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Abstract

We describe a new method for extending, or upgrading, a
Bayesian network (BN) score designed for i.i.d. data to multi-
relational data. The method defines a gain function that mea-
sures the difference in data fit between two structures. Our
upgrade method preserves consistency, in the sense that if the
i.i.d. score is consistent for i.i.d. data, the upgraded version is
consistent for multi-relational data. Empirical evaluation on
six benchmark relational databases shows that our gain func-
tion method finds a set of informative edges that strikes a bal-
ance between overly sparse and overly dense graph structures.
A surprising negative finding is that for log-linear relational
BN likelihood scores, we could not identify a consistency-
preserving model score that is a function of a single model
only. Theoretical analysis shows that the reason for the dif-
ficulty is that in log-linear models, the number of potential
instantiations can differ exponentially for different features.
keywords: Model Selection, Statistical-Relational Learning,
Bayesian Networks

Introduction
Learning Bayesian networks for relational data is a ma-
jor approach to statistical-relational learning (Getoor and
Taskar 2007). The most widely used approach to Bayesian
network structure learning is search+score, which aims to
find a strucure that optimizes a model selection score for
a given dataset. Independently distributed data represented
in a single table can be viewed as a special limiting case
of multi-relational data with no relationships (Nickel et
al. 2015; Neville and Jensen 2007). Extending a learn-
ing method defined for i.i.d. data to multi-relational data
is called upgrading the method (Laer and de Raedt 2001).
In this paper we propose a general definition for upgrading
Bayesian model selection scores for i.i.d. data to relational
data. Our upgrade method satisfies two desiderata.

Generalization The i.i.d. model comparison is a special
case of the upgraded multi-relational model compari-
son (Laer and de Raedt 2001; Knobbe 2006).

Preserving Consistency If the i.i.d. model comparison is
consistent for i.i.d. data, the upgraded comparison is con-
sistent for multi-relational data.
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Consistency is a widely applied theoretical criterion for
model selection (Williams 2001) for i.i.d. data, and increas-
ingly for relational data as well (Sakai and Yamanishi 2013;
Xiang and Neville 2011; Shalizi and Rinaldo 2013). In-
formally, it means that as the amount of available data in-
creases, the method selects a correct model structure that
matches the true data generating process.

Approach. We focus on log-linear likelihood scores,
which are weighted sums of sufficient statistics (Sutton and
McCallum 2007). For Bayesian networks, the sufficient
statistics are the dataset instantiation counts/frequencies of
the possible child-parent configurations (the features). A
surprising negative result for is that we have not been able to
identify an upgraded score function that achieves our three
criteria by assigning a score to a single relational model. In-
tuitively, the cause of non-consistency is the ill-conditioning
of log-linear models (Lowd and Domingos 2007): the num-
ber of potential instantiations can differ exponentially for
different features. Our proposed solution is to use a rela-
tional gain function that first rescales the scores for different
structuresG,G′, to balance the number of potential instanti-
ations, and then compares the rescaled scores. Experiments
indicate that the gain functions select informative edges that
provide a good statistical fit to the input data.

Contributions. Our main contributions may be summa-
rized as follows.

1. A novel method for upgrading an i.i.d. model structure
score to relational data. The method upgrades the score
by defining a gain function that compares the relative fit
of two graph structures on relational data.

2. A consistency preservation theorem: if the original score
is consistent for i.i.d. data, the upgraded gain function
is consistent for relational data. To our knowledge this
is the first consistency result for multi-relational structure
learning.

Paper Organization. We review background on Bayesian
networks and relational data. Then we define our rescal-
ing method for upgrading model selection scores, as well as
baseline upgrade methods for comparison. Theoretical anal-
ysis demonstrates the consistency of the rescaling method,



and the non-consistency of the baseline scores. Empiri-
cal evaluation compares the different Bayesian networks se-
lected with respect to data fit.

Related Work
BN Model Selection. Model selection criteria for BN
learning are a classic topic in machine learning; for re-
view see (Bouckaert 1995). Our work extends the theoret-
ical analysis of BN learning to multi-relational data. For
relational data, a likelihood function requires aggregating
model probabilities for multiple instances of the template
BN (Kimmig, Mihalkova, and Getoor 2014). A number of
different aggregation mechanisms have been proposed, re-
sulting in different BN likelihood functions.

