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Abstract

This paper analyzes the notion of a minimal belief change that in-
corporates new information. I apply the fundamental decision-theoretic
principle of Pareto-optimality to derive a notion of minimal belief change,
for two different representations of belief: First, for beliefs represented by a
theory–a deductively closed set of sentences or propositions–and second
for beliefs represented by an axiomatic base for a theory. Three postu-
lates exactly characterize Pareto-minimal revisions of theories, yielding a
weaker set of constraints than the standard AGM postulates. The Levi
identity characterizes Pareto-minimal revisions of belief bases: a change
of belief base is Pareto-minimal if and only if the change satisfies the Levi
identity (for “maxichoice” contraction operators). Thus for belief bases,
Pareto-minimality imposes constraints that the AGM postulates do not.

The Ramsey test is a well-known way of establishing connections be-
tween belief revision postulates and axioms for conditionals (“if p, then
q”). Pareto-minimal theory change corresponds exactly to three charac-
teristic axioms of counterfactual systems: a theory revision operator that
satisfies the Ramsey test validates these axioms if and only if the revision
operator is Pareto-minimal.

1 Minimal Belief Change
New information changes our beliefs continually. How should we incorporate
new assertions into a body of existing ones? This question arises in many situ-
ations of philosophical and practical interest. For example, if the new assertion
describes evidence about the world, incorporating the evidence into current
beliefs is scientific and inductive reasoning. If the new assertion is a datum pre-
sented to a database system, we face the question of how to update a database.
If the assertion is a new law, the issue becomes how to revise legal codes.
In the last two decades or so, the following principle has attracted much

interest among philosophers, logicians and computer scientists: Revise your
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beliefs so as to minimize the extent of change from the original beliefs.1 The
aim of this paper is to analyze the notion of minimal belief change. I derive
axioms for minimal belief change from basic principles of decision theory. The
same decision-theoretic principles lead to different results for different ways of
formally representing beliefs. Specifically, I consider two such representations:
Belief modeled as a deductively closed set of sentences or propositions, and belief
modeled by an axiomatic “belief base”.2 The analysis goes like this.
There are two kinds of changes to a theory T , viewed as a set of sentences.

First, we may add a sentence to T , and second, we may retract a sentence from
T . I say that a theory T 0 adds a sentence to T if T 0 entails a sentence that T
does not entail; similarly, a theory T 0 retracts a sentence from T if T entails a
sentence that T 0 does not entail. Given a current theory T and two possible
revisions T1 and T2, I say that T1 adds more than T2 if T1 adds all the sentences
to T that T2 adds, and T1 adds some sentences that T2 does not add. Similarly,
T1 retracts more than T2 if T1 retracts all the sentences from T that T2 retracts,
and T1 retracts some sentences that T2 does not retract. (See Figure 1 in Section
3.)
Next, I observe that in theory revision, retractions and additions trade off

against each other. That is, typically it is possible to avoid additions to theories
if we are willing to retract more from them, and vice versa. Decision theory
provides some general principles for dealing with trade-offs between different
kinds of “costs”. The Pareto principle says that if an option O is no worse than
an alternative O0 on all dimensions of interest, and better than O0 on some,
we ought to prefer O; in that case we say that O Pareto-dominates O0. A
lexicographic choice procedure ranks the dimensions of interest by importance,
then eliminates all options that are not optimal by the most important criterion;
we break ties among these by eliminating the ones that are not optimal by the
second most important criterion, etc.
I consider the implications of both the Pareto principle and lexicographic

choice for minimal theory change. First, I define a Pareto-minimal theory re-
vision to be one that is not Pareto-dominated with respect to additions and
retractions. Thus Pareto-minimal theory revisions are those that cannot be
improved by adding less without retracting more, or by retracting less without
adding more. As it turns out, there is a purely set-theoretic definition of Pareto-
minimal theory revisions in terms of the symmetric set differences between the
current theory and alternative revisions. The main theorem of this paper estab-
lishes that certain axioms for belief revision characterize Pareto-minimal theory
changes, in the sense that a theory change is Pareto-minimal if and only if the
change satisfies these axioms. The chief difference between Pareto-minimality
and the standard AGM postulates [Gärdenfors 1988] arises in the case in which
the current theory neither entails the new information nor its negation. In that
case, the AGM revision is the result of adding the new information to the cur-

1Quine’s principle of “minimal mutilation” is an early philosophical precursor [Quine 1951].
[Harman 1986] endorses this idea as epistemic “conservatism”.

2 [Alchourrón and Makinson 1982] is an early study of the differences between these two
representations.
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rent theory. Pareto-minimal revisions, however, may be logically weaker than
the AGM revision.3

Second, suppose that we lexicographically assign more importance to avoid-
ing retractions than to avoiding additions (which captures some aspects of the
idea that we ought to avoid “loss of information”). I provide a set of axioms
that are necessary and sufficient for theory changes to be minimal in this sense.
These axioms agree with the AGM postulates when the current theory is con-
sistent with the new information. They disagree when the current theory is
inconsistent with the new information: Then the retraction-minimizing revi-
sions must yield a contradiction or a complete (maximal) set of beliefs. Thus,
the notion of minimal change based on the Pareto principle and the notion of
minimal change based on ranking retractions over additions each agree with a
different part of the relevant AGM axioms. (See Figure 3 in Section 6.)
Pareto-optimality leads to different results for minimal revisions of belief

bases, sets of sentences or propositions that need not contain all of their logi-
cal consequences. If we distinguish between an agent’s “basic beliefs” and the
beliefs that follow from the basic beliefs, it is natural to make a correspond-
ing distinction between changes in the agent’s basic beliefs and changes in the
logical consequences of his basic beliefs. Thus I say that a belief base B0 adds
a sentence to another belief base B if B0 contains a sentence that B does not
contain; similarly, a belief base B0 retracts a sentence from another belief base
B if B contains a sentence that B0 does not contain. It turns out that for belief
bases, there is no tension between avoiding additions and avoiding retractions,
and Pareto-minimal revisions of belief bases are those that minimize both kinds
of change. They don’t add anything to the agent’s basic beliefs (save the new
information) and they minimize retractions. The well-known Levi identity char-
acterizes Pareto-minimal changes of belief bases: They are exactly those that
result from, first, retracting just enough basic beliefs to make the agent’s basic
beliefs consistent with the new information (technically, a “maxichoice contrac-
tion” [Gärdenfors 1988, Ch.4.2]), and second, adding the new information to
the basic beliefs contracted in this manner. Since AGM revisions may give up
more beliefs than maxichoice contraction permits, this characterization shows
that Pareto-minimality yields some constraints on the revision of belief bases
that the AGM axioms do not require (cf. [Alchourrón and Makinson 1982]).
Belief revision theorists have proposed various principles for rational belief

change that do not follow from Pareto-minimality, though they are consistent
with it. I give a generalized definition of Pareto-minimal belief change that
accommodates any constraints on belief revision that one may wish to impose.
This definition suggests directions of application for the Pareto principle beyond
those investigated in this paper, such as principles of suppositional reasoning
and conditional axioms along the lines of [Levi 1996].
One of the interesting aspects of belief revision axioms is their connection

with axioms for conditionals (“if p, then q”). In the last part of the paper,
3 In this respect, Pareto-minimal revisions agree with Katsuno and Mendelzon’s approach

to “belief update” [Katsuno and Mendelzon 1991]; see Section 4.
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I follow a well-known approach, based on the so-called “Ramsey test” (see
[Gärdenfors 1988, Ch.7]), to establish the conditional axioms that correspond to
Pareto-minimal theory change. It turns out that Pareto-minimal theory change
corresponds to three axiom schemata of Lewis’ and Stalnaker’s systems of coun-
terfactuals [Lewis 1973], [Stalnaker 1968].

2 Theories
I begin with the representation of an agent’s current beliefs as a deductively
closed theory. There are two main ways to represent theories, syntactically or
semantically. For a syntactic representation, I assume that some language L
has been fixed, and take a theory to be a deductively closed set of sentences or
formulas from L. On a semantic approach, we take theories to be (conjunctions
of) propositions, where propositions are suitable abstract objects such as sets
of possible worlds. In this paper, I represent theories syntactically to facilitate
comparison with the large part of the literature on belief revision and condi-
tionals that takes a syntactic approach. However, it should be noted that all of
the developments to follow are valid in a purely semantic, propositional setting
as well.
As is usual in belief revision theory, my assumptions about the structure

of the language in which an agent formulates her beliefs are sparse; essentially,
all I assume is that the language features the usual propositional connectives.
I take as given a suitable consequence relation between sets of formulas in the
language, obeying the standard Tarskian properties. The formal presuppositions
are as follows.
A language L is a set of formulas satisfying the following conditions.

