
K E V I N  T ,  K E L L Y  A N D  O L I V E R  S C H U L T E  

T H E  C O M P U T A B L E  T E S T A B I L I T Y  OF T H E O R I E S  

M A K I N G  U N C O M P U T A B L E  P R E D I C T I O N S  

1. INTRODUCTION 

Consider a naively Popperian (1968) picture of scientific inquiry. A 
scientific theory may entail various observations in light of background 
information and what has been observed so far. To test the theory, the 
scientist sequentially derives predictions and checks them against the 
data as it comes in. When a mismatch is detected, the theory is rejected. 
Otherwise, the theory "passes muster" and is retained until such time 
as it is refuted. In general, we say that a scientist refutes a theory with 
certainty just in case no matter how the data comes in for eternity, the 
scientist eventually rejects the theory if it is false, and fails ever to 
reject it if it is true. According to this conception, refutation with 
certainty is a standard of success for scientific methods rather than a 
relation between theory and evidence. 

Suppose that a computer refutes a given theory with certainty. Then 
according to the simple picture of inquiry just described, it would seem 
as though the computer must be able to derive each prediction made 
by the theory. For suppose otherwise. Then either the computer fails 
to derive any prediction from the theory for a given time (an error of 
omission) or the computer fallaciously derives a prediction that differs 
from the one genuinely entailed by the theory (an error of commission). 
If the computer is guilty of an error of omission, it must simply guess 
whether the (unknown) prediction of the theory would have agreed 
with the data, and for any guess made, the data can be arranged so 
that it is the wrong one. If the computer is guilty of an error of 
commission, the data may either agree with the erroneous prediction 
or agree with the theory. In the former case, the computer will forever 
fail to reject the theory when it is false, and in the latter case the 
computer will reject the theory when it is true. In each case, the 
computer fails to refute the theory with certainty. 

Now suppose that the predictions made by a given theory are impos- 
sible for any computer to derive. Then each computer program for 
deriving predictions from the theory is guilty of infinitely many errors 
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of omission or commission; for if it were guilty of only finitely many, 
its program could be "patched" with a finite lookup table correcting 
its mistakes, contradicting the assumption that no computer program 
correctly derives the theory's predictions. 

A natural and important question now arises. Must it be possible for 
a computer to correctly derive all the predictions of a theory if the 
theory is to be effectively refuted with certainty? Or is there some 
other way to effectively refute a theory with certainty even though no 
computable method can derive all of its predictions and even though 
any given prediction made by the theory might be false for all we know 
a priori ? The question is not merely theoretical, since there is increasing 
interest in the computability of prediction in physical theories. 1 

The surprising answer to our question, which will be seen to follow 
from a classic result of Hilbert and Bernays concerning the implicit 
definability of arithmetical truth, is that there is a universal hypothesis 
that is effectively refutable with certainty and that uniquely predicts 
the outcome of each observation for eternity, but whose predictions 
are in a precise sense infinitely impossible to derive by computational 
means. The methodological moral of this result is clear. There is a more 
powerful way for computable inquiry to proceed than by sequentially 
deriving predictions from a theory and then checking them against the 
data as it arrives. 

Refutation with certainty is just one notion of successful inquiry. 
Verification with certainty is another. Or, following Peirce (1935), Rei 
chenbach (1949), and Putnam (1963), we might demand that inquiry 
stabilize to the truth without ever achieving certainty (i.e. it is always 
possible so far as the scientist knows that his current verdict on the 
hypothesis might be taken back tomorrow, although after some finite 
time it will never again be taken back). One may now ask for each 
such notion of successful inquiry how uncomputable the predictions of 
the theory under investigation can be if computable inquiry is to be 
successful in that sense. In this paper we establish a complete table of 
the relations between different forms of computable inquiry and differ- 
ent forms of computable derivability of predictions. We also examine 
the converse questions: how computably untestable can a theory be, if 
its predictions are computably derivable in a given sense? One easy 
consequence of our results is that there exists a computable method 
whose reliability cannot be matched even by Bayesian agents of a highly 



THE COMPUTABLE TESTABILITY OF THEORIES 31 

idealized sort. 2 This raises the question whether Bayesian method 
should be viewed as an aid or as a hindrance to finding the truth. 

2. E M P I R I C A L  H Y P O T H E S E S  A N D  P R E D I C T I O N  

An empirical hypothesis makes claims about what will be observed, 
perhaps for eternity. We will suppose that there is at most a countable 
infinity of possible observations at a given time. We will also suppose 
that these possible observations can be effectively encoded by elements 
of some effectively decidable set O C_ o9, where w denotes the set of all 
natural numbers. For example, these numbers might be GOdel numbers 
of observation statements in some formalized language or code numbers 
representing finite vectors of dial readings. At  each stage of inquiry 
another observation is recorded. If inquiry were to continue forever, 
an infinite sequence e of observations (natural numbers) would be 
received. Let O °~ represent the set of all infinite sequences of code 
numbers in O. Each e E O '° will be referred to as a data stream. We 
will also be interested in finite sequences of observations drawn from 
O. Let en = e(n) denote the item occurring in position n of e. Let O" 
denote the set of all sequences of length n of members of O. Let O* 
denote the set of all finite sequences of objects drawn from O. 

An empirical hypothesis is a proposition whose truth or falsity depends 
only on the actual data stream. For example, "3 will be seen by stage 
5" is an empirical hypothesis, since its truth depends only on the 
structure of the actual data stream. Hence, an empirical hypothesis 
may be identified with the set of all possible, infinite data streams for 
which it is true. An empirical hypothesis is a subset ~ of O '°. Of course, 
most such "hypotheses" cannot be expressed in a countable language. 
In this paper, we will focus on hypotheses expressible in a language of 
special interest, namely, elementary arithmetic. 3 

Hypothesis Y( is empirically complete just in case it entails a unique, 
unconditional prediction for each stage of inquiry. In other words, Y( 
is empirically complete just in case for some ~, ~f = {~}. More typically, 
a theory is empirically incomplete and entails predictions only given 
what has already been observed. 4 We will let (n, o) denote the predic- 
tion that o will be observed at stage n. Define, for each e ~ 0",  n ~ ~ 
and o E O: 
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Fig. 1. Prediction entai lment.  

PRED~e(e, n, o) (or, alternatively, N, e ~ (n, o)) ¢:~ for each 
E N, if e extends e then e(n) = o. 

Then we may say that Y(, e entail that o will be observed at stage n. In 
other words, ~ ,  e ~ (n, o) just in case each data stream that makes 
both e and Y( true has o in position n. If no data stream in N extends 
e, then for all (n, o), N, e k (n, o). Thus, the prediction of ~f given e 
at time n is not uniquely determined if N is inconsistent with e (no 
element of Y( extends e). In all other cases, however, if Y(, e ~ (n, o), 
then o is the unique prediction entailed for stage n by 9( and e. 

Consider the problem of determining, for a given observation o and 
stage n, whether ~( predicts o at n given e. This is a purely formal 
problem posed by the empirical theory N. We are interested in how 
the difficulty of this formal problem relates to the difficulty of determin- 
ing the truth value of Y( by empirical means. We will consider various 
senses of determining the truth about Y( in the next section. 

3. H Y P O T H E S I S  T E S T  M E T H O D S  A N D  R E L I A B I L I T Y  

Let hypothesis ~ C  O °~ be given. A hypothesis test method is just a 
function a that takes a finite data segment e as input and that conjec- 
tures 0, 1, or ? to indicate its guess about the truth value of M, where ? 
represents refusal to draw a conclusion. We will focus on computable 
test methods, though some of our negative results extend to hyper- 
arithmetical test methods, s One may think of the test method a as 
reading increasing initial segments of an infinite data stream e. Let eln 
denote the finite, initial segment of e of length n + 1, so that a succes- 
sively sees el0, el l  , el2 . . . . .  
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Fig. 2. The situation of a test method. 

33 

1 7  

There are various senses in which a hypothesis test method might be 
said to be reliable. We will consider the following, where it is always 
assumed that YC C O °~. 

a verifies ~ with certainty ~ for every e E 0 °~, e E ~ ¢~ 
at some stage n, a (e ln  ) = 1 and for each stage m < n ,  
a(e lm)  = ?. 

a refutes ~ with certainty ¢e; for every e ~ O °~, e ~E Yg¢:~ at 
some stage n, o~@ln)=0 and for each stage m < n ,  
~(Elm)  = ?. 

decides ~ with certainty ¢:~ a verifies and refutes Y~ with 
certainty. 

Refutation with certainty corresponds to the Popperian ambition 
discussed in the introduction. It demands that no matter how the data 
comes in, the method refrains from drawing any conclusion until Y( is 
in fact inconsistent with the data, after which the method eventually 
realizes this fact and concludes 0. So if ~ refutes Y(with certainty, then 
as soon as a produces its first 0 after never producing anything but 
?'s, the user can be certain that Y~ is false. It is important to keep in 
mind that refutation with certainty requires that the method succeed 
on every possible data stream, for it is trivial to refute a hypothesis with 
certainty on a single, fixed data stream: just output the truth value of 
Ygforever, without even looking at the data provided. Verification with 
certainty requires that the method eventually conjecture 1 after an 
unbroken sequence of ?'s if and only if the hypothesis is true. Decision 
with certainty is reminiscent of Plato's demand that inquiry eventually 
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yield the correct truth value with certainty no matter whether the 
hypothesis is true or false (Kelly and Glymour 1992). 

