raven appears. The skeptical method does not
go beyond what is entailed by the evidence. So if a nonblack raven is found,
the skeptical method concludes that not all ravens are black, but otherwise the
method does not make a conjecture one way or another. Figure 2 illustrates
both the generalizing and the skeptical method.

cashing out this idea, see [22].
2The cognitive scientist Mark Gold independently developed the same conception of in-

ductive inference as Putnam to analyze language acquisition [12].
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...

all ravens are black

not all ravens
are black

not all ravens
are black

not all ravens
are black

at this point either a black or a nonblack
raven is observed

Figure 1: Data Sequences and Alternative Hypotheses for the Raven Color
Problem

Do these methods attain the goals we set out? Consider the bold method.
There are two possibilities: either all observed ravens are black, or some non-
black raven is found. In the �rst case, the method conjectures that all ravens
are black and never abandons this conjecture. In the second case, the method
concludes that not all ravens are black as soon as the �rst nonblack raven is
found. Hence no matter how the evidence comes in, eventually the method
gives the right answer as to whether all ravens are black and sticks with this
answer.
The skeptical method does not measure up so well. If a nonblack raven appears,
then the method does arrive at the correct conclusion that not all ravens are
black. But if all ravens are black, the skeptic never takes an "inductive leap" to
adopt this generalization. So in that case, the skeptic fails to provide the right
answer to the question of whether all ravens are black.
This illustrates how means-ends analysis can evaluate methods: the bold

method meets the goal of reliably arriving at the right answer, whereas the
skeptical method does not. Note the character of this argument against the
skeptic: The problem, in this view, is not that the skeptic violates some canon
of rationality, or fails to appreciate the "uniformity of nature". The learning-
theoretic analysis concedes to the skeptic that no matter how many black ravens
have been observed in the past, the next one could be white. The issue is that if
all observed ravens are indeed black, then the skeptic never answers the question
"are all ravens black?". Getting the right answer to that question requires
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at this point either a black or a nonblack
raven is observed
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“all ravens
 are black”
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all ravens are black
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?

all ravens are black

not all
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are black

not all
ravens
are black

not all
ravens
are black

not all
ravens
are black

not all
ravens
are black

Figure 2: The Generalizer and the Skeptic in the Raven Color Problem
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generalizing from the evidence even though the generalization could be wrong.

3 Second Example: The New Riddle of Induc-
tion

Let us go through a second example to reinforce the notion of reliable conver-
gence to the right answer.
Nelson Goodman posed a famous puzzle about inductive inference known as

the (New) Riddle of Induction [13]. Our next example is inspired by his puz-
zle. Goodman considered generalizations about emeralds, involving the familiar
colors of green and blue, as well as certain unusual ones:

Suppose that all emeralds examined before a certain time t are
green... Our evidence statements assert that emerald a is green, that
emerald b is green, and so on...
Now let me introduce another predicate less familiar than "green�.
It is the predicate "grue�and it applies to all things examined before
t just in case they are green but to other things just in case they are
blue. Then at time t we have, for each evidence statement asserting
that a given emerald is green, a parallel evidence statement asserting
that emerald is grue.

The question is whether we should conjecture that all emeralds are green
rather than that all emeralds are grue when we obtain a sample of green emeralds
examined before time t, and if so, why.
Clearly we have a family of grue predicates in this problem, corresponding

to di¤erent "critical times" t; let�s write grue(t) to denote these. Following
Goodman, I refer to "projection rules" in discussing this example. A projection
rule succeeds in a world just in case it settles on a generalization that is correct
in that world. Thus in a world in which all examined emeralds are found to
be green, we want our projection rule to converge to the proposition that all
emeralds are green. If all examined emeralds are grue(t), we want our projection
rule to converge to the proposition that all emeralds are grue(t). Note that this
stipulation treats green and grue predicates completely on a par, with no bias
towards either. As before, let us consider two rules: the "natural" and the
"gruesome" projection rules. The natural projection rule conjectures that all
emeralds are green as long as only green emeralds are found; if a blue emerald
is found, say at stage n for the �rst time, the rule conjectures that all emeralds
are grue(n). The "gruesome" rule keeps projecting the next grue predicate
consistent with the available evidence. Expressed in the green-blue vocabulary,
the gruesome projection rule conjectures that after observing some number of n
green emeralds, all future ones will be blue. Figures 3 and and 4 below illustrate
the possible observation sequences and the two methods mentioned in this model
of the New Riddle of Induction.
How do these rules measure up to the goal of arriving at a true generaliza-

tion? Suppose for the sake of the example that the only serious possibilities
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“all
green”