1. L contains a negation operator ¬ such that if p is a formula in L, so is
¬p.

2. L contains a conjunction connective ∧ such that if p and q are formulas
in L, so is p ∧ q.

3. L contains an implication connective → such that if p and q are for-
mulas in L, so is p→ q.

A consequence operation Cn : 2L → 2L represents a notion of entailment
between sets of formulas from a language L. A set of formulas Γ entails another
set of formulas Γ0, written Γ ` Γ0 iff Cn(Γ) ⊇ Γ0. A set of formulas Γ entails a
formula p, written Γ ` p, iff p ∈ Cn(Γ). I assume that Cn satisfies the following
properties, for all sets of formulas Γ,Γ0.

Inclusion Γ ⊆ Cn(Γ).

Montonicity Cn(Γ) ⊆ Cn(Γ0) whenever Γ ⊆ Γ0.

Iteration Cn(Cn(Γ)) = Cn(Γ).
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A theory is a deductively closed set of formulas. That is, a set of formulas
T ⊆ L is a theory iff Cn(T ) = T .
The entailment relation ` is related to the propositional connectives as fol-

lows.

Modus Ponens If Γ ` p, (p→ q), then Γ ` q.

Implication If Γ ` q, then Γ ` (p→ q).

Deduction Γ ∪ {p} ` q iff Γ ` (p→ q).

Conjunction Γ ` (p ∧ q) iff both Γ ` p and Γ ` q.

Consistency Suppose that Γ 6` p. Then Γ ∪ {¬p} 6` p.

Inconsistency {p ∧ ¬p} ` L.

Double Negation Γ ` p iff Γ ` ¬¬p.

Classical propositional logic satisfies these assumptions. Belief revision the-
orists usually assume that the consequence relation Cn is compact; none of the
results in this paper require compactness.4

For the remainder of this paper, assume that a language L and a consequence
relation Cn (and hence an entailment relation `) have been fixed that satisfy
the conditions laid down above.

3 Theory Change: Additions and Retractions
I now begin the analysis of what a minimal theory change is. An obvious ap-
proach to this question would be to define a metric ρ between theories, such that
ρ(T0, T1) is a real number that measures the “distance” between two theories.
If we had such a metric ρ at our disposal, we could define a minimal change
from a current theory T0 to be another “closest” theory T1, that is, a theory T1
such that there is no “closer” theory T2. In symbols, a theory T1 is ρ-closest to
T0 if there is no other theory T2 such that ρ(T0, T1) > ρ(T0, T2). However, so
far no satisfactory metric between theories has been designed.
A metric ρ between theories defines a total order ≤ρT among possible new

theories given a current theory T : T1 ≤ρT T2 iff ρ(T, T1) ≤ ρ(T, T2), where ≤
denotes the standard ordering of the real numbers. My approach is to aim for
less than a metric would provide, namely a partial order ≺T where we read
T1 ≺T T2 as “T1 is a smaller change from T than T2 is”. Since this ordering is
partial, there may be possible changes that are incomparable. As far as a given
partial order among theory changes goes, if two changes are incomparable, we
should view neither as a smaller change than the other. However, a theory
change T2 from an old theory T is not minimal if there is another, comparable,

4A consequence relation Cn is compact iff for all formulas p and sets of formulas Γ, we
have that p ∈ Cn(Γ) only if p ∈ Cn(Γ0) for some finite subset Γ0 of Γ.
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new theory T1 such that T1 ≺T T2. Thus I shall take minimal changes from a
current theory T to be the minimal elements in the given partial order ≺T .
In these terms, the project of the first part of this paper is this: Define

naturally motivated partial orders, and then characterize their minimal elements
in terms of a belief revision operation ∗, such that ∗ produces a minimal element
if and only if ∗ satisfies certain axioms.
I make use of decision-theoretic principles to define partial orders among

theory changes. Let’s begin by distinguishing two kinds of change: A retraction
in which the old theory entails a formula that the new theory does not entail,
and an addition, in which the new theory entails a formula that the old theory
does not entail.

Definition 1 Let T, T 0 be two theories.

1. T 0 retracts the formula p from T ⇐⇒ T ` p and T 0 6` p.

2. T 0 adds the formula p to T ⇐⇒ T 6` p and T 0 ` p.

Next, I define two partial orders among theory changes by applying the
principle of dominance. The first partial order defines a notion of a new theory
T1 “retracting more” from a previous theory T than another new theory T2,
namely if T1 retracts all the formulas from T that T2 retracts from T , and T1
retracts at least one formula from T that T2 does not retract. The second partial
order defines a notion of a new theory T1 “adding more” to a previous theory
T than another new theory T2, namely if T1 adds all the formulas from T that
T2 adds to T , and T1 adds at least one formula to T that T2 does not add to T .

Definition 2 Let T, T1, T2 be three theories.

1. T1 retracts more formulas from T than T2 does ⇐⇒

(a) for all formulas p, if T2 retracts p from T , then T1 retracts p from T ,
and

(b) for some formula p, T1 retracts p from T and T2 does not retract p
from T .

2. T1 adds more formulas to T than T2 does ⇐⇒

(a) for all formulas p, if T2 adds p to T , then T1 adds p to T , and

(b) for some formula p, T1 adds p to T and T2 does not add p to T .

Thus T1 retracts more formulas from T than T2 iff T − T2 ⊂ T − T1, and
T1 adds more formulas to T than T2 iff T2 − T ⊂ T1 − T , where ⊂ stands for
proper set inclusion. Figure 1 illustrates these definitions.
We may think of the addition partial order and the retraction partial order

as defining two distinct dimensions of “cost” in theory revision. If additions
and retractions were linked such that minimizing one minimizes the other, this
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T p T1  retracts  from 

T T  T1  retracts more formulas from than   does2

:  a theory = a deductively closed set of sentences

T T2  retracts nothing from 

T
pT2

T1

T p T1  adds   to 

T T  T1  adds more formulas to than   does2

T p T2  does not add  to 

Figure 1: Dominance in Additions and Retractions
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distinction would have no interesting consequences for the question of how to
minimize theory change: we would just minimize both additions and retrac-
tions at once. What makes the distinction important is the fact that in general,
additions and retractions trade off against each other. Typically, avoiding re-
tractions entails adding more sentences than necessary, and avoiding additions
entails retracting more sentences than necessary. An example will clarify this
point.
Example. Imagine a cognitive scientist who believes that a certain AI sys-

tem, say SOAR, is the only candidate for machine intelligence. This scientist
believes that “if SOAR is not intelligent, there is no intelligent machine”. Let-
ting s stand for “SOAR is intelligent” and m stand for “there is an intelligent
machine”, the scientist believes the sentence p = ¬s → ¬m. Suppose that
the scientist believes only the consequences of p, that is, her current theory is
T = Cn({p}). In particular, the scientist neither believes that there is an in-
telligent machine (m), nor does she believe that there is no intelligent machine
(¬m). Now the scientist receives new information to the effect that SOAR is
not intelligent. She has to revise her theory T on evidence ¬s. Let us consider
two possible revisions, T1 and T2 (see Figure 2). Revision T1 adds the new
information ¬s to T and accepts the deductive consequences of this addition;
thus T1 = Cn({p} ∪ {¬s}). This revision T1 is logically stronger than T and
hence retracts nothing from T . However, the revision adds the sentence ¬m
(“there is no intelligent machine”), since p and ¬s entail ¬m.
Contrast this with a different revision T2 that retracts the scientist’s initial

belief that SOAR is the only road to machine intelligence, and adds the new
information that SOAR is not intelligent. That is, T2 = Cn({¬s}). This
revision T2 retracts more from T than T1 does. On the other hand, T2 adds
less to T than T1 does, since T2 is strictly weaker than T1. In particular, T2
continues to reserve judgment about whether machine intelligence is possible or
not, whereas T1 concludes that it is impossible (¬m).
As the results below show, this example illustrates a general tension be-

tween avoiding additions and avoiding retractions; essentially, additions and
retractions trade off against each other unless the current theory already entails
the new information. When additions and retractions stand in conflict, how
shall we make trade-offs between them? This is the topic of the next section.