We will also entertain some limiting criteria of success: 

a verifies Y( in the limit ¢:> Ve E 0 °', e E Y( ¢:> there is a 
stage n such that for all later stages m, a(elm) = 1. 

a refutes Y( in the limit ¢:> Ve ~ 0 '°, e ~ Y( 1=> there is a 
stage n such that for all later stages m, a(e]m) = O. 

a decides ~ in the limit ¢:> a verifies and refutes Y( in the 
limit. 

Decidability in the limit requires of a method that it eventually stabilize 
to the truth value of the hypothesis under test. Such a method is 

• guaranteed to stop changing its mind eventually, but there is no a priori 
bound on when this might be or on how many times the method will 
change its mind. This sort of "fallibilism" was proposed as an aim of 
science by Peirce (1935), Reichenbach (1949), and later, in 'a compu- 
tational context, by H. Putnam (1965) and E. M. Gold (1965). 6 Ver- 
ification and refutation in the limit are even weaker, "one-sided" crite- 
ria of success which serve as limiting analogues of verification and 
refutation with certainty, respectively (Osherson et al., 1986). Ver- 
ification in the limit requires that the method stabilize to 1 when the 
hypothesis is true, and do anything else (i.e. stabilize to 0 or vacillate 
forever between 0 and 1) otherwise. Refutation in the limit requires 
that the method stabilize to 0 when the hypothesis is false and do 
anything else otherwise. Finally, define: 

is computably 
-verifiable- 
refutable 
decidable 

I with certainty] 
in the limit J 

<::> 

there is a total, computable assessment method a such that 

OL 

verifies I y([ with certainty] 

refutes I Lin the limit J" 
decides.] 
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4 .  E F F E C T I V E  D E D U C T I O N  O F  P R E D I C T I O N S  

For each of the above senses of empirical testability, there is a parallel 
sense of effective testability for formal relations. In general, let S _ co 
and let M be a Tufting machine. 

M verifies S with certainty ¢=> 
for each n E co, n E S ¢=> M[n] eventually halts with output 
1. 

M refutes S with certainty ¢=> 
for each n ~ co, n ~ S <==> M [n] eventually halts with output 
O. 

M decides S with certainty ¢=> 
M verifies and refutes S with certainty. 

M verifies S in the limit ¢=> for each n E co, n @ S ¢=> 
M [n] generates an infinite sequence stabilizing to 1. 

M refutes S in the limit ¢=> for each n E co, n ~ S ¢==> 
M In] generates an infinite sequence stabilizing to O. 

M decides S in the limit ¢=> M verifies and refutes S in the 
limit. 

Then as in the empirical case, we define: 

~ verifiable 1 
S is I refutable I with certainty ¢=> 

[ decidable J 

there is a Turing machine M such that M 

verifies ] 

refutes I 
decides J 

S with 

certainty. 

"verifiable" 
S is refutable 

decidable 

in the limit ¢=> 
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there is a Turing machine M such that M 
verifies ] 
refutes [ 
decides J 

S in the limit. 

In the theory of computability, sets verifiable with certainty are said to 
be recursively enumerable (r.e.), sets that are refutable with certainty 
are said to be co-r.e, and sets that are decidable with certainty are said 
to be recursive. Similarly, sets that are verifiable in the limit are said 
to be limiting r.e., sets that are refutable in the limit are said to be 
co-limiting r.e. and sets that are decidable in the limit are said to be 
limiting recursive. 

5 .  D E R I V A B I L I T Y  G I V E N  T E S T A B I L I T Y  

We may now ask a systematic set of precise questions about the relation- 
ship between the inductive testability of hypotheses and formally testing 
whether a given prediction follows from Y( and e. For example, if Y( 
is computably refutable with certainty, must PRED~c be verifiable with 
certainty (r.e.)? Or if Yg is verifiable in the limit, must PRED~e also be 
verifiable in the limit? Theorem 5.1 (cf. Figure 3) answers every ques- 
tion of this sort, both for the case in which Y( is empirically complete 
and for the general case, in which 9( may fail to make any prediction 
about what will be observed at a given time. The left-most column of 
the table lists the various notions of computable hypothesis testability 
defined in Section 3. For each such sense of testability, the table speci- 
fies a general upper bound on the sense in which predictions can be 
effectively derived from such a theory, in the sense that every problem 
of the specified sort has predictions at least as easy to derive as the 
table says. It may be that some problems of the specified kind have 
predictions even easier to derive than is indicated, 7 but the table's 
results are the best possible, in the sense that for each cell in the table, 
there exists a hypothesis that is effectively testable in the required 
sense, but whose predictions are as hard to derive as any that are 
derivable in the sense given by the table. The relevant sense of "as 
hard as" will be defined rigorously in Section 7.C below. 

What does Theorem 5.1 say about the intuitive notion that science 
should proceed by deriving successive predictions from a theory and 
checking them against the data? This intuition is strongly supported 
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[ Theorem 5.1 

Given sense in which 
His computably testabk 
,as an empirical 
hypothesis 

ii 

decidable 
o a wit h certainty 

verifiable 
b with certainty 

! refutable 
c with certaintlt 

decidable 
d in the limit 

verifiable o 

e in the limit 

refutable 
i~ f in the limit 

Best upper bound on the sense in which PREDHis decidable 
j i 

His empirically complete 

0 is finite / O is infinite 
/ 

~,y////,,~ttlnless IOI = 1 / l l i z  

decidable 
with certaint~ none 

decidable 
with certainty none 

decidable 
with certainty 

none 

n o n e  

n o n e  

General case 

O is finite 

decidable 
with certainty 

refutable 
with certainty 

verifiable 
with certainty 

refutable 
in the limit 

refutable 
in the limit 

n o n e  

O is infinite 

refutable 
with certainty 

refutable 
with certainty 

n o n e  

n o n e  

none 

none 

Fig. 3. Theorem 5.!. 

when 9( is empirically complete and O is finite, for then it must be 
computably decidable with certainty whether 9( predicts o at n given 
e, even if 9( is only computably verifiable in the limit. The intuition is 
still supported to some extent in the general case when O is finite, for 
in that case it must at least be verifiable with certainty whether 9( 
predicts o at n given e, if 9(is to be refutable with certainty. 

But the situation changes when O is infinite. For example, even when 
9( is computably decidable with certainty, it may not be possible to 
verify with certainty whether Y( predicts o at n given e. But the most 
curious result of all is the one alluded to in the introduction, namely, 
that for some empirically complete 9(that is computably refutable with 
certainty, it is not even refutable or verifiable in the limit whether 9( 
predicts o at n given e. This is remarkable because 9(commits itself to 
a unique prediction at each stage of inquiry and for all we know a 
priori, any one of these predictions might turn out wrong. Moreover, 
Yg is such that no Turing machine can determine or even enumerate 
all the predictions made by 9(. Nonetheless, some Turing-computable 
method can refute 9(with certainty, so no matter how the data comes 
in, the method rejects 9( if and only if 9( is false. Evidently, this 
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method cannot proceed by deriving the next prediction from Y( and then 
comparing the result with what is observed. There is a more powerful 
way for computable scientific inquiry to proceed, so far as finding the 
truth is concerned. 8 

6. T H E  A R I T H M E T I C A L  H I E R A R C H Y  

It is both technically useful and conceptually revealing to have one 
general way to characterize the complexities of both hypotheses and 
prediction sets. It turns out that the recursion-theoretic arithmetical 
hierarchy provides just the right scale for our purposes. 9 The basic idea 
behind the arithmetical hierarchy is to classify computational intracta- 
bility in terms of the number of alternations between universal and 
existential quantifiers sufficient to define a given relation in terms of 
some effectively decidable relation. 

Let gt C_ (O°~) m x o~ k. In other words, ~ is an m + k-ary relation with 
m data-stream arguments and k numeric arguments. ~ will be said to 
be a type (m, k) relation. Of particular interest to us is the fact that 
is a type (1, 0) relation and PRED~e is a type (0, 3) relation. Thus, if 
we classify the computational complexity of all relations of type (m, k) 
at once, we can compare the complexities of N and PRED~e on the 
same scale. 

Say that a type (m, k) relation ~ is reeursive or decidable with certainty 
just in case there exists a Turing machine M such that when M is 
provided with m infinite, ""read only" tapes listing its infinite arguments 
and an ordinary work tape listing its k numeric arguments, M eventually 
halts with 1 if ~ holds of the arguments provided and halts with 0 
otherwise. Observe that even though M is provided with tapes listing 
infinite functions as inputs, M can scan only some finite segment of 
each such tape before making its decision. 