Likelihood based on Random Instantiations. The most re-
cent proposal is the random selection pseudo log-likelihood
(Schulte 2011). The random selection log-likelihood score
is defined as the expected log-likelihood from a random
grounding. The frequency log-likelihood of Table 2 that we
utilize in this paper is a closed form for the random selection
log-likelihood (Schulte 2011, Prop.4.1).

Likelihood based on Complete Instantiations. This
type of likelihood is based on unrolling or grounding the
BN (Neville and Jensen 2007; Poole 2003). An infer-
ence graph contains all possible instances of edges in the
first-order template, obtained by replacing first-order vari-
ables with constants. The inference model defines a con-
ditional probability P (Xij |PaGij), where Xij denotes the
j-th grounding of node i in the template BN. This condi-
tional probability aggregates the information from the mul-
tiple parent instances of the ground node Xij . There are
two main approaches for defining the conditional probability
model P (Xij |PaGij), depending on how multiple instances
of the same parent configuration are included (Natarajan et
al. 2008). Using (1) aggregate functions (Getoor et al. 2007)
and (2) combining rules (Kersting and De Raedt 2007).
Model selection scores have been defined for both aggrega-
tors and combining rules. To our knowledge, the consistency
of these model selection scores has not been investigated.
An open problem with the complete instantiation approach
is that the ground inference graph may contain cycles even
if the template BN structure does not (Lowd and Domingos
2007).

Previous application of the Learn-and-Join algorithm
(Schulte and Khosravi 2012) uses a BN learner for i.i.d.
data as a subroutine for learning a first-order BN. While this
method upgrades BN learning algorithms, it does not up-
grade BN objective functions.

Markov Logic Model Selection. Model selection scores
have been researched for Markov Logic Networks (MLNs).
An MLN can be viewed as a template model for an
undirected graph. Because computing the partition func-
tion is generally intractable, Markov structure learning often
optimizes the pseudo log-likelihood (Lowd and Domingos
2007; Kok and Domingos 2005). This is the sum of the log-
conditional probabilities of each ground node value, given
the values of all other ground nodes. Similar to our normal-

ized log-likelihood scores below, the weighted pseudo log-
likelihood (WPLL) normalizes the pseudo log-likelihood
counts of different target nodes Xij by the total number γi
of the groundings of template node Xi. Each weight is pe-
nalized with a Gaussian shrinkage prior. The closest coun-
terpart in our experiments is the weightedAIC score below.

Background and Notation
While we introduce no new terminology, in some cases the
same concept has been given different names by different
communities. In that case we employ the name that is most
suggestive for our purposes. We use boldface to denote sets
and lists of objects.

Bayesian Networks
A Bayesian Network (BN) structure is a directed acyclic
graph G (DAG) whose nodes comprise a set of random vari-
ables (Pearl 1988). Depending on context, we interchange-
ably refer to the nodes and (random) variables of a BN. A
Bayesian network B is a structure G together with a set of
parameters. The parameters of a Bayesian network specify
the distribution of a child node given an assignment of val-
ues to its parent node. For an assignment of values to its
nodes, a BN defines the joint probability as the product of
the conditional probability of the child node value given its
parent values, for each child node in the network, as follows.

lnPB(X = x) =

n∑
i=1

lnPB(Xi = xi|PaGi = paGi ) (1)

where xi resp. paGi is the assignment of values to node
Xi resp. the parents of Xi determined by the assignment x.

Example. Figure 1 shows an example of a Bayesian net-
work and associated conditional probabilities.

Figure 1: Example Bayesian networks. The type of popula-
tion variables is shown as in a plate model. Left: A single-
node structureG. Right: An expanded structureG+. Param-
eter estimates are frequencies computed from the Movie-
Lens database. The rating value is n/a (for “not applicable”)
if and only if the user has not rated the movie (cf. (Russell
and Norvig 2010)) .



Figure 2: An example relational dataset/database. The ex-
ample follows the closed-world convention: if a relationship
between two individuals is not listed, it does not obtain.

Relational Data
We adopt a function-based formalism for combining logical
and statistical concepts (Poole 2003; Kimmig, Mihalkova,
and Getoor 2014). Table 1 compares statistical concepts for
relational and for i.i.d. data.