“all
green”

“all
green”

all emeralds are green

“all grue(3)”

“all grue(2)”

“all grue(1)”

“all grue(3)”

“all grue(2)”

“all grue(1)”

all emeralds
are grue(2)

all emeralds
are grue(1)
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are grue(3)

First
mind change

First
mind change

“all grue( )”= “all emeralds are grue( )”t t
“all green” = “all emeralds are green”

the conjectures of the natural projection rule

…
…

…

At this stage, either a green or a blue emerald
may be observed

Figure 3: The Natural Projection Rule in the New Riddle of Induction

6



…
“all
grue(4)”

“all
grue(3)”

“all
grue(2)”

all emeralds are green

“all grue(3)”

“all grue(2)”

“all grue(1)”

“all grue(3)”

“all grue(2)”

“all grue(1)”

all emeralds
are grue(2)

all emeralds
are grue(1)

all emeralds
are grue(3)

“all grue( )”= “all emeralds are grue( )”t t

the conjectures of the gruesome projection rule

…
…

…

At this stage, either a green or a blue emerald
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Figure 4: The Gruesome Projection Rule in the New Riddle of Induction
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under consideration are that either all emeralds are green or that all emeralds
are grue(t) for some critical time t. Then the natural projection rule settles
on the correct generalization no matter what the correct generalization is. For
if all emeralds are green, the natural projection rule asserts this fact from the
beginning. And suppose that all emeralds are grue(t) for some critical time t.
Then at time t, a blue emerald will be observed. At this point the natural pro-
jection rule settles on the conjecture that all emeralds are grue(t), which must
be correct given our assumption about the possible observation sequences. Thus
no matter what evidence is obtained in the course of inquiry� consistent with
our background assumptions� the natural projection rule eventually settles on
a correct generalization about the color of emeralds.
The gruesome rule does not do as well. For if all emeralds are green, the rule

will never conjecture this fact because it keeps projecting grue predicates. Hence
there is a possible observation sequence� namely those on which all emeralds are
green� on which the gruesome rule fails to converge to the right generalization.
So means-ends analysis would recommend the natural projection rule over the
gruesome rule. Some comments are in order.
(1) As in the previous example, nothing in this argument hinges on argu-

ments to the e¤ect that certain possibilities are not to be taken seriously a
priori. In particular, nothing in the argument says that generalizations with
grue predicates are ill-formed, unlawlike, or in some other way a priori inferior
to "all emeralds are green".
(2) The analysis does not depend on the vocabulary in which the evidence

and generalizations are framed. For ease of exposition, I have mostly used the
green-blue reference frame. However, grue-bleen speakers would agree that the
aim of reliably settling on a correct generalization requires the natural projection
rule rather than the gruesome one, even if they would want to express the
conjectures of the natural rule in their grue-bleen language rather than the
blue-green language that I have used. (For more on the language-invariance of
means-ends analysis see [33, 34].)
(3) Though the analysis does not depend on language, it does depend on

assumptions about what the possible observation sequences are. The example
as I have described it seems to comprise the possibilities that correspond to the
color predicates Goodman himself discussed. But means-ends analysis applies
just as much to other sets of possible predicates. Schulte [34] and Chart [6]
discuss a number of other versions of the Riddle of Induction, in some of which
means-ends analysis favors projecting that all emeralds are grue on a sample of
all green emeralds.

4 Reliable Convergence to the Truth: General
Concepts and De�nitions

Now that we have seen two examples of the basic idea, let us encapsulate it
more generally in a mathematical de�nition. I begin with the description of an
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inductive or learning problem, which involves a speci�cation of possible obser-
vations, alternative hypotheses and which hypotheses count as correct given a
total body of evidence. Then I de�ne the concept of an inductive method, and
�nally specify Putnam�s and Gold�s notion of empirical success for inductive
methods.