Let ~ be a type (m, k) relation. To eliminate tedious repetitions and 
subscripts, let ~ denote a k-vector of natural numbers and let ~ denote 
an m-vector of data streams, so that we may write ~(~, 2) instead of 
~(e[1] . . . .  , elm], x l  . . . . .  Xk), where each e[i] E 0 '°. Now define: 

~ 1~o ° ¢=~ ~ is recursive 

~ Zo+~ ¢=~ there is an 5°~ 2o such that 
for each g ~ (0° ')  m, x E o) k, 
Y~(~, X) ¢=~ 3xk+l such that -n 9~(g, 2, xk+l). 
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Refutable in ~ Verifiable 
the limit ~ ~ . J  in the limit 

I A ° I Oecidablein 

ROtable[ r i l l  I Z1]Veri~able 
with certainty k ~ ~  ~ . . . . _ ~  with certainty 

/ - " x  _.  

[ A 0 I Decidable 
~ with certamty 

Fig. 4. The arithmetical hierarchy. 

o o 

In other  words, a relation in E ° may be defined as follows: 

~(e ,  ~) ~ 3xi V x : . . .  ~(e ,  ~, xi . . . .  , x~). 

where 5 ~ is recursive and the quantifier prefix involves no more than 
n - 1 alternations between 3's and V's. Relations in II ° are similar, 
except that the leading quantifier is universal. Relations in 3, ° can be 
defined both ways. Evidently, A °, E ° 1I ° C o o o n, __ A n + l ,  £ n + l ,  I -[n+l .  The 
arithmetical hierarchy theorem says that these inclusions are all proper  
(cf. Section 7). 

Our interest in the arithmetical hierarchy stems from the fact that it 
jointly characterizes the complexity of deductive and scientific infer- 
ence. Regarding deductive problems, we have the following, exact 
correspondence (cf. Figure 4): 

P R OP OS I TI ON 6.1 (E. M. Gold and H. Putnam 1965). Let  S ___ to. 
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(a) 
'verifiable 

S is refutable 

[_decidable 

F °l 
with certainty 1=> S ~ / II°/  

L± °J 

(b) 
[verifiable 

S is refutable 

[decidable 

in the limit 4=> S E riot' 

11 

On the empirical side, we have the exactly analogous result. 

PROPOSITION 6.2 (E. M. Gold and H. Putnam 1965). Let ~f C_ O °', 
where O is recursive. 

(a) 
verifiable" 

Y(is computably refutable 

decidable 

FZ°l 
with certainty ¢=~ ~ E / ~ ° / .  

L'h ] 

(b) Y( is computably 
1 f o] 
refutable / in the limit ¢:> ~ E II ° . 

decidableJ [_A°J 

Proof. For a proof in an explicitly empirical setting, cf. (Kelly 1993)11 

7 .  P R O O F  OF T H E O R E M  5.1 

In light of Propositions 6.1 and 6.2, we may now restate theorem 5.1 
in the form in which it will be demonstrated (cf. Fig. 7). 

The table presented in Fig. 5 is more informative than the one 
presented in Fig. 3, for the negative results in lines (c-f) say not only 
that there is no II ° bound on deducing consequences from Y(, but that 
there is no bound at any level in the arithmetical hierarchy that covers 
all cases. In fact, something worse will be shown; namely, that there is 
an empirically complete theory Y( for which there is no arithmetical 
bound on PRED~e, and yet ~ is computably refutable with certainty. 
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Theorem 5.1 

Given arithmetical 
bound on .,,/" 

a a ° 

i " ,0 
u e HI 0 

o A ° 

? f n ° 

Best ,arithmetical bound on PREDyf 

His  empirically complete 
i i i  i i i i  

1. O is finite / 2. O is infinite 
! 

/ 

A ° none ~0 

~0 none n ° 

Ao none n o 

n o n e  n o n e  

General case 

3. O is finite 
ii i i  ii ii i I 

A0 

n ,  ° 

none 

4. O is infinite 
,i i 

n0 

none 

none 

none 

none 

Fig. 5. Theorem 5.1. 

The proof of Theorem 5.1 will proceed in a series of lemmas. First, 
we show that the excluded cases 1.a, 1.b, 2.a, and 2.b cannot arise. 
Then we establish the general upper bounds given in the table. Finally, 
for each bound given in the table, we show that no lower bound 
holds in general. Assume in each of the following results that YC C 0% 
Whenever we speak of an infinite data stream e, it is to be assumed 
that e E O ~°, whenever we mention a finite data sequence e, e ~ O*, 
and whenever we speak of a datum o, o E O. Also, let n k denote the 
sequence consisting of n repeated k times, and let n '° denote the infinite 
sequence that is constantly n. Finally, let e*e' denote the concatenation 
of e and e'. 

7.A. Impossible Cases 

The following lemma accounts for all the impossible cases in the table. 
The argument is simply a formal version of the classical argument for 
inductive scepticism that has echoed through the works of Plato, Sextus 
Empiricus, William of Ockham, David Hume,  Karl Popper, and many 
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a conjectures 1 

Fig. 6. Lemma 7.A.1. 

others. We attribute it to Sextus because his rendition is both ancient 
and particularly clear. 1° 

LEMMA 7.A.1 (Sextus Empiricus). If there is more than one possible 
observation at each stage and N is empirically complete, then ~ is not 
computably (or non-computably) verifiable with certainty. 
That is, if IOI > 1 and ~ E O ~ then {e} ~ ~o. 

Proof. By Proposition 6.2, it suffices to show that {~} is not comput- 
ably verifiable with certainty. Let o~ be an arbitrary test method. Feed 
successive initial segments of s to a until ~ conjectures 1. If this never 
happens, ~ fails to produce 1 on ~ and hence fails to verify {~} with 
certainty. If it does happen, say at stage n, then let ~- be just like 
except that ~',~+1 ~ ~n+1 and 7n+1 E O. This is possible since [O[ > 1. a 
conjectures 1 on ~- :P e, and hence does not verify {s} with certainty. • 

7.B. Upper Bounds 

L E M M A  7.B.1. If Yg is refutable with certainty and O is finite, then 
PRED~e is verifiable with certainty. 
That is, if O is finite and ~fE II ° then PRED~e E E °. 

Proof. Suppose O is finite and ~ ~ I1 °. Let computable a refute 
with certainty. We construct a procedure for verifying P R E D g  with 
certainty. Given the triple (e, x, o), proceed as follows: if length(e) > x, 
then return 1 if ex = o and go into an infinite loop otherwise. Else, 
proceed in stages as follows. Begin at stage x. At  stage x + k, construct 
the tree of all extensions e' of e of length x + k. This is possible because 
O is finite. Run a on each initial segment of each such e', labelling that 
"node"  of the tree with a's conjecture. Say that e is dead ¢e~ there is 
an initial segment of e along which a conjectures only ?'s followed by 
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stage x + 2 

Case: (e, x, o) e PRED:~f 

e e H  

O dead palhs 

O non-dead paths 

Fig. 7. Lemma 7.B.2. 

a 0. If there is a non-dead path e' of length x + k such that e~ =~ o, then 
go to stage x + k + 1. Otherwise, halt the entire process and return 1. 

( ~ )  Suppose (e, x, o) ~ PRED~e. Then for each e ~ ~ such that e 
extends e, ex = o. Suppose for reductio that our procedure goes through 
infinitely many stages on input (e, x, o). Then at each stage k, there is 
a non-dead e' of length k extending e. Since O is finite, the tree of all 
such finite paths is finitely branching, so by Ki3nig's lemma, there is an 
infinite path e through the tree, each initial segment of which is non- 
dead. Since a refutes Y~ with certainty, e E N. By construction, ex 4= o 
and e extends e, so (e, x, o) ~ PRED~e, contrary to assumption. So the 
procedure halts correctly with output 1. (©) Suppose that (e,x, 
o)(E PRED~e. Then for some e E g s u c h  that e extends e, ex 4= o. Since 
a refutes YE with certainty, each initial segment of e is non-dead, 
so the procedure goes through infinitely many stages and returns no 
output. [] 

L E M M A  7.B.2. If O _C o) and ~ is verifiable with certainty, then 
P R E D ~  is refutable with certainty. 
That is, if O _C ~o and ~ E  2~o then PREDee E II °. 

Proof. Let O C_ ~o and let ~ E  Zo. Let computable c~ verify YC with 
certainty. We construct a procedure to refute PRED~e with certainty. 
On input (e, x, o), the procedure simulates o~ sequentially on an effec- 
tive enumeration (e[0], e [ 1 ] , . . . ,  e [ n ] , . . . )  of the set of all finite exten- 
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e[t] yields verfication 

Fig. 8. Lemma 7.B.2. 

sions of e, of length >I x until some e[i] is found such that e[i]x 4: o 
and o~ returns an unbroken sequence of ?'s followed by a i when applied 
to successive initial segments of e[i] (say that such a sequence yields 
verification). Then the procedure halts and returns 0. 

( ~ )  Suppose that (e, x, o) E PRED~e. Then there is no e E ~ such 
that e extends e and ex 4: o. Since a verifies N with certainty, there is 
no e such that e~ :k o and some initial segment of ~ yields verification. 
Hence,  the procedure never halts with an output. 

(©)  So suppose that (e, x, o) ~ PRED~e. Then for some e E ~f ex- 
tending e, e~ 4: o. Since a verifies 2(with certainty, some initial segment 
of e of length greater than x yields verification. Hence,  the procedure 
eventually halts with output 0. II 

L E M M A  7.B.3. If O is finite and N is verifiable in the limit, then 
PRED~e is refutable in the limit. 
That  is, if O is finite and N ~  Eo then PRED~eE 11o. 