A multi-relational model is typically a multi-population
model. A population is a set of individuals of the same
type (e.g., a set of Actors , a set of Movies). Individu-
als are denoted by lower-case constants (e.g., brad pitt and
braveheart). A k-ary functor, denoted f, f ′ etc., maps a tu-
ple of k individuals to a value. Propositional or i.i.d. data are
represented by unary (k = 1) functors that return the value
of an attribute (column) for each individual (row) from a sin-
gle population (Nickel et al. 2015). Binary functors can be
represented as matrices, k > 2-ary functors as tensors of or-
der k. Functors are typed, i.e. their arguments are restricted
to appropriate types. Each functor has a set of values (con-
stants) called the domain of the functor. Like (Poole 2003),
we assume that (1) the domain of all functors is finite, and
(2) that functor values are disjoint from individuals.

Figure 2 provides an example of a toy database. A (com-
plete) relational dataset or database D, specifies:

1. A finite sample population I1, I2 . . ., one for each type.
Each sample size is denoted by N [Ii;D].

2. The values of each functor, for each input tuple of ob-
served sample individuals of the appropriate type.

First-Order Bayesian Networks
A population variable ranges over a population, and is de-
noted in upper case such as Actor ,Movie,A,B. A (func-
tional) term is of the form f(τ1, . . . , τk) where each τi is
a population variable or an individual of the appropriate
type. A term is ground if it contains no first-order vari-
ables; otherwise it is a first-order term. A first-order ran-
dom variable (FORV) is a first-order term (Wang et al. 2008;
Kimmig, Mihalkova, and Getoor 2014). FORV examples
are gender(Actor) and AppearsIn(Actor ,Movie). When
the special syntactic structure of a FORV is not important,
we use the traditional random variable notation like X,Y .1
A FORV can be viewed as a template, instantiated with indi-
vidual constants, much like an index in a plate model (Kim-

1Unfortunately the tradition in statistics clashes with the equally
strong tradition in logic of using X,Y for population variables.

mig, Mihalkova, and Getoor 2014); see Figure 1. An in-
stantiation or grounding for a list of FORVs simultaneously
replaces each population variable in the list by a constant.
The number of possible groundings of a joint assignment
is denoted as N [X = x;D]. The number of satisfying
groundings of a joint assignment in database D is denoted
by n [X = x;D]. The database frequency (Halpern 1990;
Schulte 2011) is the number of satisfying instances over the
number of possible instances:

PD(X ≡ x) =
n [X = x;D]

N [X = x;D]
. (2)

A first-order Bayesian network (FOB) (Wang et al. 2008),
aka Parametrized BN (Kimmig, Mihalkova, and Getoor
2014), is a Bayesian network whose nodes are first-order
terms. Following Halpern’s well-known random selection
semantics for probabilistic logic, a FOB can be viewed as a
model of database frequencies (Schulte et al. 2014), that is,
as a Statistical-Relational Model (SRM) in the terminology
of (Getoor 2001). The basic idea is to view a population
variable as a random selection of individuals from its do-
main. FORVs then denote functions of random variables,
hence are themselves random variables. The joint distribu-
tion represented in an SRM via Equation (1) can be com-
pared to the database distribution defined in Equation (2) to
quantify the data fit of the model.

Relational Model Comparison
We define the relational model comparison scores that we
study in this paper. A score S(G,D) measures how well
a DAG G fits a database D (Chickering 2003). A gain
function D(G,G′,D) measures how much an alternative
structure G′ improves a current structure G. For every
score S, there is an associated gain function defined by
∆S(G,G′,D) = S(G′,D) − S(G,D). A score function
is decomposable if it can be written as a sum of local scores
s, each of which is a function only of one node and its par-
ents. Similarly, a gain function is decomposable if the im-
provement can be written as a sum of local improvements δ.
Many structure search algorithms consider adding the addi-
tion or deletion of a single edge at a time (Chickering 2003).
Let X+ → Xi be an edge not contained in G, and let G+

be the graph that adds the edge to G. In that case we sim-
plify the notation further by writing the local gain only as a
function of the previous parents and the new parent X+.

We consider upgrading an i.i.d. score of the form (log-
likelihood of data under model) - (penalty = function of
number of parameters, sample size). We first discuss up-
grading the log-likelihood term.

Relational Model Likelihood Scores
We focus on log-linear likelihood scores, whose form is
similar to the log-linear likelihood of Markov Logic Net-
works (Schulte 2011). A log-linear likelihood score is a fac-
tor product that does not necessarily sum to 1. Log-linearity
has the following advantages (Schulte 2011). (1) General-
ization: The mathematical form is very close to the i.i.d. log-
likelihood function for Bayesian networks. (2) Tractability:



Table 1: Statistical concepts for relational vs. i.i.d. data. With a single population and unary functors only, the relational
concepts reduce to the i.i.d. concepts.