4.1 Inductive Problems: Observations, Data Streams, Hy-
potheses, Background Knowledge and Correctness

In both examples, we have a set of possible hypotheses that an inquirer could
adopt in the course of inquiry. In the ravens example, the set is {�all ravens
are black�, �not all ravens are black�}. In the Riddle of Induction, the (in�-
nite) set of hypotheses is {�all emeralds are green�, �all emeralds are grue(1)�,
�all emeralds are grue(2)�, . . . , �all emeralds are grue(n)�, . . . }. In realistic
examples, the hypotheses may be considerably more complex. For instance, in
language learning models the set of alternatives is the set of all grammars that
may govern the language spoken in the learner�s (child�s) native environment
[27]. In models of scienti�c inquiry, the alternative theories could be sets of
conservation principles [35], or models of cognitive functioning [10], [3].
Another part of the speci�cation of a learning problem is a set of evidence

items. In the raven example, there are two kinds of evidence items �a black
raven is observed�, or �a nonblack raven is observed�. In the Riddle of In-
duction, the set of evidence items is {green emerald, blue emerald}. In more
realistic applications, we have many more, even in�nitely many, evidence items.
For example, an evidence item may be a measurement of a quantity, or set of
quantities, in a physical experiment. In studying particle dynamics, the set of
evidence items comprises all interactions among elementary particles that we
may observe in particle accelerators [35]. In cognitive psychology, an evidence
item could be the behavior pro�le of a subject in an experiment [10].
A data stream is an in�nite sequence of evidence items. We write " for a

typical data stream, "i for the i-th datum observed in the data stream ", and
"jn for the �rst n data observed along ". For example, if " is the data stream
along which only green emeralds are observed, then "i = "green" for all i, and
"jn is <"green", "green",. . . ,"green"> for n repetitions of "green". If " is the
data stream on which all emeralds are grue(1), then "1 = "green", "i = "blue"
for all i > 1, and "jn = <"green", "blue", . . . , "blue"> with n � 1 repetitions
of "blue".
An inquirer may have background knowledge relevant to the question under

investigation. For example, a particle physicist may assume that all particle
reactions satisfy relativity theory. In a language learning problem, we may
restrict attention only to languages with computable (total recursive) grammars.
In such cases, the inquirer may be willing to rule out certain observations a
priori. We can model the inquirer�s background assumptions as a set K of data
streams that represents the set of all in�nite observation sequences that may
arise for all the inquirer knows.
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De�nition 1 (Evidence Items and Empirical Background Knowledge)
Let E be a set of evidence items.

1. A data stream " is an in�nite sequence of evidence items. That is, "n is
a member of E for each n.

2. The initial sequence comprising the �rst n observed data along " is denoted
by "jn.

3. The inquirer�s background knowledge is represented by a set of data streams
K that may occur for all the inquirer knows.

In applications of learning theory, we assume that for every data stream there
is a hypothesis that is correct for the data stream. For example, the hypothesis
�all emeralds are green� is correct for the data stream on which only green
emeralds are observed. The hypothesis �not all ravens are black�is correct on
any data stream on which some nonwhite raven is observed. The correctness
relation between data streams and hypotheses is part of the speci�cation of the
inductive problem. Learning theory is agnostic about what correctness is. In
the examples we have considered, correctness amounts to empirical adequacy:
the goal is to �nd a generalization that makes the right predictions about what
will be observed when. Correct hypotheses may be the true ones, or the simplest
true ones, or simply the empirically adequate hypotheses. Another way to put
it is that the correctness relation C expresses the inquirer�s goals: if the total
(in�nite) observational data were such and such, as found in a data stream ",
then the inquirer wants to adopt a hypothesis H such that C(H; ") holds. Thus
learning theory per se does not recommend to an inquirer what hypotheses she
should view as correct for a total body of evidence. Rather, the theory helps
the inquirer �nd a correct hypothesis from the partial body of evidence actually
available at a given stage of inquiry.
Without going into details, it may be useful to indicate how the model

of inquiry I have outlined so far corresponds to the language learning models
much studied in formal learning theory. In language learning models [15], the
evidence items are called "strings" and the counterpart of a data stream is a
"text". The alternative hypotheses are (indices for) "languages"; a language is
a set of evidence items, which models the view of a language as a set of strings.