4 Pareto-Minimal Theory Change
When a conflict arises between avoiding additions and avoiding retractions in
belief revision, an agent may strike a subjective balance between them, as in
any case of conflicting aims. She may assign one kind of change more subjective
weight than the other, or favour some beliefs as more “entrenched” than others.
I will come back to this idea in Section ??. But before we resort to subjective
factors, we can look to decision theory for an objective constraint that applies
to all agents seeking to minimize theory change. If avoiding changes is our aim,
then we should avoid revisions that make more additions than necessary without
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SOAR is not intelligent

T
T1

T2

T

No retractions, but adds
“Machine Intelligence is impossible”

adds only the new information,
but retracts 
“if SOAR is not intelligent,
there is no intelligent machine”

If SOAR is not intelligent,
there is no intelligent machine

If SOAR is not intelligent,
there is no intelligent machine

If SOAR is not intelligent,
there is no intelligent machine

SOAR is not intelligent

Machine Intelligence is impossible

SOAR is not intelligent

SOAR is not intelligent

Figure 2: Additions and Retractions trade off against each other in theory
revision: Revision T1 adds more to T than T2 does, and revision T2 retracts
more from T than T1 does.
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avoiding retractions, and we should avoid revisions that make more retractions
than necessary without avoiding additions. This is an instance of the basic
principle of Pareto-optimality. For minimal theory change, we can render it as
follows.5

Definition 3 Let T, T1, T2 be three theories. T1 is a greater change from T
than T2 is ⇐⇒

1. T1 retracts more formulas from T than T2 does, and for all formulas p, if
T2 adds p to T , then T1 adds p to T ; or

2. T1 adds more formulas to T than T2 does, and for all formulas p, if T2
retracts p from T , then T1 retracts p from T .

An equivalent purely set-theoretic definition is that T1 is a greater change
from T than T2 is iff T2 4 T ⊂ T1 4 T , where ⊂ denotes proper inclusion and
4 is symmetric difference (A4B = A−B ∪B −A). (This definition is due to
Norman Foo.)
Thus the principle of Pareto-Optimality defines a partial relation≺T between

theories: T2 ≺T T1 iff T1 is a greater change from T than T2 is. It seems
that we can now take a minimal change from T to be a minimal theory in the
≺T -ordering. But on that definition, the only minimal change from T is T
itself! Of course, it is generally true that the smallest change is no change, on
any acceptable notion of “small change” (cf. [Levi 1988, p.52, Condition (1)],
[Lewis 1976, p.313]). What we want is a minimal change that satisfies additional
constraints. In the case of belief update, the additional constraint is that the
minimal theory change should incorporate the new information. Accordingly, I
define a Pareto-minimal theory change from T , given new information p, as a
theory that is minimal in the ¹T -ordering among the theories that entail p.

Definition 4 Let T, T1 be two theories, and let p be a formula. Then T1 is a
Pareto-minimal change from T that incorporates p⇐⇒

1. T1 ` p, and

2. there is no other theory T2 such that T2 ` p and T1 is a greater change
from T than T2 is.

Now we are ready for the main result of this paper: Necessary and sufficient
conditions for a theory revision to be a Pareto-minimal change. It is not difficult
to see that the following three conditions are necessary. Let us write T ∗ p for
the revision of theory T given new information p. First, it is our basic constraint
that the revision T ∗p must entail p. Second, since the least change of a theory T
is T itself, we don’t change the current theory at all if it already entails the new
information p; in symbols, T ∗p = T . Third, the revision T ∗p must follow from

5To obtain the appropriate definition for the propositional setting, replace the word “for-
mulas” by “propositions” in the following definition.
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the result of simply adding the new information to the old theory; formally, it
must be the case that T ∪ {p} ` T ∗ p. For suppose that a revision T ∗ p does
not satisfy this condition. Then T ∗ p entails a sentence q that is not entailed
by T ∪ {p}, and hence not by T . Consider the theory T 0 that entails a sentence
r just in case both T ∗ p and T ∪ {p} ∪ {¬q} entail r. Clearly T 0 adds less to
T than T ∗ p does because T 0 is weaker than T ∗ p; in particular, T 0 does not
add q to T whereas T ∗ p does. Furthermore, T 0 retracts from T exactly those
sentences that T ∗ p retracts from T . For let r be a sentence entailed by T but
not by T 0. Then T ∪ {p}∪ {¬q} entails r and so by the definition of T 0, it must
be the case that T ∗ p does not entail r. This argument shows that T ∗ p is a
greater change from T than T 0 is. Hence T ∗ p is not a Pareto-minimal change
unless T ∪ {p} entails T ∗ p. The proof of Theorem 5 in Section 12 formalizes
these considerations, and shows that the three conditions listed are sufficient as
well, that is, any theory revision that satisfies them is Pareto-minimal. Thus
we have the following characterization of Pareto-minimal theory change that
incorporates a given piece of new information (see Figure 3 in Section 6).

Theorem 5 Let T be a theory and let p be a formula. A theory revision T ∗ p
is a Pareto-minimal change from T that incorporates p⇐⇒

1. T ∗ p ` p, and

2. T ∪ {p} ` T ∗ p, and

3. if T ` p, then T ∗ p = T .

The theorem shows that the tension between additions and retractions arises
whenever the agent’s current theory does not already entail the new information.
When this is the case, the revisions that make Pareto-acceptable trade-offs run
in strength from adding the evidence to the current theory (T ∪{p}) to entailing
nothing but the evidence and its consequences ({p}).

5 Retraction-Minimal Theory Change and the
AGM Axioms

Mention retraction-minimality. Also mention the AGM axioms.
This account of minimal change distinguishes sharply between the case in

which the current theory already entails the new information and the case in
which it does not. The standardAGM axioms also make a sharp distinction, but
along a different line: They distinguish between the case in which the evidence
is consistent with the current theory (but not necessarily already part of it) and
the case in which the evidence is inconsistent with the current theory.
In my notation, the AGM axioms for theory revision are the following, for

a given theory T and sentences p, q [Gärdenfors 1988, Ch.3.3]. For comparison
with Pareto-minimal theory change, the relevant axioms are K*1—K*4; I will
discuss the other axioms later.
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K*1 T ∗ p is a theory.

K*2 T ` p.

K*3 T ∪ p ` T ∗ p.

K*4 If T ∪ p is consistent, then T ∗ p ` T ∪ p.

K*5 T ∗ p is inconsistent just in case p is inconsistent.

K*6 If p and q are logically equivalent, then T ∗ p = T ∗ q.

K*7 T ∗ p ∪ {q} ` T ∗ p ∧ q.

K*8 If T ∗ p ∪ {q} is consistent, then T ∗ p ∧ q ` T ∗ p ∪ {q}.

6 Retraction-Minimal Theory Change
In some circumstances, we may think of our current theory as representing
“valuable information”. This may be the case when the theory records reli-
able evidence reports, or when it contains entries in a data base, for example.
In a Bayesian setting, a theory may be a record of the evidence on which a
Bayesian conditioned her degrees of belief. From the Bayesian’s point of view,
this evidence is “certain fact” rather than a “mere conjecture” in the sense that
the Bayesian assigns probability 0 to the possibility of the evidence being false.
There are other circumstances in which our theory represents our “best conjec-
ture” or “current hypothesis” rather than “certain, valuable information”. This
applies to many scientific theories, as well as the sort of tentative conclusions
and generalizations on which we rely in everyday life.
When it is appropriate to regard our current theory as containing “valuable

information”, we may want to change our theories in such a way that we give up
as little of this information as possible. Gärdenfors calls this the “principle of
information economy”.6 One way of formulating this idea in decision-theoretic
terms is to apply the principle of dominance to retractions: I say that a revision
is retraction-minimal if no other revision retracts less.

Definition 6 Let T, T1 be two theories, and let p be a formula. Then T1 is a
retraction-minimal change from T that incorporates p⇐⇒

1. T1 ` p, and

2. there is no theory T2 such that T2 ` p and T1 retracts more from T than
T2 does.

6 “The next postulate for expansions can be justified by the ‘economic’ side of rationality.
The key idea is that, when we change our beliefs, we want to retain as much as possible of our
old beliefs–information is in general not gratuitous, and unnecessary losses of information
are therefore to be avoided. This heuristic criterion is called the criterion of information
economy.” [Gärdenfors 1988, p.49]; emphasis is Gärdenfors’.
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Clearly any revision T ∗ p that is at least as strong as the original theory
T is retraction-minimal because it retracts nothing from T . Conversely, if q is
any sentence that T ∗ p retracts from T , then T ∗ p retracts more from T than
T ∗p∪{q} does. Hence retraction-minimal revisions are those don’t give up any
beliefs.

Proposition 7 Let T be a theory and let p be a formula. A theory revision T ∗p
is a retraction-minimal change from T that incorporates p ⇐⇒ T ∗ p ` T ∪ {p}.

If our aim is minimal change, it is natural to strengthen the principle of
avoiding retractions by selecting among the retraction-minimal revisions those
theories that minimize additions. In decision-theoretic terms, this amounts
to lexicographically assigning highest priority to avoiding retractions, and sec-
ond highest to avoiding additions. To be precise, say that a revision T ∗
p is addition-minimal among retraction-minimal revisions iff T ∗ p is
retraction-minimal, T ∗p entails p, and there is no other retraction-minimal revi-
sion T 0 entailing p such that T 0 adds less than T ∗p to T . Thus if T ∗p is addition-
minimal among retraction-minimal revisions, then T ∗ p is Pareto-minimal. Let
T ∗ p be such a revision. By Proposition 7, we have that T ∗p ` T ∪{p}. And it
follows from Theorem 5 that conversely T ∗ p must entail T ∪ {p}. Hence T ∗ p
is just the result of adding the new information p to the previous theory T .