Proof. Let  O be finite and let computable  ~ verify N in the limit. 
We provide a Eo definition of PRED~e, from which it follows that 
PRED~e is 1I°: 

(e, x, o) ~ PRED~c¢=~ 
3n >1 x, 30'  :~ o, 3e '  ~ O n such that e; = o '  and 
Vm t> n, 
3e" ~ 0 m extending e' such that 
Vk such that n ~< k ~ m, a (e"Ik) = 1. 

The quantifiers over finite data sequences are all bounded because O n 
and O m are finite (since O is finite). Hence,  only the quantifiers 3n 
and Vm I> n are unbounded.  All other relations involved are recursive, 
so we have a Z ° expression. We now verify that the definition is correct 
(cf. Fig. 9). 

( ~ )  Suppose (e, x, o) ~ PRED~e. Then by the definition of PRED~c, 



T H E  C O M P U T A B L E  T E S T A B I L I T Y  O F  T H E O R I E S  45 

X in /n 
O a conjectures 0 { 

O aeonjeetures 1 

o~ 

e et 

Fig. 9: Lemma 7.B.2. 

there is an e ~ Y~ such that e extends e and ex ¢ o. Since a verifies ~( 
in the limit, 3n Vm 1> n a (e [m)  = 1. So 3n such that Vrn/> n Vk such 
that n ~< m <~ k, o~(elk) = 1. So the right-hand side of the definition is 
satisfied. ( ~ )  Suppose the right-hand side of the definition is satisfied. 
Then for some e' of length n/> x such that e'4= o, we have that there 
is always a longer extension e" of e' along which a conjectures 1 after 
stage n, so there are infinitely many such e", of ever greater length. 
Since O is finite, the infinite tree of all such e" is finitely branching, so 
by K6nig's lemma, it has an infinite path e along which a always 
conjectures 1. Since a verifies YC in the limit and stabilizes to 1 on e, 
e ~ ~.  But since ex =~ o, we have by the definition of P R E D ~  that 
(e, x, o) E PRED~e. I 

L E M M A  7.B.4. If O is finite and N is empirically complete and N is 
verifiable in the limit, then P R E D  ~e is decidable with certainty. 
That  is, if O is finite and {e} E E ° then PRED(~} ~ A °. 

Proof. Suppose O is finite and {e} E 2 ° 2. Then by Proposition 6.2.b, 
let computable a verify {e} in the limit. Then (*) ~" = e <=> 3n such that 
for all m t> n, o~(rlm) = 1. Let  n'  be the least such n along s. In virtue 
of (*), e is the unique infinite path on which o~ makes only finitely many 
non-zero conjectures. Let  rn E o) and let length(e) ~< m. Define: 

e is m-dead¢~Ve'  ~ 0 m, if e' extends e then 3k  such that 
n' ~< k ~< m and a(e ' lk )  = O. 
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x n' im 

i ! 

• u conjectures 

O aconjectures : ~  

All other paths 
,are m-dead 

Fig. 10. Lemma 7.B.4. 

By (*), it is immediate that: 

(A) For each m/> O, V ks lk is not m-dead. 

We also have: 

(B) If k I> n' then there is an m >/k such that for each e ~ O k, 
if e =~ elk then e is m-dead. 

For suppose otherwise. Then for each m >~ k there is an e[m] ~ O m 
extending e such that a conjectures only 1 after position k on e[m]. Let  
T = {e[m]: m ~ k}. Since O is finite, T is a finitely branching, infinite 
tree. By K6nig's lemma, T has an infinite path z. So for each m ~> k 
,~(~lm)--1. Since a verifies {e} in the limit, ~" = e. But since each 
element of T extends e, ~- extends e. Also, length(e) = k and e :~ elk, 
so ~" 4 e, which is a contradiction. Hence,  we have (B). 

To compute e, use a to effectively label the finitely branching tree 
O*, from bot tom to top, level by level, until for some m, the tree is 
labelled up to level m, and it is effectively verified (by exhaustion) that 
there is a unique path e of length n that is not m-dead. (By A and B, 
e = 8In). Return en (= en). • 

Proof of Theorem 5.1, Upper Bounds, General Case. The upper 
bounds reported in line (a) of Theorem 5.1 follow from those reported 
in (b) and (c) and the upper bound reported in the finite case of (d) 
follows from that reported in the finite case of (e). The upper bounds 
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reported in (b) both follow from Lemma 7.B.2. The upper bound 
reported in the finite case of (c) follows from Lemma 7.B.1. The upper 
bound reported in the finite case of (e) follows from Lemma 7.B.3. 

Empirically Complete Case. The finite O cases of lines (c) and (d) 
follow from (e). The finite O case of (e) follows from Lemma 7.B.4. 
This establishes all the upper bounds given in Theorem 5.1. We now 
show that these upper bounds are the best general upper bounds pos- 
sible. 

7.C. The Upper Bounds are Optimal 

We assume a fixed G6del  numbering of the Turing machines, and we let 
qSi denote the (possibly partial) unary function on the natural numbers 
computed by machine Mi. Also, if S C ~o k and R C w '~, define 

S ~<,~ R ~ there is a total recursive function f :  o) k -+ w" such 
that for each 2 E w k, S(£) ~ R(f(~)).  

Then it is said that S is many-one reducible to R. It is immediate that 
for each n, Z °, II °, and zX ° are closed downward under ~<~. That  is, if 
R is in one of these classes and S ~m R, then S is also in the class. A 
relation R is complete in a class if R is a member  of the class and every 
member  of the class is many-one reducible to R. A complete relation 
in a class may be thought of as a "most  complex" member  of the class. 
For  example, define: 

K = {i: 4~(i) is defined}. 
r = {i: 3 qSi is total}. 

K is called the "halting problem".  K is Z°-complete and /£ is II °- 
complete. Also, T is II°-complete. 11 We will see (Lemma 7.C.5 below) 
that both II ° - Z °n and Zo,, - I-I ° are non-empty. Hence,  if a relation S 

Zn[II,z], then the relation does not belong to the dual is complete in o o 
class o o 

We have seen, for example, that if ~ is A ° then PRED~e is II °. To 
show that this upper bound on PRED~e is optimal, we must prove that 
there is an 9~ such that YE is A ° but PRED~e is as complex as a II ° 
function can possibly be (i.e. PRED~e is complete in Ill°). For  this, it 
suffices to show that R ~<m P R E D , .  

L E M M A  7.C.1. There is an Y(_C w °~ that is computably decidable with 
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C,xse: ~e0(e0) does not halt Case: Oe0(e0) halts within n steps 

Fig. 11. Lemrna 7.B.5. 

certainty but whose predictions are as hard as possible to derive, given 
that they are computably refutable with certainty (so the predictions of 
Y( are not computably verifiable with certainty). 

That is, there is an YfC_ o) '° such that 

(1) 
(2) 

Y(E A ° and 
PRED~e is complete in II ° (and hence P R E D ~ E  ~o). 

Proof. Define: 

E ~=~ (s~o # 0 © qS~o(SO ) halts within S~o steps). 

(1) is evident. (2) Let f(x) = ((x), x, 0). Clearly, f is computable and 
total. Let  K denote the halting problem. We show that 
x E I£¢:~f(x) ~ P R E D , ,  which yields /£~<mPRED~. ( ~ )  Suppose 
x E/~.  Then for each k E ~o, ~bx(x) does not halt in k steps. Suppose 
s E N and so = x. Then by the contrapositive of the definition of Y(, 
sx = 0. Hence,  ((x), x, 0) E P R E D , .  ( ~ )  Suppose x E K. Then for 
some k, dpx(x) halts within k steps. Let ~" be the data stream that starts 
with x and that has k in each successive position. ~- E Y~ because qSx(x) 
halts in k steps, but ~'~ ~ 0. So ((x), x, 0) E P R E D , .  • 

L E M M A  7.C.2. There is an Y(C 2 °, that is computably verifiable with 
certainty but whose predictions are as hard as possible to derive, given 
that they are computably refutable with certainty (so the predictions of 

are not computably verifiable with certainty). 
That is, there is an Y(C_ 2 ̀ o such that 

(i) 
(2) 

YfE ~o and 
PRED~c is complete in II ° (and hence PRED~e E I~°). 
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Case: k ~ K Case: k ~ K 

Fig. 12. L e m m a  7.C.2. 

Proof. Define s E ~¢=) 3k such that [(Vk' < k, sk, = 1) and ek = 0 
and (sk+l =P 0 ~ k ~ K)]. 