4.2 Inductive Methods and Inductive Success

After observing a �nite sequence of evidence items, an inquirer produces a
hypothesis� her guess as to the right answer. Mathematically, this corresponds
to a function that assigns a hypothesis to a �nite data sequence. We also al-
low an inquirer to refrain from adopting an answer, which is indicated by a
? for �no guess yet�. Such a function is a mathematical representation of an
inquirer�s disposition to output guesses in response to evidence. Following some
philosophical tradition, we refer to such a function as an inductive method, or
method for short. Figure 5 illustrates the notion of a method.
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Figure 5: An inductive method takes as input an evidence sequence and outputs
a hypothesis. Discrete evidence items can be generically represented by natural
numbers (e.g., 0 for "black raven", 1 for "white raven").

De�nition 2 (Inductive Methods) Let E� denote the set of �nite evidence
sequences, and let H be a collection of alternative hypotheses. An inductive
method is a function � : E� ! H [ f?g such that for each �nite data sequence
E, the output �(E) is either a hypothesis H or the vacuous output ?.

Some comments will clarify the concept of a method in relation to other
concepts and terminology.
(1) Philosophers often discuss functions from evidence to belief without call-

ing them methods. A fairly common alternative term is �rule�. For example,
Goodman discusses �projection rules�for generalizing from observed emeralds.
In his analysis of knowledge, Nozick does use the term �method�for a doxastic
disposition [26]. Learning-theoretic analysis applies to any disposition that gives
rise to belief given evidence, whether such a disposition is called �method�or
not. An alternative term for method in learning theory is simply �learner�, and
recently the term �scientist�has come into use [15], [25].
(2) The notion of method as given in De�nition 2 is neutral about the inter-

pretation of adopting a hypothesis: �outputting�a hypothesis can model various
epistemic attitudes that an inquirer may take towards her theory, such as belief,
full belief, posit, acceptance, entertaining, etc. In fact, learning theory is even
more agnostic about the concept of belief than De�nition 2 suggests because the
framework can accommodate just about any concept of belief, including degrees
of belief as in a probabilistic theory, or degrees of con�rmation as in con�rmation
theory. For example, Putnam investigated whether Carnap�s inductive methods
(his �c-functions�) arrive at the right answer, in the sense that whatever the
true generalization is, eventually the true generalization always receives degree
of con�rmation greater than 1/2 [29]. Or we can ask whether the degree of
belief of a Bayesian agent in the true generalization will come arbitrarily close
to 1 [17], [7, Ch.9.6], [25, Sec.3.6.9].
In general, to apply learning theory it su¢ ces to have a notion of an (epis-

temic) state s and a correctness relation Correct("; s) that speci�es the correct
states for the agent to be in, given that the total observational facts are as
described by the data stream ". The point is that learning theory does not
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presuppose, and hence does not depend on, a particular analysis of belief or
epistemic attitudes. Rather, the theory addresses the question of how best to
change one�s belief, however understood.
(3) The notion of method as given in De�nition 2 is agnostic about internal

facts concerning how the agent arrives at her hypothesis. In e¤ect, the de�ni-
tion views a method as a black box, as suggested in Figure 5. Learning theory
focuses on the behavior and performance of epistemic dispositions, not on their
internal structure. As a consequence, learning theoretic analysis applies to any
recommendation for how we should reason from evidence to theory: whether
the proposal is to follow a certain style of argument (e.g., probabilistic), seek a
certain kind of conformation (e.g., Carnap�s c-functions [4] or Glymour�s boot-
strap con�rmation [13]), or adopt some set of normative criteria for rational
belief formation: we can always ask whether those ways of producing belief
would lead an inquirer to the correct hypothesis (cf. [36]).
With De�nitions 1 and 2 in hand, we are ready to de�ne Putnam�s and

Gold�s conception of empirical success.

De�nition 3 (Reliable Convergence to the Correct Hypothesis) Let E
be a set of evidence items, H a set of alternative hypotheses, C a correctness
relation that speci�es which hypotheses are correct for each data stream " com-
prising observations drawn from E.