Proposition 8 Let T be a theory and let p be a formula. A theory revision
T ∗ p is addition-minimal among retraction-minimal revisions ⇐⇒ T ∗ p =
Cn(T ∪ {p}).

Figure 3 summarizes the characterizations of Pareto-minimal and retraction-
minimal theory change in comparison with the AGM postulates.
When the new information contradicts the current theory, Proposition 7

implies that retraction-minimality will lead an agent to adopt an inconsistent
theory. The obvious answer to this problem is that we should reinterpret the
“principle of information economy”: what we want is a retraction-minimal con-
sistent revision. Formally, we can express this idea by rephrasing Definition
6 such that a theory change T ∗ p is retraction-minimal just in case T ∗ p en-
tails p and there is no consistent theory T 0 such that T 0 entails p and T ∗ p
retracts more from T than T 0 does. However, rather surprisingly it follows from
a result of [Alchourrón and Makinson 1982, Observation 3.2] that under this de-
finition, avoiding retractions requires the revision T ∗ p to be a complete theory
when T is inconsistent with p.7 For this reason, many belief revision theorists
advise against applying retraction-minimality when the new information contra-
dicts the agent’s current beliefs (see [Gärdenfors 1988, pp.58—59] and [Levi 1996,

7Briefly, the reason is this. Since the previous theory T entails ¬p, it also entails p →
q, p → ¬q for all atomic formulas q. Consistency requires that an agent remove one of the
pairs p→ q, p→ ¬q, but the aim of minimizing retractions prevents an agent from removing
both.
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p.22]).8 In an important study, Alchourrón and Makinson suggested a differ-
ent approach: If we refine the representation of an agent’s beliefs, minimizing
retractions no longer leads to complete theories. The next section explores this
idea.

7 Pareto-Minimal Revision of Belief Bases
So far I have treated all of an agent’s beliefs as equally important. A more
refined representation of the agent’s epistemic state may distinguish between
a “basic” set of beliefs B, and the consequences of B that the agent might be
said to hold because he believes B.9 [Hansson 1998] endorses the distinction
between a basic set of beliefs and their consequences as a “small step toward
capturing the justificatory structure” of an agent’s beliefs.10 I shall take a base
for a theory T to be a set of formulas B, which may or may not be deductively
closed, such that B ` T .
Unlike [Alchourrón and Makinson 1982], I do not require that belief bases

be “irredundant” in the sense that none of the basic beliefs follow from the
others. The goal is not a compact representation of an agent’s beliefs but
rather differentiating among his beliefs to capture some of their justificatory
relationships. For example, a scientist may wish to distinguish between holding
a belief p because her current scientific theory H–included among her basic
beliefs–predicts p, and holding a belief p after testing her theory and observing
p. In the second case, she may well include p among her basic beliefs along with
other observation data; but then if H also remains among her basic beliefs, her
basic belief p will follow from other basic beliefs (namely H).11

We could formulate the notion of a base in a purely propositional setting by
taking bases to be sets of propositions (sets of sets of possible worlds), rather
than just a single proposition (the intersection of all propositions believed by
the agent). Representing belief as the intersection of all propositions believed
by the agent amounts to choosing a single basic belief–namely the conjunction
of his beliefs–to represent his epistemic state; this may not reflect the finer
justificatory structure of his beliefs. Mathematically, all the results to follow are

8 [Levi 1996, Ch.2.1] presents a theory of how an agent may minimize the loss of “damped
informational value”. In my terms, this is advice for how to retract some beliefs to avoid
adding too many.

9A paradigm example is a database, where we may distinguish between the records that
are explicitly stored in the database and what follows from the explicitly stored information.
10 Some authors cite psychological plausibility and computational feasibility as other reasons

for introducing this distinction. [Harman 1986] proposes to distinguish between the set of
beliefs that an agent may hold “explicitly” at a given time–of which in some sense she may
be “conscious” or “aware”–and the consequences of these beliefs which she holds “implicitly”
at that time. [Alchourrón and Makinson 1982, p.21] argue that we ought to think of an agent’s
belief set as being “generated” from finitely many basic beliefs. Since my motivation for using
the notion of a belief base is not psychological plausibility or computational feasibility, I make
no assumptions about whether a given belief base is finite or even recursively enumerable.
11This is not a “foundations theory” in the sense of [Harman 1986] because I do not require

agents to keep a record of their epistemic history. Nor do I assume that an agent’s basic beliefs
are themselves justified by other beliefs or by anything else. See [Gärdenfors 1988, Ch.2].
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valid for belief bases represented by sets of propositions (substitute propositions
for sentences in the definitions and arguments below).
Setting apart basic beliefs from beliefs that follow from them is relevant to

the theory of minimal belief change because it naturally suggests a corresponding
distinction between changes in the basic beliefs and changes in the consequences
of those beliefs. Changes in the belief base may be very small even when many
changes in the agent’s overall beliefs occur. Some examples will illustrate this
phenomenon. Suppose that an agent has beliefs that are widely indeterminate
in the sense that they entail few other beliefs, but at the same time, settling
one more question will lead him to very strong beliefs. For a formal example,
we may take the agent’s (basic) beliefs to be the set {p → q,¬p → ¬q : q is
an atomic formula} for some fixed atomic formula p. Although currently the
agent does not accept any atomic formula, if she next comes to learn either p
or not ¬p, and includes this information in her basic beliefs, her basic beliefs
will entail a complete theory. For an informal example, consider a physicist
who assumes that a physical system under study satisfies a certain differential
equation. Before any observations, the differential equation is consistent with a
wide range of system trajectories; but given an initial condition (or more gener-
ally, a small number of observations), the differential equation may determine a
unique trajectory, leading to a definite prediction about the system’s behaviour
for each future time.
In these situations, how great is the extent of the agent’s change in his beliefs

after adding the relevant evidence (p resp. ¬p or the initial condition)? One
answer is that since the agent adopted many new beliefs, the “distance” of the
new theory from his previous one is great. Another view is that the belief change
is small, because only one piece of new information was added to the agent’s
basic beliefs. Although after adding the new information, the agent’s basic
beliefs entail many new assertions, we may choose not to count these because
they “just follow” from the agent’s basic beliefs. Both views of minimal belief
change seem to be defensible. I considered the first beforehand and now turn
to the investigation of the latter.
I begin again with two ways of making a change to a belief base. If B,B0

are two bases, I say that B0 retracts the formula p from B iff p ∈ B and
p /∈ B0, and that B0 adds the formula p to B iff p /∈ B and p ∈ B0. The
definition of “adding more” and “retracting more” from a base is just like that for
theories (cf. Definition 2). Thus B1 retracts more formulas from B than B2 iff
B−B2 ⊂ B−B1, and B1 adds more formulas to B than B2 iff B2−B ⊂ B1−B,
where ⊂ stands for proper set inclusion.
As with Definition 4, we can apply the principle of Pareto-optimality to

define a partial comparison of base revisions with respect to the extent of change
that they induce.

Definition 9 Let B,B1, B2 be three bases. Then B1 is a greater change from
B than B2 is ⇐⇒
1. B1 retracts more formulas from B than B2 does, and for all formulas p,
if B2 adds p to B, then B1 adds p to B; or

16



2. B1 adds more formulas to B than B2 does, and for all formulas p, if B2
retracts p from B, then B1 retracts p from B.

As with Definition 3, an equivalent purely set-theoretic definition is that B1
is a greater change from B than B2 is iff B2 4B ⊂ B14B.
One fundamental difference between the Pareto-minimal revision of basic

beliefs and Pareto-minimal theory change is this: Pareto-minimal base revisions
never add beliefs to the basic ones other than the new information. For suppose
that a revision B ∗ p adds a belief q to a base B; then B ∗ p − {q} adds less
to B and retracts no more. Hence B ∗ p is not a Pareto-minimal change of
B. Another way to put the point is that, in contrast with theories, for bases
the conflict between additions and retractions does not arise: it is possible to
minimize both additions and retractions at the same time. In the case in which
the new information contradicts the current basic beliefs, this will lead an agent
to hold inconsistent beliefs. Since many writers accept as a general norm of
epistemic rationality that an agent ought to avoid inconsistent beliefs, I shall
restrict Pareto-minimal revisions to consistent bases.

Definition 10 Let B,B1 be two bases, and let p be a formula. Then B1 is a
Pareto-minimal consistent change from B that incorporates p⇐⇒

1. p ∈ B1, and

2. B1 is consistent, and

3. there is no other consistent base B2 such that p ∈ B2 and B1 is a greater
change from B than B2 is.