(1) Since the universal quantifier is bounded, K U £1 o and the leading 
quantifier is 3, we have that Yg~ £o. (2) Recall that 1 n denotes the 
everywhere 1 sequence of length n, and e*e' denotes the concatenation 
of e' onto the end of e. Define: f(x)= (Ix*0, x + 1, 0). As in the 
preceding proof, we show that xEKC=>f(x)EPRED~e, so that 
/{ ~<m PRED~c. ( ~ )  Suppose x ~ / C  

Let e E Y~ and let s extend lX*0. By the definition of Yg, ex+~ = 0. 
Hence, (lX*0, x + l , 0 )  f f P R E D x .  ( ~ )  Suppose x ~ K .  Let ~-= 
lX*0*l °~, where it should be recalled that 10~ denotes the infinite, every- 
where 1 sequence, r ~ YC since x E K. But rx+l = 1, so (lX-1"0, x + 1, 
0) ~ PRED~e. [] 

L E M M A  7.C.3. There is an Y~_C 2 ̀0 that is computably refutable with 
certainty but whose predictions are as hard as possible to derive, given 
that they are computably verifiable with certainty (so the predictions 
of Y( are not computably refutable with certainty). 

That is, there is an YCC 2 ̀o such that 

(1) 
(2) 

E 1I o and 
PRED~e is complete in £ t  ° (and hence PRED~e ~ 11o). 

Proof. Define eEYCC=>Vx[xEI{ or Sx=0].  (1) y~@11o, since 
R ~ 11o and there is just one universal quantifier. (2) Let 0 denote the 
empty data sequence. Define f(x) = (0, x, 0). We show 
x E KC:~f(x) E PRED~e, so K~<m PRED~c, ( ~ )  Suppose x ~ K. Let 

~ Y(. Then ex = 0. So (0, x, 0) E PRED~c. (©) Suppose x E / C  Then 
~- = 0~*1"0 °~ E Ygbut ~'x = 1 so (0, x, 0) ~ PRED~e. [] 
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n m 

0 1 2 n-1 n n+l 

Fig. 13. L e m m a  7.C.4. 

L E M M A  7.C.4. There is an 2(_C 2 °, that is computably decidable in 
the limit but whose predictions are as hard as possible to derive, given 
that they are computably refutable in the limit (so the predictions of 
YC are not computably verifiable in the limit). 

That is there is an Y(_C 2 ̀0 such that 

(1) ~ E A ° and 
(2) PRED~e is complete in II o (and hence PRED~e 6E ~o). 

Proof. Let P be some arbitrary set complete in II ° (e.g. the set T 
defined above). Then for some R E £  °, we have that VxE  w, 
P(x) ¢:~ VyR(x, y). Define: 

e E ~ ¢=) 
if Bn such that (ln*0*l) is extended by 
then 3n3m (1"*0"1"1m*0) is extended by s and -1R(n, m). 

(1) The definition of Y( is of the form "if q@ then 3 ~ " ,  which is 
equivalent to the form "either V -7 ~ or 3q t ' ' ,  which is in turn equiva- 
lent both to "VB -7 @ or ~ "  and to "3V --1 ~ or W". Hence, N E  h °. 

(2) We show that P~<mPRED~e. In particular, we show that for 
each n E w, P(n) <:~ ((ln)*0, n + 1, 0) ~ PRED~e. Evidently, the func- 
tion f (n )=  ((ln)*0, n + 1 , 0 )  is computable. ( ~ )  Suppose P(n). Then 
Vy R(n, y). Let 8 ~ Y( and let ~ extend (ln)*0. Then since Vy R(n, y), 
we have by the contrapositive of the definition of Y( and the fact 
that e extends (ln)*0 that en+l = 0. Thus, PRED N ((ln)*0, n + 1, 
0) ~ PRED~e. (@) Suppose -nP(n). Then for some y ~ o~, -nR(n, y). 
Let ~" = (I")*0*I*(U)*(0°~). Since TR(n,  y), z ~ Y(. But ~-,~+~ = 1 ¢ 0 
so ((ln)*0, n + 1, 0) ~ PRED~e. [] 

We have so far shown that for each arithmetical upper bound on 
PREDsc derived above, there is an example that realizes the full corn- 
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plexity of that bound. We will now show that for each case in which 
no arithmetical upper bound was derived, some N exists for which 
PRED~e is not arithmetically definable. 

L E M M A  7.C.5 (Hilbert and Bernays). 12 There is an empirically com- 
plete Y(C 2 ~° that is computably refutable in the limit but whose predic- 
tions are not even arithmetically definable. 

That is, there is an e E 2 °, such that 

(1) {e} E I I  ° and 
(2) Vn, FRED,s} (E £,o. 

Proof. Let ( ) be a computable, 1-1 encoding of finite sequences of 
natural numbers by single natural numbers so that (2) denotes a natural 
number that uniquely and effectively encodes the finite vector 2. Let 
g = (e[0] . . . .  , e[n]) be a finite vector of infinite data streams. Let ((~)) 
denote tile infinite sequence ((e[0]0 . . . .  , e[n]o), (e[0]l, • • • , e [ n ] l ) ,  . . . , 

(~[0]/~ . . . .  , e[n]k) . . . .  ). Then ( ( ) )  denotes the infinite sequence 
( ( ) ,  ( } , . . . ,  ( ) , . . . ) ,  which is recursive. Now define 

~//o(((g)), (2), i)~:~ Bk such that Turing machine i halts on 
inputs g, 2 in at most k steps of computation. 

~//°+l(((e)), (y), i) ¢:} 3k  such that -n ~//o(((g)), (2*k), i). 

Thus, 0~o is a type (1, 2) relation. The following result is a special case 
of the arithmetical indexing theorem. 13 

(a) For each n i> 1, for each 5¢E E °, there is an i such that 
5P(e, 2) 4=~ q/°(((e)), (2}, i). 

Base case: n = 1. Suppose 5rE E °. Let Mi be a positive test for 5C 
Then for all g, 2, 5~(g, 2) (=~ 3k  such that Mi[g, 2] halts in no more than 
k steps ~=~ ~//o(((g)), (2), i). 

Inductive case. Suppose the result for all n' ~< n. Let 5PE £°+a. Then 
for some ~q E E °, for all g, 2, 5~(g, 2) (=) 3k  -~ ~(g, 2, k). By the induc- 
tion hypothesis, there is some i such that for all g, 2, k, ~(g, 2, k) ¢~ 
~o(((g)), (x, k), i). Thus 5~(g, X) ~ 3k-n°~(~, (2, k), i). This establishes 
(a). Next define: 

o %( ( (  )>, (x), x). 

Now we show the arithmetical hierarchy theorem: 
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(b) for each n, 9,, E Eo, _ ii  o. 

It is evident from the definition that 9/0 ~ Zo, and hence that O, ~ Eo. 
Now suppose for reductio that ~ ,  E II °. Hence, @, E Zo. By (a) there 
is some b such that for all x, ~,,(x) ¢~ 9/0(( ( ) ) ,  (x), b). So in particular, 
(*) @,(b) ¢=> 9/°((( )), (b), b). By the definition of 9 ,  we have 
(**) ~,,(b) ¢=> 9/0((()),  (b), b). But (*) and (**) yield ~,--(b) ¢~ ~ , (b)  
which is a contradiction, so we have (b). Now define: 

~1 if 9/o((() ,  (X), i) 
u ( ( ( .~ ) ,  i, n ) )  = 

b otherwise. 

For each n, ~,, ~<m v, so by (b) we have for each n, v ~ II °. Hence,  for 
each n, vq~ E °. Since v(((Y), i, n)) = 1 ¢e~ ( ( )  , ((~), i, n),l) E PRED,,}, 
we have that (2) Vn PRED{~} ~ E °. It remains to show that (1) {v} ~ H °. 
A straightforward induction establishes that 

(i) V k ~ w ,  e k ~ l a n d  
(ii) Vi ~ ¢o, x ~ N* [e(((Y), i, 1)) = 1 ¢=> 9/0((()),  (X), i)] 

and 
(iii) Vn, i, x ~ oJ[e(((g), i, n + 1)) = 1 ¢:~ 3k and that e(((Y* 

k), i, n)) = 0)]. 

Intuitively, condition (i) says that e is a characteristic function, con- 
dition (ii) duplicates the base case of the definition of 9/o and condition 
(iii) duplicates the inductive case of the definition of 91 °. Putting the 
definition into prenex normal form reveals that {v} ~ II °. • 

LEMMA 7.C.6 .  t4 There is an entpirically complete ~fC ~o`0 that is 
computably refutable with certainty but whose predictions are not even 
arithmetically definable. 

That is, there is an s E 2 ̀0 such that 

(1) {8} E N O and 
(2) Vn PRED(~? ~ ]~o. 

Proof.  Let v be as in the proof of the preceding proposition. 
{v} ~ 17 °, so there is a recursive relation ~ such that for all e, 8 = 
v¢~ V x 3 y N ~ ,  x, y). Define: 

6(x) = (vx, I-*Y c~J( v, x, y)). 
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A ~;o definition for 6 would yield a ~o definition for v, since vx can be 
recovered by decoding 6(x) and returning the first coordinate. So by 
Lemma 7.C.5, we have that for each n, 6 ~  2o. So PRED{~} ~ ~o, 
which establishes (2). 