1. A method � converges to, or identi�es, a correct hypothesis H on a data
stream " () H is correct for " and there is a stage n such that �("jn0) =
H for all stages n0 � n.

2. A method � is reliable for, or identi�es, H given background knowledge K
() for all data streams " consistent with K (i.e., " in K), the method �
converges to a correct hypothesis on ".

To illustrate this de�nition, we veri�ed in Section 3 that the natural projec-
tion rule reliably identi�es a true generalization about emerald colors given the
set of alternatives {"all green", "all grue(1)", . . . .}. The gruesome method that
keeps predicting that the next emerald is blue fails to converge to �all emer-
alds are green� on the data stream featuring only green emeralds. De�nition
3 envisions a method converging to a single hypothesis; in algorithmic learning
theory, this corresponds to "EX-learning"� see the introductory chapter in this
volume.
Part of the traditional concept of a method, for example in Mill and ar-

guably in Aristotle, is that a method should be a step-by-step reasoning proce-
dure. The de�nition above does not require that a method should be easy to
follow. In modern terms, a step-by-step procedure of the sort sought by tradi-
tional philosophers corresponds to an algorithm which by Church�s thesis can
be implemented on a Turing machine. It is therefore natural to require that
methods should be algorithmic or computable. Such an algorithm provides a
step-by-step procedure for following the method. Much of formal learning the-
ory studies algorithmic methods, so much so that the subject is often referred to
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as algorithmic learning theory (as in the title of this volume) or computational
learning theory.
Some striking results in algorithmic learning theory examine what norms

of inductive reasoning help agents with bounded cognitive powers and which
hinder them in attaining the aims of inquiry. The point is not the trivial one
that the deductive abilities of agents limited to the reasoning powers of a Tur-
ing Machine fall short of ideal logical omniscience. Rather, it turns out that
computable inquiry sometimes requires fundamentally di¤erent strategies than
inquiry by idealized agents. In such cases, trying to approximate or "get as close
as possible" to the ideal norm can be a bad strategy for computable agents seek-
ing to identify a correct hypothesis.
For example, consider the seemingly banal consistency principle: do not

accept a hypothesis that is inconsistent with the data (see for example Hempel�s
"conditions of adequacy" for a de�nition of scienti�c con�rmation [14, Ch.I.1.8]).
Kelly and Schulte describe an inductive problem with an empirical hypothesis
H such that a step-by-step reasoning procedure can reliably identify in the
limit whether or not H is correct, but inductive methods even with in�nitely
uncomputable reasoning powers cannot do so� if they are required to satisfy
the consistency principle. (For another restrictiveness result along these lines,
see [25, Prop. 60].) Intuitively, the main reason why the consistency principle
restricts the potential of computable inquiry is that an agent with bounded
logical powers cannot immediately recognize when a hypothesis is inconsistent
with the data, but must �rst gather more data. The consistency principle rules
out this inductive strategy because it mandates that an agent should reject a
hypothesis as soon as it is refuted. For further discussion of the di¤erences
between methodology for logically omniscient agents and those with bounded
deductive abilities, see [19], [20, Ch.6,7,10], [25].

5 Additional Epistemic Goals: Fast and Stable
Convergence to the Truth

The seminal work of Putnam and Gold focused on reliable convergence to a
correct hypothesis. A major extension of their approach is to consider cognitive
desiderata in addition to �nding a correct hypothesis (such desiderata are called
�identi�cation criteria� in the computer science literature [5]). In this section,
I consider two epistemic aims that have received considerable attention from
learning theorists: stable and fast convergence to a correct theory.
The motivation for examining convergence speed is that other things being

equal, we would like our methods to arrive at a correct theory sooner rather than
later. A venerable philosophical tradition supports the idea that stable belief
is a signi�cant epistemic good. Since Plato�s Meno, philosophers are familiar
with the idea that stable true belief is better than unstable true belief, and
epistemologists such as Sklar [39] have advocated similar principles of "epistemic
conservatism". Kuhn tells us that a major reason for conservatism in paradigm
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debates is the cost of changing scienti�c beliefs [23]. In this spirit, learning
theorists have examined methods that minimize the number of times that they
change their theories before settling on their �nal conjecture.
As it turns out, the idea of adding cognitive goals in addition to �nding a