Since for basic beliefs, there is no tension between additions and retractions,
Pareto-minimality yields the same result as lexicographically assigning the high-
est weight to avoiding retractions: Pareto-minimal revisions of belief bases are
exactly the retraction-minimal revisions that minimize additions. I define a
retraction-minimal base revision that produces consistent bases as follows (cf.
Definition 6). Let B,B1 be two theories, and let p be a formula. Then B1
is a retraction-minimal consistent change from B that incorporates p iff
(1) p ∈ B1, and (2) B1 is consistent, and (3) there is no other consistent base
B2 such that p ∈ B2 and B1 retracts more formulas from B than B2 does.
The next proposition asserts that Pareto-minimality applied to changes in basic
beliefs collapses into first minimizing retractions and then minimizing additions.

Proposition 11 Let B be a base and let p be a formula. Then B ∗ p is a
Pareto-minimal consistent change from B that incorporates p ⇐⇒ B ∗ p is a
retraction-minimal consistent change from B that incorporates p and minimizes
additions.

An important insight of [Alchourrón and Makinson 1982] is that when new
information contradicts the agent’s current basic beliefs, the consistent retraction-
minimal revisions are not necessarily complete theories. For the simplest exam-
ple, let B = {p} be the agent’s current beliefs, and suppose that the agent learns
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¬p. Then the consistent Pareto-minimal revision of B is B ∗¬p = {¬p}, clearly
not a complete theory. The difference to Proposition 7 is this: B entails all
material implications of the form ¬p → q,¬p → r, etc. for all atomic formulas
q, r, .... The revision B ∗¬p no longer entails these implications. However, since
these implications are “only” consequences of B, not themselves basic beliefs,
retracting them is not retracting a basic belief. Thus B ∗ ¬p = {¬p} minimizes
retractions of the agent’s basic beliefs even though it retracts many of the logical
consequences of the agent’s basic beliefs.
What are the characteristic properties of Pareto-minimal base revisions?

It turns out that a version of a proposal originally due to Levi amounts to
necessary and sufficient conditions for a base revision to be Pareto-minimal and
consistent. The proposal is to think of a Pareto-minimal revision of a belief base
B on new information p as proceeding in two steps: First, remove just enough
beliefs from B to obtain a belief base B0 that is consistent with p; then add
p to B0. Formally, we require that B0 be a belief base that is consistent with
p–thus B0 0 ¬p–and removes as few beliefs from B as possible. Hence I define
a retraction-minimal contraction of a belief base as follows.

Definition 12 Let B,B1 be two bases, and let p be a formula. Then B1 is a
retraction-minimal contraction from B on p⇐⇒

1. B1 ⊆ B, and

2. B1 6` p, and

3. there is no other base B2 such that B2 6` p and B1 retracts more from B
than B2 does.

Retraction-minimal contractions of a base B on new information p have a
simple characterization: They are exactly those subsets of B that cannot be
expanded without entailing p.

Lemma 13 Let B,B1 be two bases such that B1 ⊆ B, and let p be a formula.
Then B1 is a retraction-minimal contraction from B on p ⇐⇒ for all
formulas q, if B1 retracts q from B, it is the case that B1 ∪ {q} ` p.

Thus retraction-minimal contractions are those that belief revision theo-
rists refer to as “maxichoice contractions” [Gärdenfors 1988, Ch.4.2]. The Levi
identity says that minimal revisions of a belief set K given new information
p are the result of adding p after contracting K on ¬p (see [Gärdenfors 1988,
Ch.3.6]). The next theorem shows that the Levi identity for retraction-minimal
(maxichoice) contractions characterizes Pareto-minimal revisions of belief bases
that lead to consistent belief bases.

Theorem 14 Let B be a base and let p be a formula. Suppose that a revision
B ∗p contains p. Then B ∗p is a Pareto-minimal consistent change from B that
incorporates p⇐⇒ there is a retraction-minimal contraction B0 from B on ¬p
such that B ∗ p = B0 ∪ {p}.
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Alchourrón and Makinson conjectured that “when applied to bases that are
irredundant, choice contraction and revision functions serve as good formal rep-
resentations of the corresponding intuitive processes”[Alchourrón and Makinson 1982,
p.21]. Theorem 14 establishes a formal version of this conjecture, in which bases
need not be irredundant and Pareto-minimality takes the place of “intuition”.
In view of Theorem 14, it is not difficult to see that Pareto-minimal consis-

tent revisions of belief bases satisfy the AGM axioms K*1—K*5 (interpreted for
base revisions with ⊇ in place of `; see also [Alchourrón and Makinson 1982,
Part II]).12 The converse is not true, however: Pareto-minimality places more
constraints on the revision of belief bases than K*1—K*5, since AGM revisions
need not be the result of maxichoice contractions and hence may give up more
beliefs than Pareto-minimal revisions. On the other hand, Pareto-minimality
does not require compliance with the other AGM postulates (K*6—K*8). The
next section shows how to combine Pareto-minimality with any desired extra
constraints on belief revision.

8 A Generalized Definition of Pareto-Minimal
Belief Change

Belief revision theorists appeal to the principle of minimal belief change as well
as to general considerations of epistemic rationality to justify norms for belief re-
vision.13 For example, the requirement that an agent should not adopt inconsis-
tent beliefs (K*5) and the principle that logically equivalent information should
lead to the same revisions (K*6) appear to express general principles of ratio-
nal belief revision rather than means of minimizing the extent of belief change.
Since the smallest change is no change, if an agent happens to have inconsistent
beliefs, which trivially entails the new information, the minimal change of his
beliefs will be none; that is, the minimal revision of the inconsistent theory will
always be the inconsistent theory. K*5 however requires that an agent remedy
inconsistencies (the so-called “success postulate”; see [Arló Costa 1990] for a
critique of this postulate). So it seems that sometimes at least belief revision
theorists are willing to put general epistemic rationality before the aim of mini-
mizing the extent of belief change.14 Moreover, we saw in Section 7 that some of
the most interesting applications of the Pareto principle come from combining
it with rationality principles such as logical consistency. The next definition
12For K*2 I require that p ∈ B∗p. For K*5 we must assume that the underlying consequence

relation ` is consistent in the sense that ∅ 0 L; otherwise there is no consistent base. When
the new information p is inconsistent, there is no consistent revision on p; in that case I require
that B ∗ p is an inconsistent base in accordance with K*5.
13For example, Gärdenfors writes with reference to the AGM postulates that “these [be-

lief] changes are characterized by a number of rationality postulates” [Gärdenfors 1988, p.3],
emphasis Gärdenfors’. Or in another passage: “my main goal in this section is to delimit
the meaning of ‘minimal change’ by formulating some rationality postulates that apply to
revisions of belief sets” [Gärdenfors 1988, p.53].
14 [Rott 1998a] discusses an interpretation of the AGM framework in terms of the general

theory of rational choice.
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allows us to apply the Pareto Principle together with any rationality principles
of interest. Recall that Definition 9 derives from the Pareto principle a ternary
partial relation between belief bases “B1 is a greater change from B than B2”.

Definition 15 Let B,B1 be two bases, and let p be a formula. Let C be any
constraint relating B,B1 and p.15 Then B1 is a Pareto-minimal change from
B satisfying C ⇐⇒

1. B1 satisfies C, and

2. there is no base B2 satisfying C such that B1 is a greater change from B
than B2 is.