It remains only to show that {6} E I I  °. Let ((x, Y))I = x and (<x, Y))2 = 
y. Given data stream o~, let (~)1 denote the unique data stream such 
that for each x E w, (~)l(x)  = (oz(x))l. We now show: 

s ~ {6} (i.e. e = 6) <=> (a) Vx q3((8)1, x, (s(x))2) and 
(b) Vx, y[y < (s(x))2 ~ -7 ~((~)1, x, y)], 

so there is a 1-I ° definition of {6}. (©)  Recall that Vx3y~(v, x, y). Thus 
holds if we choose the least such y: Vx~(v, x, #y ~(v, x, y)). But by 

the definition of 6, /xy ~(v, x, y) = 6(x)2 and v = (6)1, so Vx ~((6)1, x, 
(6(x))2), which is (a). And (b) follows because (6(x))a is the least y such 
that ~((6)l ,  x, y). ( ~ )  Suppose that (a) Vx ~( (e ) l ,x ,  (e(x))2). Then 
Vx3y ~((s)l, x, y). Thus (s)l = v. Assuming (b), we have that for all 
x, (s(x))2 is the least y such that (N(v, x, y). Thus e = 6, as required. 

[] 

Proof of Theorem 5.1, Optimality. The 2~ ° upper bounds cannot be 
improved in the arithmetical hierarchy. The non-existence of bounds 
in the infinite O case all follow from Lemma 7.C.6. The non-existence 
of bounds in the finite O cases all follow from Lemma 7.C.5. The 
infinite O, general case of (a) is best by Lemma 7.C.1. Both upper 
bounds in the general case of line (b) are best by Lemma 7.C.2. The 
upper bound in the finite O, general case of (c) is best by Lemma 
7.C.3. The finite O, general case upper bounds given in (d) and (e) 
both follow from Lemma 7.C.4. This concludes the proof of Theorem 
5.1. [ ]  

8 .  AN E X P L A N A T I O N  

It has been shown that there is an empirically complete hypothesis ~ = 
{6} such that a computable method o~ refutes ~ with certainty, but 
the prediction function 6 determined by Y( is not even arithmetically 
definable, much less computable. So however the computable method 

works, it does not proceed by deriving successive predictions from 
the theory on demand and checking them against the data. We can say 
somewhat more than this. Define 15 
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Y(is consistent with e ¢:> there is an e E ~( such that e extends 
e .  

a is consistent for Y~, O (::> 
for each finite data sequence e E O*, if e is not consistent 
with Y(, then a (e) = 0. 

A method consistent for an empirically complete hypothesis rejects the 
hypothesis as soon as the data logically refutes it. This seems reasonable 
if all computability is neglected, for a refuted hypothesis must be false 
(absent any model of noise in the data). Bayesian methodologists who 
recommend updating by conditionalization as a scientific method are 
in fact committed to consistency, since the conditional probability of a 
hypothesis must be 0 on any data that logically refutes it. Some Bayesi- 
ans have also recommended "keeping the door ajar" by witholding 
probability 0 until the hypothesis is refuted by the data. 

a is conservative for ~,  0 ¢=~ 
for each finite data sequence e E 0 ' ,  a(e)  = 0 ~ ~°is incon- 
sistent with e. 

But this is rather strong medicine. For example, verification and refut- 
ation in the limit countenance an arbitrary number of 0 conjectures 
when the hypothesis is true, and conservatism outlaws such behavior. 
A less onerous requirement implied by conservatism is the following: 

a is weakly conservative for Y((==) 
for each ~ E N, there are infinitely many n such that, 

÷ 0 
(i.e. a does not stabilize to 0 when ~ is true). 

If a verifies, refutes, or decides ~ either with certainty or in the limit, 
then a is weakly conservative for ~.  Even weaker notions of success 
imply weak conservatism. For example, a method that outputs rational 
numbers in the unit interval gradually decides ~ just in case its conjec- 
tures get ever closer to 1 when ~ is true and get ever closer to 0 
otherwise. This is the sort of convergence that is often expected of 

16 statistical methods like Bayesian updating by conditionalization. Now 
we have: 

PROPOSITION 8.1. If o~ is arithmetically definable and ~ is consistent 
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and weakly conservative for {e}, then e is arithmetically definable with 
complexity no greater than that of a. 

Proof. Suppose arithmetically definable a is both consistent and 
weakly conservative for {e}, O. Then define: 

ex = y ~ 3k/>  x 3e ~ O k such that a (e) 4= 0 and ex = y 
¢=) Vk ~> x Ve ~ O k, if a(e) :P 0 then e~ = y. 

These definitions of e are both correct, since a returns values other 
than 0 only along e by consistency and a does return values other than 
0 infinitely often along e by weak conservatism. Since a is arithmetical, 
and since e can be defined with one existential quantifier or with one 
universal quantifier over a, the arithmetical complexity of e does not 
exceed that of a. [] 

We have seen that a computable method a can refute {6} with cer- 
tainty, but that 8 is not arithmetically definable, Suppose, for contradic- 
tion, that a is also consistent. We can readily alter o~ to make it both 
consistent and weakly conservative: let a '  simulate a on each initial 
segment of e. a '  conjectures 1 at a given position in e unless a conjec- 
tures a 0 preceded only by ?'s on some initial segment of e, after which 
a '  conjectures 0 on e. a '  is clearly computable since a is. So it follows 
that 6 is recursive. But by Lemma 7.C.6, 8 is not even arithmetically 
definable. So a cannot be consistent. In other words, to refute {6} with 
certainty, the computable method o~ must allow some time lag before 
"noticing" that {8} has become inconsistent with the data. 

It follows from Proposition 8.1 that no consistent, weakly conserv- 
ative method for {3} is arithmetically definable. So standard methodolo- 
gical recommendations like Bayesian updating can interfere with the 
prospects of science even for highly uncomputable agents: ~7 

PROPOSITION 8.2.~8 Even though some computable method can re- 
fute {6} with certainty, no arithmetically definable Bayesian con- 
ditionalizer can gradually decide {/~}. 

Proof. Let  a (h, e ) =  P(hle),  for some probability measure P such 
that all conditional probabilities of form P(h[e) are defined. Suppose a 
gradually decides {/~}. Then a is weakly conservative afortiori, since 
a 's  conjectures approach 1 on data stream 6. Also, a is consistent, by 
coherence. Hence,  a is not arithmetically definable, by Proposition 8.1. 

[] 
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0 

a finally notices that 
e diverges from 8. 

e' ~ 
e 0 ~.~ e 

s inconsistent with 3. 

> 6 

Fig. 14. 

It is clear, then, that we must allow ~ some time delay before recogniz- 
ing that 6 does not agree with the data received in the past. This is not 
the trivial point that we must allow o~ some time to compute the current 
prediction of {6} before moving on to the next prediction. The point is 
that the computations cannot be performed in any finite amount of 
time. Nonetheless, a can refute {6} with certainty. Hence,  if e diverges 
from 6, then for each e extending e, there is some initial segment e' of 
s that a can determine to diverge from 6. 

One way of viewing the situation is that o~ employs an incomplete 
proof system for deriving facts of the form 6(x) = y that is nonetheless 
sufficiently complete in the sense just described. A more provocative 
interpretation is that a requires empirical data about the future in order 
to effectively determine consistency between {6} and e, so that the line 
between formal and empirical inquiry is blurred, not just for computable 
methods, but for all arithmetically definable methods. In fact, the pro- 
vocative interpretation is supported by a closer inspection of the defi- 
nition of a. 

Choose the ~ in the proof of Lemma 7.C.6 as follows. ~ is the result 
of translating the definition of v given in the proof of Lemma 7.C.6 
into prenex normal form and then combining adjacent existential and 
universal quantifiers into single quantifiers over code numbers (i.e. 
V•ViVnVzVv is coded as V<(:~>, i, n, z, v>). 

~(e,  ((Y>, i, n, z, v>, <u, w>) ¢# 
(1) e(((X), i, n>) E {0, 1} and 
2(a) e(((X>, i, 1)) = 1 or 7thi($) halts in v computational 

steps and 
2(b) 7e(((Y), i, 1>) = 1 or chi(Y) halts in w computational 

steps and 
3(a) e(((2>, i, n + 1>) = 1 or -ae(((Y*u), i, n)) = 0 and 
3(b) 7e(<(X>, i, n + 1>) = 1 or e(<(X*z), i, n)) = 0 
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is recursive. Following the definition of {6} in the proof of Lemma 
7.C.6, we may define the computable method ~ as follows: 

procedure ~ (e): 
set n = length(e); 
for each j  < n, do recover the pair (xj, yj)  such that (xj, yj)  = 
ej. 
set d = (Xo . . . . .  x,-1) (i.e. d = (e)l); 
for each j < n, do 

if ~(d,  i, yj) returns 0 within n steps of computation, then 
halt with output 0 
else if ~(d,  i, yj) returns 1, then for each y < yj do 

if ~(d,  i, y) returns 1 within n steps of computation, 
then halt with output 0 

else halt with output?. 

Whenever  N(x l  . . . .  x~), i, yy) is evaluated by o~, ~q may ask to see five 
distinct positions on the data stream e, namely, e(((Y), i, n)), 
e(({2), i, 1)), e(@?), i, n + 1)), s({(~*u), i, n)), and e(~{Y*z), i, n)). There 
is no guarantee that these positions do not run off the end of 
( x l , . . . ,  x,)  (and hence of e). In that case, a must stall with conjecture ? 
until e grows longer, even though e may already diverge from & So 
can be viewed as waiting for future data in order to determine consis- 
tency between e and {6}, as was claimed. 