correct hypothesis addresses a long-standing objection to identi�cation in the
limit. Reichenbach�s student Salmon criticized his teacher�s pragmatic vindica-
tion of induction on the grounds that the vindication, even if successful, leaves
belief underdetermined in the short run [32]. The reason is that while Reichen-
bach�s straight rule is guaranteed to approach the true probability of an event,
so are in�nitely many other rules. For example, consider a rule � that estimates
the probability of a coin coming up heads to be 1 for 1,000 tosses no matter
what the outcome of the tosses is. After 1,000 tosses, � switches to following
the straight rule. Thus in the limit of inquiry, the rule � converges to the same
answer as the straight rule does.
From this example it is easy to see the general pattern: Suppose that � is

a reliable method; let e be any evidence sequence, and H be any hypothesis.
Then there is a method �0 that outputs H on e and follows the reliable method
� on any other evidence. So �0 converges to the same hypothesis as � and thus
�0 is reliable. This shows that any conjecture H on any evidence e is consistent
with long-run reliability.
The situation changes drastically if we take into account other aspects of

empirical success. Several general recent results show that maximizing stable
belief, or minimizing mind changes, strongly constrains the conjectures of opti-
mal inductive methods in the short run. I will illustrate the power of additional
epistemic goals in the two simple traditional examples already considered.
First, we need to de�ne what it is for an inductive method to succeed with

respect to an epistemic goal. For a given epistemic desideratum, a method
may perform well in some circumstances but not in others. To compare the
performance of methods with regard to a range of possible ways the world
might be� more precisely, with regard to all the data streams consistent with
background knowledge� we may apply two familiar principles from decision
theory: admissibility and minimax. A method is admissible i¤ it is not
dominated. In general, an act A dominates another act A0 if A necessarily
yields results at least as good as those of A0, and possibly better ones, where a
given collection of �possible states of the world�determines the relevant sense
of necessity and possibility. An act A minimaxes if the worst possible outcome
from A is as good as the worst possible outcome from any other act.
For the two epistemic desiderata of minimizing time-to-truth and reversals

of opinion, applying the two decision-theoretic criteria of admissibility and min-
imax yields 2x2 = 4 identi�cation criteria. It turns out that two of these,
admissibility for mind changes and minimaxing convergence time, are feasible
only for empirical questions that pose no genuine problem of induction; more
precisely, they are feasible only if the data are eventually guaranteed to entail
which hypothesis is correct. (For the details see [33].) Thus learning theorists
have focused on minimaxing theory changes and admissibility with respect to
convergence time. I will discuss minimizing reversals of opinion in the remain-
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der of this section and the next and then return to admissibility with respect to
time-to-truth.

5.1 Stable Convergence to a Correct Hypothesis

We say that a method � changes its mind on a data sequence e1; :::; en; en+1 if
the method�s output on the previous data e1; :::; en is not ? (i.e., �(e1; :::; en) 6=?)
and di¤ers from its output at stage n+1 (i.e., �(e1; :::; en) 6= �(e1; :::; en; en+1)).
No mind changes occur on the empty data sequence.

De�nition 4 (Stable Belief: Minimizing Mind Changes) Suppose that �
is a reliable discovery method for alternative hypotheses H given background
knowledge K.

1. The number of mind changes of � on data stream " is given by MC(�; ") �
jfn : � changes its mind on "jngj.

2. The method � succeeds with at most n mind changes given K () MC(�; ") �
n for all data streams " consistent with K.

3. The method � minimaxes mind changes given hypotheses H, back-
ground knowledge K () there is no other reliable method �0 for H such
that the maximum number of times that � might change its mind, given
background knowledge K, is greater than the same maximum for �0.