Of course we may define Pareto-minimal change given an arbitrary con-
straint for theories in just the same way by using Definition 3. Some examples
to illustrate Definition 15: In Definition 4 I took the constraint C to be “B1
must entail p”. Definition 10 is a special case of Definition 15 with the con-
straint “B1 must contain p and be consistent”. Considering theories, we may
also take the constraint C as “T1 satisfies the AGM postulates for revisions
of T on p, except for possibly K*3”. By arguments similar to those in Sec-
tion 4, we would then obtain K*3 as expressing the characteristic condition
of Pareto-minimal theory change. According to this interpretation, K*4–the
preservation principle–would be justified on grounds of general epistemic ratio-
nality, but–in contrast with K*3–not as a universal principle for minimizing
the extent of theory change.16 (Section 7 suggested a different interpretation of
the preservation principle as part of minimal revisions of belief bases.)
Definition 15 points to new applications of the Pareto principle. Here’s one:

Motivated by ideas of Frank Ramsey, Isaac Levi has suggested an analysis of
suppositional reasoning (“suppose that p”) in which an agent first, as it were,
clears his mind with respect to p, and then adds p to his “stock of beliefs”
[Levi 1996]. Formally, we may take this as the constraint that a change B1
from original beliefs B on p must neither entail p nor ¬p. An interesting open
question is what axioms of suppositional reasoning characterize Pareto-minimal
belief change satisfying this constraint.
We may ask the same question assuming that the agent directly adds the

supposition p to his beliefs. This leads to a familiar path that connects belief
revision postulates with axioms for conditionals via the so-called “Ramsey test”.
In the final part of this paper, I combine the Ramsey test with Pareto-minimal
theory change to derive principles for reasoning about conditionals.
15Formally, C is a ternary relation C(B,B0, p), where B,B0 are arbitrary bases and p is an

arbitrary formula; a base B0 satisfies C given a base B and formula p iff C(B,B0, p) holds.
16 [Gärdenfors 1988, Ch. 7.4] supports the preservation principle by citing the “criterion

of informational economy” and the fact that the principle is “strongly endorsed within the
Bayesian tradition”. [Levi 1988] too defends it as a principle of general epistemic rationality.
[Putnam 1963] refers to the principle as “tenacity” and [Kelly et al. 1995] label it “stub-
borness”; these papers ask whether the principle helps or hinders an agent in reliably ar-
riving at correct beliefs. In a nutshell, the answer is that the preservation principle does
not help but need not prevent a sufficiently careful agent from finding the truth. See also
[Martin and Osherson 1998].
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9 Axioms for Conditionals
It is well-known among philosophers that material implication does not capture
the meaning of many conditionals that we use in nonmathematical discourse, for
example conditionals that express causal connections or counterfactuals. One
reason for this is that ordinary conditionals typically are defeasible, whereas
material implication is not. That is, if p→ q, then p ∧ r → q, for any claim r;
but it seems to be quite consistent to assert that “if the match is struck, it will
light” at same time as “if the match is struck and it is wet, it will not light”
(to use a classic example from Nelson Goodman). Thus there is good reason to
add a conditional operator > to our formal language L; we read p > q as “if p,
then q”. From now on, assume that we have fixed a consequence relation Cn>
extended to the language L> with conditionals that satisfies the properties of
consequence relations specified in Section 2. For the remainder of the paper, `
denotes the entailment relation induced by Cn>.
How does the conditional > behave? Logicians have studied this ques-

tion in depth; for example, the well-known Lewis-Stalnaker approach specifies
truth-conditions for conditionals in terms of distances between possible worlds
[Stalnaker 1968, Lewis 1973]. This section considers the question: What is the
relationship between the conditionals that an agent accepts and the ways in
which she revises her beliefs? Formally, what connections are there between the
conditional > and the belief revision operator ∗? An interesting proposal is that
if an agent believes p > q, then upon learning p, the agent should accept q as
true. That is, if T ` p > q, then T ∗ p ` q. If we require the converse as well, we
obtain what has come to be called the Ramsey test : An agent should believe a
conditional p > q just in case after revising his beliefs on the assertion that p, the
agent believes q. The interpretation of the Ramsey test depends on how we view
conditionals. If we accept that conditionals have a meaning (truth-conditions)
independent of the Ramsey test–a la Lewis and Stalnaker–then we may think
of the Ramsey test as defining a kind of diachronic consistency, a coherence
requirement on how theory changes relate to beliefs about conditionals. More
ambitiously, we may view the Ramsey test or a similar connection between belief
revision and accepting conditionals as part of the meaning of the conditional >.
Or we might say that the Ramsey test applies to suppositional reasoning, rather
than actual updates. [Arló Costa 1998] and [Levi 1996] are recent treatments
of these issues. I don’t intend to take a stance on these questions, but leave the
mathematical results that follow open to philosophical interpretation.
Here is the formal definition of the Ramsey test.

Definition 16 (Gärdenfors) A belief revision system T = hT, ∗i is a set
of theories in a language L> with conditionals and a belief revision operator
∗ : T× L> → T such that T is closed under additions. That is, if T ∈ T and
p ∈ L>, then T ∪ {p} ∈ T.

Definition 17 A belief revision system T = hT, ∗i satisfies the Ramsey test
iff T ` p > q ⇔ T ∗ p ` q, for all theories T ∈ T, and formulas p, q ∈ L>.
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Consider a belief revision system hT, ∗i that satisfies the Ramsey test. Sup-
pose we place constraints on the belief revision operator ∗; in particular, suppose
we require that ∗ is a Pareto-minimal belief revision operator. Then are there
axioms governing the conditional > that are valid in hT, ∗i in the sense that all
theories in the system entail them? The next theorem establishes that there are
such axioms and what they are. Let’s first give a definition of what it is for a
formula to be valid in a belief revision system.

Definition 18 A formula p is valid in a belief revision system T = hT, ∗i
iff all theories T ∈ T entail p.

Now we are ready to establish which conditional axioms exactly characterize
Pareto-minimal theory change.

Theorem 19 Let T = hT,∗i be a belief revision system satisfying the Ramsey
test. Then ∗ is a Pareto-minimal belief revision operator ⇐⇒ T validates

1. p > p, and

2. (p > q)→ (p→ q), and

3. (p ∧ q)→ (p > q)

for all formulas p, q, r.

The formal proof is in Section 12. The arguments proceed along lines familiar
from similar results (cf. [Arló Costa 1995], [Gärdenfors 1988, Ch.7]).

10 Comparison with Other Axiom Systems for
Conditionals

Logicians have proposed many axioms systems for the conditional >. I will
compare the three axioms from Theorem 19 with Lewis’ axiomatization of
counterfactuals, his V C system. The three conditional axioms for minimal
theory revision are part of Lewis’ system. In addition, Lewis has the principle
(¬p > p) → (q > p). This principle is valid for Pareto-minimal theory changes
that lead into contradiction only from contradiction, or when an inconsistent
new assertion has to be incorporated (cf. [Arló Costa 1990]). The aim of avoid-
ing contradictions provides a rationale for adding this consistency requirement
to Pareto-minimal theory change, along the lines of Section 8.
V C features one more axiom schema: (p > ¬q)∨ (((p∧ q) > r) ≡ (p > (q →

r)). This axiom may fail to be valid in a belief revision system that satisfies the
Ramsey test with a Pareto-minimal belief revision operator.
I shall briefly compare the approach to conditionals that comes from con-

necting Pareto-minimal belief revision and the Ramsey test to similar results
in the literature. Gärdenfors shows that K*4, the preservation principle, is in-
compatible with the Ramsey test; for the details see [Gärdenfors 1988, Ch.7,
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Sec. 4] (cf. also [Arló Costa 1998]). For that reason, when he investigates what
conditional axioms correspond to the AGM postulates for belief revision, he
replaces K*4 by the following weaker principle K*4w: If T ` p and T is consis-
tent, then T ∗p ` T . A Pareto-minimal belief revision operator ∗ satisfies K*4w,
since T ∗ p = T whenever T ` p by Theorem 5, Clause 3. If we want to use
the Ramsey test to connect belief revision postulates with acceptance criteria
for conditionals, Pareto-minimality has a clear advantage over the AGM ax-
ioms: The characteristic conditions for Pareto-minimal theory change translate
directly into interesting axioms for conditionals, whereas the AGM approach
has to drop the preservation principle K*4–the very postulate that is the main
difference between AGM and Pareto-minimal theory change.17

Gärdenfors defines validity in a belief revision system differently from my
Definition 18. His definition is as follows. First, a formula p is satisfiable in a
belief revision system T = hT, ∗i iff there is some consistent theory T ∈ T
such that T entails p. Second, a formula p is negatively valid in a belief
revision system T = hT, ∗i iff ¬p is not satisfiable in T . (I take the term
“negative validity” from [Arló Costa 1995].)
Validity in my sense implies negative validity. For let T = hT, ∗i be a belief

revision system, and suppose that p is valid in T in the sense of Definition 18.
Then any theory T ∈ T that entails ¬p also entails p and hence is not consistent.
So ¬p is unsatisfiable in T . Conversely, suppose that p is negatively valid in
T = hT, ∗i. Let T be any theory in T , and suppose for reductio that T does not
entail p. Then by Consistency, T ∪ {¬p} is consistent. Since T is closed under
expansions, T ∪ {¬p} ∈ T, and clearly T ∪ {¬p} entails ¬p. So ¬p is satisfiable
in T and hence p is not negatively valid, contrary to hypothesis. This shows
that a sentence p is negatively valid in a belief revision system T iff p is valid
in the sense of Definition 18.