9. O N W A R D  A N D  U P W A R D  

We have seen that there are hypotheses that are computably testable 
in various senses, even though there is no arithmetical bound on the 
problem of deriving their predictions. But the story does not end there. 
The analytical hierarchy is defined just like the arithmetical hierarchy, 
except that we start out with the arithmetical sets and build complexity 
by quantification over functions rather than numbers. Let ~ be a re- 
lation of type (k, m). 

~ 2~ <:b Y~ is arithmetically definable. 
E 2~+1 #:> there is a type (k + 1, m) relations 5e@ Z~ such 

that for each g E (O°~) ~, • E w m, 
~(g,  Y) ~=) 3 r  such that ~ ~e(g, ¢, 2"). 

~ ~ I I l ~ - ~  ~ X~. 



5 8  K E V I N  T .  K E L L Y  A N D  O L I V E R  S C H U L T E  

Theorem 9,1 

Given arithmetical 
bound on ~t" 

n= l  b 

e 
i i i i  

d 

n = 2  e 

f 

n>2 g 

I III  

a a ° 

Best arithmetical/,'malytical bound on PREDy[ 
i i 

Y/'is empiric~dly complete General case 
I 

1.0 is finite/2.0 is infinite 3.0 is finite 4.0 is infinite 
/ I I / I II  I III II I I I  

.?  n ° 

n o A? al s ° nl 
i i i l l  I 

a0 a ° AI nO nl 

a? al n o nl 

1 n o al A, nl nl 

o oao al AI nl nl Y'n, l 'In, 

Fig. 15. Theorem 9.1. 

1 1 

Now we solve for  upper  bounds  on the complexi ty  of deriving the 
predict ions of  an arbi trary,  ari thmetically definable theory.  The  com- 
plete  table of  such bounds  is given in T h e o r e m  9.1 (cf. Figure 14). 

L E M M A  9.2. If {~} ~ E~ then e E AI. 
Proof. Let  {e} be ari thmetically definable,  say by the ari thmetical  

re la t ion ~ (e ) .  Then  

~(n) = m ¢:> V~- ~ O '°, if ~ ( 7 )  then  ~'(n) = m 
<::> 3~" ~ O °~ such that  ~(~-) and 1" (n) = m. 

Hence ,  ~ E A~. • 

L E M M A  9.3. If Y(~ E~o then  PRED~e ~ II l .  
Proof. Let  Y(be ari thmetically definable. Recal l  that: 

PRED~e(e,  n, o) ¢~ V~- E ~ ,  if e C r then % = o. 
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~ / / i , ~  ~ 2  <'d2> 

x 0 <cq0> <ell> <eq2> <eq3> <el4> 
0 1 2 3 4 5 6 

Fig, 16. Typical elements of ~. 

Hence,  PRED~e E Ill.  [] 

Let (_> denote a fixed, effective bijection from ~o* to o), and let [ _ ]  
denote the inverse function from ~o to w*. 

L E M M A  9.4. S @ I l l  ¢=~ there is a recursive relation G such that 

S(x) v r  ,o 3n x). 

Proof  (Rogers 1987), Corollary V, p. 378. [] 

L E M M A  9.5. There is an 2(C ~o °~ such that 2 (E  II ° and PRED~e is 
Ill-complete.  

Proof. Let S be a 1Ill complete set (e.g. the set of all indices of finite 
path trees (Rogers 1987)). By Lemma 9.4, there is a recursive relation 
G such that 

(*) x ~ S asC:> V r E  oo', BnG(<~'[n),x). 

Now define: 

s ~ 2(¢~ Vn ~> 2, [en] C [en+l] & length([en]) = n - 1 
& 

Evidently, 2 ( ~  Ilo. Now we verify that S ~'~m PRED~e, so that P R E D x  
is II~-complete. ( ~ )  Suppose x ~ S. Then by (*), B~'E w °~ such that 
Vn, -7 G(<z In>, x). Define e[y] = (x, y, (r  I1>, (r  [2> . . . .  , {r I k > , . . . ) .  For 
each y, e[y] E 2(. Hence,  ~PRED~e((x) ,  1, 1). ( ~ )  Suppose x E S. Let 
So = x. Suppose for reductio that e E 2(. Then Vn, [e,] C [en+l], by the 
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definition of 9(. Let ~- be such that for each n ~> 2, z]n - 2 = [sn]. Then 
Vn, 7G([en] Eo), by the definition of 9(. But that contradicts (*), since 
x ~ S. Hence, ~ ~ 9(. Since ~ is an arbitrary data stream such that 
~o = x, x is inconsistent with 9(. Hence, PRED~e((x), 1, 1). So f (x )  = 
((x), 1, 1) reduces S to PRED~c. • 

L E M M A  9.6. There is an 9(C_ 2 ̀0 such that 9 (~  II ° and P R E D g i s  II~- 
complete. 

Proof. Let S be a FII complete set. Let 8 ~ w °~. We may uniquely 
encode ~ with a sequence ~" ~ 2 '°, as follows. For each n, encode e~ as 
a binary numeral. Now write the successive digits of each numeral in 
even positions, filling in with 0 in odd positions until the numeral is 
entirely written down. Signal the end of the numeral by putting a 1 
in the next odd position. Thus, (0, 1, 2 . . . )  is encoded as (0, 1, 1, 
1, 1, 0, 1 . . . .  ). ~- ~ 2 °' encodes an element of w °' ¢~ 1 occurs in infinitely 
many distinct, odd positions of ~-. Then say that ~" is significant. If ~- is 
significant, then define [r ],, = the natural number denoted by the binary 
numeral occupying even positions between the nth occurrence of 1 in 
an odd position and the n + l th  occurrence of 1 in an odd position. 
Now following the preceding lemma, define 

~ 9(¢~8 is significant and Vnt>2,  [[e]n] C_[[~]~+1] & 
length(lie],]) = n - 1 & -~G([[e]~], Co). 

If ~ is significant, then [e]n is total and effective. Since significance is 
II °, so is 9(. But P R E D g  reduces S by the argument of Lemma 9.5. • 

Proof of  Theorem 9.1. The analytical upper bounds of Theorem 9.1 
follow from Lemmas 9.2 and 9.3. The optimality of the bounds in .the 
general case follow from Lemmas 9.5 and 9.6. In the empirically com- 
plete cases, we have from Lemmas 7.C.5 and 7.C.6 that {1,} ~ II ° 2 and 
{6} ~ II ° and neither u nor 6 is in Zo ~. From Lemma 9.2, v, 6 E z~. This 
shows that no tighter bound than 2~ can be given in the analytical 
hierarchy. But we have not shown that u, 6 are ~-complete .  In fact 
no set is ~-complete .  

L E M M A  9.7.19 Vn, VR C_ oJ, R is not A~-complete. 
Proof. Suppose, for reductio, that R is 2x~-complete. Define S = 

{x: 3y ~bx(x) = y & y ~ R}. S E A~, since R is and 2x~ is closed under 
complementation and first-order quantification. Hence, there is a total 
recursive f such that Vx, x ~ S ¢~f(x)  E R. Let ~bk = f .  Suppose k ~ S. 
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Then ~b~(k) = f ( k )  qi R. Suppose k ~ S. Since f i s  total, ~bk(k) is defined. 
Hence, ~b~(k) ~ R. Thus k E S ~ , f ( k )  q~ R. So f does not reduce S to 
R. Contradiction. [] 

As in the empirically complete case, a computable [or arithmetically 
definable] method can refute 2(with certainty, but cannot notice imme- 
diately when the hypothesis is refuted. The result holds also for hyp- 
er.arithmetieally definable methods (i.e. methods in A~), so Lemma 9.5 
yields an even more powerful critique of Bayesian methodology than 
did Lemma 7.C.6. 

C O R O L L A R Y  9.7. There is an 2( such that 
(a) 2(is computably refutable with certainty, but 
(b) no a ~ El  is consistent and weakly conservative for 2(, ~o, and 
hence 
(c) no Bayesian method in El  can gradually decide 2(. 

Proof. Let 2(, S be as defined in the proof of Lemma 9.5, so (a) is 
immediate. Then (x) is consistent with 2(~=)x ~ S. Suppose that o~ is 
consistent and weakly conservative for 2(, o). Then (*) x ~ S #=~ Ve E 
O*, if e extends (x) then a(e) = 0. Suppose a ~ E~. Then by rearrange- 
ment of quantifiers, S ~ E~, which is a contradiction, yielding (b). a° 
But it was observed in Section 8 that if a Bayesian method a gradually 
decides 2(, then o~ is consistent and conservative for 2(, co, so (c) follows. 

[] 

10. C O N V E R S E  R E L A T I O N S  

So far we have asked how complex PRED~e can be if Yg is computably 
testable in a given sense. We can turn the question around and ask 
how computably untestable 2(can be for a given complexity of PRED~e. 
In the general case, it is easy to see that an arbitrarily untestable theory 
can make computationally trivial predictions, since it may refuse to 
entail any predictions about the future at all. 