The New Riddle of Induction turns out to be a nice illustration of minimizing
mind changes. Consider the natural projection rule (conjecture that all emeralds
are green on a sample of green emeralds). If all emeralds are green, this rule
never changes its conjecture. And if all emeralds are grue(t) for some critical
time t, then the natural projection rule abandons its conjecture "all emeralds
are green" at time t� one mind change� and thereafter correctly projects "all
emeralds are grue(t)". Hence the natural projection rule changes its mind at
most once in the New Riddle of Induction (see Figure 3). Remarkably, rules that
project grue rather than green do not do as well. For example, consider a rule
that conjectures that all emeralds are grue(3) after observing one green emerald.
If two more green emeralds are observed, the rule�s conjecture is falsi�ed and it
must eventually change its mind, say to conjecture that all emeralds are green
(suppose that green emeralds continue to be found). But then at that point, a
blue emerald may appear, forcing a second mind change. This argument can be
generalized to show that the aim of minimizing mind changes allows only the
green predicate to be projected on a sample of all green emeralds [33, Prop. 11].
Figure 6 illustrates in a typical case how an unnatural projection rule may have
to change its mind twice or more. From the insight illustrated in Figure 6, we
can establish the optimality of the natural projection rule.

Proposition 5 Let � be any projection rule (inductive method) that reliably
identi�es a true generalization about emerald colors in the Riddle of Induction
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…

“all
green”

“all
grue(3)”

“all
grue(3)”

all emeralds are green

“all grue(3)”

“all grue(2)”

“all grue(1)”

“all grue(3)”

“all grue(2)”

“all grue(1)”

all emeralds
are grue(2)

all emeralds
are grue(1)

all emeralds
are grue(3)

the conjectures of a reliable projection rule
that fails to minimize mind changes

…
…

…

First
mind change

Second
mind change

“all
green” “all grue(3)”“all grue(3)”

all emeralds
are grue(3)…

“all grue( )”= “all emeralds are grue( )”t t
“all green” = “all emeralds are green”

At this stage, either a green or a blue emerald
may be observed

Figure 6: A reliable projection rule that projects a grue predicate on an all
green sample of emeralds can be forced to change its mind twice.
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and changes its conjecture at most once. Let e be any �nite sequence featuring
only green emeralds (i.e., e is of the form <green emerald, green emerald, . . .>.
Then either �(e) = ? � the method makes no guess �or �(e) = �all emeralds
are green�.

Less formally, the proposition says that after observing a sequence of emer-
alds consistent with �all emeralds are green�, an optimal method must conjec-
ture �all emeralds are green�or else withhold opinion. The criteria of reliable
convergence to the truth and stable belief do not determine how many instances
exactly are required for inference to �build up enough con�dence�and �take an
inductive leap�. These goals do determine that (1) a reliable method must even-
tually take an inductive leap, and (2) when the method does adopt a universal
generalization in the Riddle of Induction, on a sample of all green emeralds that
generalization must be "all emeralds are green�.
In the ravens example, the results of the analysis are similar. A reliable

method that minimaxes retractions may withhold opinion on a sample of all
black ravens, but if it does generalize beyond the data, it must conjecture that
all ravens are black rather than that some nonblack raven will appear in the
future. Our two examples illustrate the typical pattern for methods that achieve
as much stable belief as possible: minimizing mind changes determines the what
of inductive generalizations, but not the when. (For more precise statements
and proofs of this principle, see [24], [21]).

5.2 Fast Convergence to a Correct Hypothesis

Let us return to the idea of minimizing time-to-truth. Formally, we may develop
this success criterion as follows. De�ne the convergence point of a method �
on a data stream " to be the time at which the method starts to converge to an
answer. That is, CP (�; ") � the least n such that �("jn) = �("jn0) for all n0 � n.
For a set of alternative hypotheses H and given background knowledge K, an
inductive method � dominates another inductive method �0 with respect to
convergence time ()

1. background knowledge K entails that � converges no later than �0 does
(i.e., CP (�; ") � CP (�0; ") for all " 2 K), and

2. there is some data stream, consistent with background knowledge K; on
which � converges before �0 does (i.e., there is " 2 K such that CP (�; ") <
CP (�0; ")).

A method � is data-minimal given K if no other reliable method for H
dominates � with respect to convergence time ([20, Ch.4.8]; see also [25, Def.28]).
There is a theorem that characterizes the properties of data-minimal meth-

ods [34, Th.8], [25, Ex.39]. A consequence of the theorem is that data-minimal
methods always adopt a de�nite belief� that is, they never output "?". In-
tuitively, suspending belief loses time, because the method could have begun
converging to a true belief instead. For our examples, it follows that the natural
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projection rule in the Riddle of Induction and the bold generalizer in the ravens
problem are the only reliable data-minimal methods that minimax retractions.