11 Conclusion
What is minimal belief change? This paper applied fundamental concepts from
decision theory to give a principled answer to this question. The main idea is
to treat both adding and retracting beliefs as a kind of “cost” to be avoided in
minimal belief revision. The Pareto principle says that we ought to eliminate
options that do worse in some respects without doing better in others. Applying
this norm to belief change, I defined a belief revision to be Pareto-minimal if
there is no alternative revision that adds fewer beliefs without retracting more,
or that retracts fewer beliefs without adding more. This definition raises a pre-
cise mathematical question: What are necessary and sufficient conditions for a
theory revision to be Pareto-minimal? The answer consists of three theory revi-
sion postulates that characterize Pareto-minimal theory changes incorporating
new information. First, the revision must entail the new information. Second,
17However, there are proposals to reconcile preservation and the Ramsey test by abandon-

ing the idea that conditional sentences are parts of an agent’s beliefs in the same way that
nonconditional sentences are [Arló Costa 1995], [Arló Costa 1998], [Levi 1988].
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the revision must follow from the conjunction of the new information and the
previous theory. Third, if the previous theory already entails the new infor-
mation, no change occurs, since the smallest possible change from the previous
theory is the previous theory itself.
Thus the main difference between Pareto-minimal theory change and the

customary AGM postulates arises when the new information neither contradicts
nor is entailed by the current theory. In this case, the AGM postulate K*4–
the preservation principle–stipulates that the revised theory should entail the
conjunction of the new information and the agent’s current theory. Thus the
AGM axioms select the logically strongest Pareto-minimal theory revision, the
only one that retracts no beliefs. Pareto-minimality by contrast encompasses
the continuum of logical strength between the AGM update as the strongest
Pareto-minimal revision and the bare consequences of the new information as
the weakest Pareto-minimal revision. From this point of view, the preservation
principle appears not as an aspect of minimal theory change, but (arguably) as
a general principle of epistemic rationality (perhaps related to “informational
economy”).
We found another interpretation of the preservation principle by considering

the consequences of the Pareto principle for revising belief bases–sets of sen-
tences that represent an agent’s “basic beliefs” and that need not be closed under
logical consequence. If we apply the Pareto principle to changes in the agent’s
basic beliefs (discounting changes in the consequences of his basic beliefs), then
it can be shown that the preservation principle is part of Pareto-minimal changes
in basic beliefs. The well-known Levi identity provides a full characterization of
Pareto-minimal base revisions: Pareto-minimal base revisions are exactly those
that result from first retracting just enough basic beliefs to make the current
basic beliefs consistent with the new information, and then adding the new in-
formation. Since the AGM axioms countenance belief revisions that retract
more beliefs than are necessary to make the new information consistent with
the current beliefs, it follows that AGM revisions may give up more basic beliefs
than Pareto-minimal revisions do.
The full set of AGM axioms contains some that are not necessarily part of

Pareto-minimal belief revisions (K*6—K*8). I showed how to generalize the def-
inition of Pareto-minimal belief revisions to accommodate any extra constraints
on belief change that we may wish to impose. This generalized definition sug-
gests further applications of the Pareto principle by considering constraints other
than those explored in this paper (for example, constraints motivated by prin-
ciples for suppositional reasoning such as those from [Levi 1996]).
The so-called Ramsey test connects principles for belief revision with axioms

for reasoning about conditionals (“if p, then q” statements). We saw that the
principles of Pareto-minimal theory change correspond exactly to three well-
known axioms for counterfactuals (which are part of Lewis’ and Stalnaker’s
systems): A belief revision system that satisfies the Ramsey test validates these
axioms if and only if the system has a Pareto-minimal belief revision operator.
Thus there is a tight connection between Pareto-minimal theory change and
prominent axioms for conditionals. As part of a theory of acceptance condi-
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tions for conditionals, Pareto-minimal theory change is immune to the triviality
results that pose a problem for applying the AGM account of minimal theory
change to the logic of conditionals.
The connections between belief revision, conditionals and nonmonotonic rea-

soning form one of the most active and intriguing areas of research in philo-
sophical logic. The results in this paper show that Pareto-minimality provides
a fruitful and principled decision-theoretic foundation for postulates guiding
minimal belief revision.
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12 Proofs
Theorem 5 Let T be a theory and let p be a formula. A theory revision T ∗ p
is a Pareto-minimal change from T that incorporates p⇐⇒

1. T ∗ p ` p, and

2. T ∪ {p} ` T ∗ p, and

3. if T ` p, then T ∗ p = T .

Proof. (⇒) Part 1: Immediate from Definition 4.
Part 2: I show the contrapositive. Suppose that T ∪{p} 6` T ∗ p. Then there

is a formula q in T ∗p such that T ∪{p} 6` q. So (a) T 6` q by Monotonicity. Now
consider T 0 = (T ∗ p)∩Cn(T ∪ {p}∪ {¬q}). First I note that T 0 is closed under
deductive consequence. For let r ∈ Cn((T ∗ p) ∩ Cn(T ∪ {p} ∪ {¬q})). Then
by Monotonicity, r ∈ Cn(T ∗ p) and r ∈ Cn(Cn(T ∪ {p}∪ {¬q})). We assumed
that T ∗ p is closed under consequence, and Iteration implies that Cn(Cn(T ∪
{p}∪ {¬q})) = Cn(T ∪ {p}∪ {¬q}); thus r ∈ T ∗ p ∩ Cn(T ∪ {p}∪ {¬q}). This
shows that Cn(T 0) = T 0.
Next, note that (b) T 0 6` q because Cn(T ∪ {p} ∪ {¬q}) 6` q by Consistency

(applied to T ∪ {p}) and Iteration; thus from Monotonicity and the fact that
T 0 ⊆ Cn(T ∪ {p} ∪ {¬q}), it follows that T 0 6` q. Moreover, we have from
Monotonicity and the fact that T 0 ⊆ T ∗ p as well that (c) if T 0 adds a formula
to T , so does T ∗ p. From (a), (b) and (c) it follows that (d) T ∗ p adds more
formulas to T than T 0.
Now I show that (e) T 0 retracts from T exactly the formulas that T ∗p retracts

from T . Monotonicity implies immediately that if T ∗ p retracts a formula from
T , so does T 0. For the converse, suppose that T 0 retracts a formula r from T .
Since Cn(T ∪ {p} ∪ {¬q}) ` T , this implies that r /∈ (T ∗ p). And that means
that T ∗ p retracts r from T as well.
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Finally, we have that (f) T 0 ` p, since T ∗ p ` p by Part 1 and clearly
Cn(T ∪ {p} ∪ {¬q}) ` p.
Together, (a)—(f) establish that T 0 incorporates p and T ∗ p is a greater

change from T than T 0 is. Hence T ∗ p is not a Pareto-minimal change.
Part 3: Immediate, since every theory other than T retracts or adds more

formulas to T than T itself does.
(⇐) Suppose that T ∗ p satisfies conditions 1, 2 and 3. Then the claim is

immediate if T ` p and T ∗ p = T ; suppose that T 6` p. I show that T ∗ p is not
a greater change from T than any other change T 0 that incorporates p.
First, suppose that T ∗ p retracts a formula q from T but T 0 does not, such

that T 0 ` q. Then T 0 ` (p ∧ q) by Conjunction, whereas T ∗ p 6` (p ∧ q) by
Conjunction as well. Since we supposed that T 6` p, it follows that T 6` (p ∧ q)
by Conjunction once more. So T 0 adds a formula to T–namely p∧q–that T ∗p
does not add to T , and hence T ∗ p is not a greater change from T than T 0 is.
(This is the situation of the cognitive scientist discussed in Section 3.)
Second, suppose that T ∗ p adds a formula q to T , but T 0 6` q. Condition

2 asserts that T ∪ {p} ` T ∗ p and hence Cn(T ∪ {p}) ` q. By Deduction, we
have that (a) T ` p→ q. Moreover, Implication implies that (b) T ∗ p ` p→ q.
Also, (c) T 0 6` p→ q. For suppose that on the contrary, T 0 ` p→ q. Then since
T 0 ` p, it follows from Modus Ponens that T 0 ` q, contrary to assumption. From
(a), (b) and (c) we have that T 0 retracts a formula from T–namely p→ q–that
T ∗ p does not retract from T . Thus T ∗ p is not a greater change from T than
T 0 is.
These arguments establish that if T ∗ p satisfies conditions 2 and 3, then

there is no theory T 0 incorporating p such that T ∗ p is a greater change from T
than T 0 is. From Condition 1 it follows that T ∗ p is a Pareto-minimal change
from T that incorporates p.

Proposition 11 Let B be a base and let p be a formula. Then B ∗ p is a
Pareto-minimal consistent change from B that incorporates p ⇐⇒ B ∗ p is a
retraction-minimal consistent change from B that incorporates p and minimizes
additions.