PROPOSITION 10.1. For each (arbitrarily complex) S ___ ~o, there is 
an 2(_C 2 ~° such that PRED~e ~ A ° and S is no more complex than 2(. 

Proof. Let S be an arbitrary subset of co. Define 8 E 2(~::~ 80 ~ S. 
Then ( e , n , o )  ~PRED~ee=)en = o, so P R E D ~  is A °. Define 
x E S~=~x ~ ~ 2(. So, S is no more complex than YL [] 
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Moving on to the empirically complete case, there is the following, 
comprehensive result: 

PROPOSITION 10.2. If e E 11o then {~} E 1I °. 
Proof. Define ~- E {s} 1=~ Vn, ~',, = sn. • 

The 2 ° case follows from the 11o case by the following lemma: 

PROPOSITION 10.3. If e E 2 °n then e ff A °. 
Proof. Since ~ is total, 8(x) 4= y 4==> 3y '  :P y such that e(x) = y ' .  Since 
is 2 °, this definition of the complement of 8 is also 2 °~, so ~ is 11o 

and hence is A °. • 

Now we show that the upper bound given in Proposition 9.2 is optimal 
at level 1 in the hierarchy. 

PROPOSITION 10.4. There is an s E 2 °' such that 8 ~ A ° but {~} is 
11°-complete (and hence is in 11o _ 2o). 

Proof. Let ( be the 0 constant function. ( is recursive. Let  Y(~ 11o. 
So for some recursive ~, e ~ ~ ¢ ~ V x  ~(e ,x ) .  Define the recursive 
operator  q~(e)x = 0 if ~(8, x) and q~(8)x = 1 otherwise. 

~ ~ ¢ ~  ~(~) ~ {~ }, so Y( ~<m {~ }. Hence,  {~ } is II°-complete. • 

At level 2, we have: 
PROPOSITION 10.5. Let  O = 2. There is an ~ E 2 ̀0 such that 8 E A ° 2 

but {e} E I I  ° - 2 ° 2. 

Proof. Let  K be the characteristic function of K. Then for each x E w, 
K(x) = y¢:>y = 1 and Bk ~G(x) halts in k steps or y = 0 and Vk, qSx(x) 
does not halt in k steps. Hence,  K is ±2 °. Suppose {K} ~ 2 °. Then by 
Lemma 7.B.4, K is recursive, which is a contradiction, since K ~<m K. 
so {~} ~ :~o. • 

{K} is not II°-complete, because no singleton is. 

PROPOSITION 10.6. If }O[ > 1 then for each e, {s} is not 11~-com- 
plete. 

Proof. Let  IO[ > 1, x ~ O, and 6 ~ OOq Define ff(~') e=>Vn 3rn > n 
such that ~-,~ = x. o ~  1-I °. Now suppose for reductio that there is a 
recursive operator  qb such that for each ~- ~ 2 ̀ °, r E fit=> @0") ~ {s}. Let  
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y ~ 0 - {x}. Hence, y~O ~ ~-. Let n' be the least n such that q~(y'°)n =~ 
en. There is such an n, else ~(y,O) = e, contrary to the reductio hypo- 
thesis. Then there is some k such that for each z, if .rlk = y~' then 
• (z),, = ~(y'~)n 4 en, since • must proceed locally by reading increas- 
ing segments of its input (i.e. ~ is continuous). Hence, ~(y~*x'°) ,  4: 
e~. But yk*x°~ ~ ~-contradicting the reductio hypothesis. [] 

We leave optimality open for levels 3 and higher. Since {e} E I I  ° is 
consistent with e being non-arithmetical (Lemma 7.5.C), the proof 
strategy of Proposition 9.5 no longer applies at level 3 or higher. 

11 . CONCLUSION 

An important task for philosophy is to expose intriguing structure in 
the heart of apparent banality. It is apparently banal that science should 
proceed by deriving predictions from theories and checking these pre- 
dictions against the data. And yet, it has been shown that this concep- 
tion (as well as the increasingly popular proposal that inquiry proceed 
by Bayesian updating) severely underestimates the true potential of 
effective (and even of definable) scientific methods. In fact, the relation- 
ship between derivability of predictions, on the one hand, and scientific 
reliability, on the other, is a complicated matter that depends crucially 
on such unexpected factors as whether or not there can be infinitely 
many possible outcomes of an experiment. We have presented the 
complete table of such relations, together with proofs that the general 
upper bounds given cannot be improved. In pursuit of these bounds, 
we have been led beyond the realm of arithmetical definability. 

Despite the systematic character of this study, it concerns only the 
outer limits of the relations between empirical testability and formal 
derivability. For example, it would be nice to know how pervasive the 
phenomenon of Lemma 7.C.6 is. Is the result closely tied to the care- 
fully tailored structure of the hypothesis Y(= {6}? Or is the existence 
proof merely the tip of a hidden iceberg? Is there a hypothesis of 
genuine interest to science that has the same formal properties? Similar 
questions could be asked of all our existence proofs. Recent work on 
computability in physics 21 may suggest less contrived examples, al- 
though that work has yet to isolate the extremely high complexities 
required to illustrate many of our results. One might also consider 
variations on our notions of computable testability, involving experi- 
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mentation, probability, weaker forms of computability, theory laden 
data, and many other factors of interest to the philosophy of science. 
But even in their highly idealized form, the results presented here can 
serve to loosen up overly restrictive intuitions about how logic and 
scientific inquiry must interact. 
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1 E.g. (Pour-El and Richards 1980). 
2 By "highly idealized", we mean hyper-arithmetically definable. 
3 Definability in elementary arithmetic will be introduced in Section 6. 
4 In this sense, these results constitute an important generalization of those in (Kelly 
1993). 

"Hyper-arithmetical" will be defined in Section 9 below. 
6 Also see (Kelly 1991). 
7 For example, let O = {0, 1} and let e ~ Y(¢~ only finitely many O's occur in e. Then 
PREDge(e, n, o) ¢# en = o, and hence is decidable with certainty, but Yg is not refutable 
in the limit. For let a be an arbitrary method. A "demon"  can feed data to a as follows. 
The demon feeds 0 so long as c~ conjectures something other than 0, and feeds 1 each 
time c~ conjectures 0. If a stabilizes to 0, then the data stream presented stabilizes to 1 
and hence is in Yg. If a conjectures a non-zero infinitely often, then infinitely many O's 
occur in the data stream, so it is not in ~ .  Hence,  no a refutes ~ in the limit. 
s Of course, finding the truth is not the only aim of scientific inquiry. It is not our purpose 
in this paper to survey other aims, such as maintaining coherence or convincing others. 
9 What follows is a quick sketch intended to remind the reader of the relevant definitions. 
An expanded presentation may be found in any standard text on recursion theory such 
as (Hinman 1978) or (Rogers 1987). 
10 "[The dogmatists] claim that the universal is established from the particulars by means 
of induction. If this is so, they will effect it by reviewing either all the particulars or only 
some of them. But if they review only some, their induction will be unreliable, since it 
is possible that some of the particulars omitted in the induction may contradict the 
universal. If, on the other hand, their review is to include all the particulars, theirs will 
be an impossible task, because particulars are infinite and indefinite. Thus it turns out, 
I think, that induction, viewed from both ways, rests on a shaky foundation" (Sextus 
1985), p. 105. 
11 All the definitions and results presented in this paragraph are standard. An extended 
presentation may be found in (Rogers 1987). 
12 Presented in (Hinman 1970), Theorem 4.3, p. 106 or (Rogers 1987) Theorem XII, p. 
344. 
13 This proof follows (Hinman 1970), pp. 106-107. 
14 This proof follows (Hinman 1970), Corollary 4.5, p. 107. 
15 These definitions generalize similar notions in (Osherson et al. 1986). 
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~6 Gradual decidability by a computable method is equivalent to decidability in the limit 
by a computable method (we can convert a gradual decider a into a limiting decider by 
simulating a and conjecturing 1 when a produces a conjecture greater than 0.5 and 
conjecturing 0 otherwise). Hence, we have already obtained the bounds on PRED~e given 
computable gradual decidability. 
17 It can be shown that for each Bayesian conditionalizer a and for each Borel set Y( 
(each arithmetically definable hypothesis is a Borel set), a gradually decides g( over some 
set Yl of data streams of probability 1 (in cr's prior probability measure). Hence, even 
~hough no arithmetically definable c~ gradually decides {6} over all data streams, each 
such method gradually decides {6} measure 1. We leave it to the reader to decide whether 
this implies that requiring success over all data streams is too stringent (remember: a 
computable method can succeed in this sense concerning {3}!) or that requiring success 
with probability 1 is too lenient in infinite product spaces. Cf. (Kelly 1995), Chapter 13. 
is This result is related to Theorem 3.7 in (Gaifman and Snir 1982). 
19 We are indebted to Aleksandar Ignjatovic for this result. It can be strengthened to the 
case of Turing reducibility using a similar argument based on the set S = {x: 3y ~b~(x) = 1}. 
so Observe that weak conservatism could be replaced in this result with the trivial 
requirement that a produce a non-zero conjecture at some time later than stage 0 when 
Yg is true. 
21 (Pour-E1 and Richards i980). 
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