6 Further Extensions and Applications

This section indicates some further extensions and developments of the theory
of reliable inquiry with additional epistemic values.
(1) Many problems do not allow a �nite bound on mind changes, although

there is still an intuitive sense that some methods achieve stable belief more
than others. Freivalds showed how the notion of a �nite mind change bound
can be extended to an ordinal or trans�nite bound [8]. This well-studied crite-
rion considerably enhances the range of inductive problem in which the goal of
minimizing mind changes is feasible [15]. An even more general formulation of
the idea has been very recently developed by Kelly [21].
(2) Although problems such as the Riddle of Induction and generalizing

about black ravens may appear very di¤erent on the surface, there is a common
structure to problems that can be solved with at most 1 mind change, as Fig-
ures 1 and 3 suggest. This holds true for any �nite and even trans�nite mind
change bounds. The common deep structure of problems solvable with a given
mind change bound can be explicated in terms of point-set topology (cf. [34],
[20, Ch.4], [24, Sec.3]). For language and function learning problems, which are
commonly studied in Computational Learning Theory, the mind change com-
plexity of an inductive problem is characterized by Cantor�s classic concept of
accumulation order ([2], [24, Th.1]).
The fact that the goals of true and stable belief place such strong constraints

on inductive inference allows us to evaluate speci�c inference methods with
respect to how well they serve these goals. Pursuing this question almost always
leads to insights into the inductive problem under investigation, increases our
understanding of known learning methods, and can lead to the development
of new methods. I conclude this introduction with some brief illustrations of
applying this kind of learning-theoretic analysis in some fairly realistic inference
problems.
(1) An inductive problem that arises in particle physics is to �nd a set

of conservation laws that correctly predict which reactions among elementary
particles are possible [35]. A prominent type of conservation law consists of
additive conservation laws, also known as selection rules. It can be shown that
there is a unique optimal method for inferring selection rules [35]. It turns
out that the standard set of laws that particle physicists have actually adopted
makes exactly the same predictions as the output of the learning-theoretically
optimal method [37].
(2) Angluin introduced the well-known concept of a �pattern�for describing

a set of strings [1]. For example, the pattern 0xx1 describes such strings as 0001,
0111, 000001, 011111. A one-variable pattern is a pattern that contains at most
one distinct variable, such as 0xx1. Angluin provided an inference algorithm for
identifying a one-variable pattern in the limit that does not, however, minimize
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mind changes [24, Sec.5]. Luo and Schulte describe a di¤erent algorithm that
is mind change optimal (moreover, their algorithm requires time only linear in
the length of a data sequence e to produce a conjecture for e).
(3) Kelly has generalized the idea of reliable inference with bounded mind

changes to settings of statistical inference concerned with statistical theories
that determine the distribution of observed variables [18, Sec.11]. In that setting
Kelly shows that the standard practice of statistical hypothesis testing is mind
change optimal: take as the null hypothesis a point estimate (e.g., the mean of
the distribution is 0) and neither accept nor reject (corresponding to "?") unless
and until the null hypothesis is rejected. Another application of Kelly�s analysis
are problems of causal inference. In causal inference, a basic problem is to �nd
which variables are directly causally linked to each other (e.g., there is a direct
connection between �tar content in lung�and �lung cancer�which mediates the
indirect connection between �smoking�and �lung cancer�). Standard methods
for causal inference conjecture that there is no direct link between two variables
unless and until a direct connection is conclusively veri�ed (by statistical tests).
Kelly shows that this inference method is mind change optimal [18, Sec.11].
In conclusion, formal learning theory provides a rich set of concepts for an-

alyzing the complexity of inductive problems and the performance of inductive
methods. In applications, these analytical tools have yielded insights into the
learning problem, validated existing learning methods and led to the develop-
ment of new ones. One goal of this article was to lay out some of the basic
concepts and techniques that underlie learning-theoretic analysis to invite the
development of further applications.
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