Proof. (⇐) Immediate since all retraction-minimal consistent changes that
minimize additions are Pareto-minimal consistent changes. (⇒) Suppose that
B ∗ p is a Pareto-minimal consistent change from B. Suppose for reductio that
B ∗ p adds a sentence q 6= p to B; then B ∗ p− {q} adds less to B and does not
retract anything from B that B ∗ p does not retract. So B ∗ p is not Pareto-
minimal, contrary to supposition. This contradiction shows that B ∗ p does
not add anything to B except possibly p. Hence B ∗ p minimizes additions.
For retraction-minimality, suppose for reductio that there is a consistent base
B2 containing p such that B ∗ p retracts more from B than B2 does. Let
q ∈ (B2 ∩ B) − B ∗ p be a sentence that B ∗ p retracts from B but B2 does
not. Consider B0 = (B2 ∩B)∪ {p}. Since B2 is consistent and contains p, B0 is
consistent (by Monotonicity) and contains p. Clearly B0 does not add anything
to B other than p. Moreover, for all sentences r, if B0 retracts r from B, so
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does B2. So if B0 retracts r from B, so does B ∗ p. Finally, B0 does not retract
q from B but B ∗ p does. So B ∗ p is a greater change from B than B0 contrary
to the supposition that B ∗ p is a Pareto-minimal consistent change from B
that incorporates p. This contradiction shows that B ∗p is a retraction-minimal
consistent change from B that incorporates p and minimizes additions.

Lemma 13 Let B,B1 be two bases such that B1 ⊆ B, and let p be a formula
such that B1 0 p. Then B1 is a retraction-minimal contraction from B on
p⇐⇒ for all formulas q, if B1 retracts q from B, it is the case that B1∪{q} ` p.

Proof. (⇒) Otherwise B1 ∪ {q} doesn’t entail p and retracts less from B
than B1. (⇐) Assume the right-hand side, and suppose for reductio that there
is a contraction B2 ⊆ B that retracts less from B than B1 does, and that B2 6` p.
Let q ∈ B2 − B1. Then by hypothesis, B1 ∪ {q} ` p. Hence by Monotonicity,
B2 6⊇ B1 since q ∈ B2. Let r be any sentence in B1 −B2. Since B1 is a subset
of B, r is in B and hence B1 does not retract more than B2 does.

Theorem 14 Let B be a base and let p be a formula. Suppose that a revision
B ∗p contains p. Then B ∗p is a Pareto-minimal consistent change from B that
incorporates p⇐⇒ there is a retraction-minimal contraction B0 from B on ¬p
such that B ∗ p = B0 ∪ {p}.

Proof. (⇒) Since by Proposition 11, Pareto-minimal changes minimize
additions, we have that B ∗ p ⊆ B ∪ {p}.
Case 1: p ∈ B. Then we have that B ∗ p ⊆ B ∪ {p} = B. Now suppose for

reductio that B ∗p is not a retraction-minimal contraction on ¬p from B. Then
by Lemma 13 there is a sentence q ∈ B−B ∗p such that B ∗p∪{q} 6` ¬p. So by
Consistency, B ∗p∪{q} is consistent, contains p, retracts less from B than B ∗p,
and does not add anything to B. This contradicts the assumption that B ∗ p is
a Pareto-minimal consistent change from B on p, and so B ∗ p is a retraction-
minimal contraction on ¬p from B. Since B ∗ p contains p, B ∗ p ∪ {p} = B ∗ p
and so B ∗ p = B0 witnesses the claim of the theorem.
Case 2: B does not contain p. Let B0 = B ∗ p− {p}. Since B ∗ p ⊆ B ∪ {p},

we have that B ∗ p− {p} ⊆ B. Suppose for reductio that B0 is not a retraction-
minimal contraction on ¬p from B. Then by Lemma 13 there is a sentence
q ∈ B but not in B0 such that B0 ∪ {q} 6` ¬p. So by Consistency, B0 ∪ {q, p}
is consistent, contains p, retracts less from B than B ∗ p, and does not add any
more. This contradicts the assumption that B∗p is a Pareto-minimal consistent
change from B on p, and so B0 is a retraction-minimal consistent contraction
on ¬p from B. Since B0 ∪ {p} = (B ∗ p − {p}) ∪ {p} = B ∗ p, it follows that
B0 = B ∗ p− {p} witnesses the claim of the theorem.
So in either case there is a retraction-minimal contraction B0 on ¬p from B

such that B ∗ p = B0 ∪ {p}.
(⇐) Let B0 be a retraction-minimal contraction from B on ¬p such that

B ∗ p = B0 ∪ {p}. Let B1 be any other consistent base containing p. I show
that B ∗ p is not a greater change from B than B1 is. Since B0 is a contraction
of B, it follows that (a) the only sentence that B ∗ p might add to B is p (i.e.,
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B ∗ p ⊆ B ∪ {p}), and B1 contains p as well. Hence B1 does not add less to B
than B ∗ p. So suppose for reductio that (b) B1 retracts less from B than B ∗ p
and that (c) if B1 adds a sentence q to B, then so does B ∗ p.
Given (a), from (c) follows (d): that B1 ⊆ B ∪ {p}. From (b) we have that

(e) B1 retracts less from B than B0 since B0 ⊆ B ∗p. Since B1 is consistent and
contains p, it follows by Inconsistency that (f) B1 6` ¬p.
Case 1: p ∈ B. Then B∪{p} = B, and so by (d) and (f) B1 is a contraction

of B on ¬p. By (e), B1 retracts less from B than B0 does, contrary to the
assumption that B0 is a retraction-minimal contraction from B on ¬p.
Case 2: p /∈ B. Then B1 − {p} retracts from B exactly those sentences

that B1 retracts. Hence by (e) B1 − {p} retracts less from B than B0 does.
Furthermore, it follows from (f) (given Monotonicity) and (d) that B1 − {p}
is a contraction of B on ¬p. This contradicts the assumption that B0 is a
retraction-minimal consistent contraction from B on ¬p.
Thus in either case assuming that B ∗ p is a greater change from B than B1

leads to a contradiction. Since B1 was chosen as an arbitrary consistent base
containing p, this establishes that B ∗ p is a Pareto-minimal consistent base
revision from B.

Theorem 19 Let T = hT,∗i be a belief revision system satisfying the Ramsey
test. Then ∗ is a Pareto-minimal belief revision operator ⇐⇒ T validates

1. p > p, and

2. (p > q)→ (p→ q), and

3. (p ∧ q)→ (p > q)

for all formulas p, q, r.

Proof. (⇒) Let T ∈ T be an arbitrary theory in the belief revision system,
and let p, q, r ∈ L> be arbitrary formulas.
Axiom 1: Since ∗ is a Pareto-minimal revision operator, we have that T ∗p `

p. Since T satisfies the Ramsey test, this implies that T ` p > p. Hence T
validates p > p for all formulas p ∈ L.
Axiom 2: Let T 0 = Cn(T ∪ {p > q}). By the Ramsey Test, T 0 ∗ p ` q. Since

∗ is a Pareto-minimal change revision operator, we have that T 0 ∪ {p} ` T 0 ∗ p.
Hence T 0 ∪ {p} ` q. Thus T 0 ` p → q by Deduction. Again by Deduction, it
follows that T ` (p > q) → (p → q). Hence T validates (p > q) → (p → q) for
all formulas p, q ∈ L.
Axiom 3: Let T 0 = Cn(T ∪ {p∧ q}). Then T 0 ∗ p = T 0 since by Conjunction

T 0 entails p and ∗ is a Pareto-minimal change revision operator. Since again by
Conjunction T 0 entails q, it follows from the Ramsey Test that T 0 ` p > q. By
Deduction, we have that T ` (p ∧ q) → (p > q). Thus T validates (p ∧ q) →
(p > q) for all formulas p, q, r.
(⇐) Suppose that T validates Axioms 1—3 for all formulas p, q, r. I show

that ∗ is a Pareto-minimal belief revision operator. Let T ∈ T be an arbitrary
theory.

28



Step 1: Since T ` p > p, the Ramsey Test implies that T ∗ p ` p, for any
formula p.
Step 2: Let q ∈ T ∗p be any formula in the revision of T by p; so by Ramsey

Test, T ` p > q. I show that T ∪ {p} ` q. By Axiom 2, T ` (p > q)→ (p→ q).
By Modus Ponens, this implies that T ` p → q. By Deduction, it follows that
T ∪ {p} ` q, as required. Since this holds for any formula q, we have for all
revisions T ∗ p that T ∪ {p} ` T ∗ p, for all formulas p.
Step 3: Suppose that T ` p for some formula p.
I show that T ∗ p ` T . Let q ∈ T . Then T ` (p ∧ q) by Conjunction, and

T ` (p ∧ q)→ (p > q) by Axiom 3. By Modus Ponens, T ` p > q. By Ramsey
test, T ∗ p ` q. So T ∗ p ` T . From Step 2 we have that T = T ∪ {p} ` T ∗ p.
All together, this implies that T ∗ p = T whenever T ` p.
Steps 1,2 and 3 establish that ∗ is a Pareto-minimal belief revision operator.
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