Representation Population Instances Sample Size Empirical Frequency
I.i.d Data Single Table Single Rows Single N Sample Frequency

Relational Data Multiple Tables Multiple Groundings Multiple N , one for each population Database Frequency

Table 2: Relational Local (Pseudo) Log-likelihood Scores.

Name Symbol Definition

Count L(Xi,PaGi ,D)
∑

j

∑
k nG

ijk(D) · log2

(
nG
ijk(D)

nG
ij(D)

)
Frequency L(Xi,PaGi ,D) 1/nG

i (D)× L(Xi,PaGi ,D)

The score is maximized by the empirical conditional fre-
quencies, as in the i.i.d. case. It can therefore be computed
in closed form, given the sufficient statistics in the data. (3)
Autocorrelation: The score is well-defined even when the
data exhibit cyclic dependencies.

We adopt standard notation for BN sufficient statis-
tics (Heckerman 1998). Let Xi = xik,PaGi = paGij be
the assignment that sets node/FORV i to its k-th value, and
its parents to their j-th possible configuration. We associate
the following concepts with the ijk assignment.

• nG
ijk(D) ≡ n

[
Xi = xik,PaGi = paGij ;D

]
is the number

of groundings that satisfy the ijk assignment.
• nG

ij(D) ≡
∑

k nG
ijk(D) is the number of groundings that

satisfy the j-th parent assignment.
• nG

i (D) ≡
∑

j

∑
k nG

ijk(D) is the number of possible
groundings for node i.

Since the quantity nG
i plays the same role as the sample size

in i.i.d. data, we refer to it as the local sample size for node
i. A key difference however, is that the local sample size
nG
i depends on both the data and the graph structure (Lowd

and Domingos 2007). In contrast, the global sample size n
in i.i.d. data is the same for all nodes and for all graphs.

Table 2 gives the formulas for two previously proposed
relational log-likelihood scores that we consider in this pa-
per. The count log-likelihood has the same form as the local
log-likelihood for i.i.d. data, but replaces counts in a single
data table by counts in a database. The frequency likeli-
hood (Schulte 2011) normalizes the count score by the local
sample size (cf. (Xiang and Neville 2011)). This is equiva-
lent to replacing counts in a single data table by frequencies
in a database. Table 3 illustrates the likelihood computa-
tions.

For i.i.d. data, and the frequency log-likelihood, adding
an edge to a graph G can only increase the log-likelihood
score. A big difference is that adding an edge can de-
crease the relational count log-likelihood. This occurs
when the new edge adds a population variable that was
not contained in the child node or the previous parents;

Family Configuration nijk nij ni nijk/ni CP L =
nijk · log2(CP )

L = L/ni

Age(User)=0 376 — 941 0.3996 0.3996 -497.6217 -0.5288
Age(User)=0,
Rating(User,Movie)=1 2524 4703 1582762 0.0016 0.5367 -2266.2224 -0.0014

Table 3: An edge Rating(User ,Movie) → Age(User)
expands a structure G to a larger structure G+. The CP-
parameter values are maximum likelihood estimates com-
puted from the Movielens database. The L and L columns
show the contributions of the family configuration in each
row (part of the sum for the total likelihood values).

see Figure 1. As Table 3 illustrates, adding the edge
Rating(User ,Movie) → Age(User) changes the local
sample size from the Users population (ni = 941) to the
Users × Movies population (ni = 1, 582, 762). The count
log-likelihood L therefore decreases simply because the
scale of the counts changes.

The Normalized Gain Score
Here and below, we write G+ for the DAG that results from
adding a generic edge X+ → Xi to DAG G. Our up-
grade method for defining a relational gain function is as
follows. (1) Compute the likelihood differential using the
frequency likelihood L. (2) Normalize the penalty term dif-
ferential by the larger sample size n+

i (D). (3) The normal-
ized gain is computed as (1) minus (2), likelihood differen-
tial minus penalty differential. Table 4 gives the relational
gain formulas for upgrading the standard AIC and BIC
scores (Bouckaert 1995). The normalized gain can be ap-
plied with other i.i.d. scores as well.

Balance
One of the fundamental properties of standard model selec-
tion scores is that likelihood scores and the penalty terms
are standardized to the same scale (Russell and Norvig
2010, Sec.18.4.3). For example, in a Bayesian view, both
terms are log-probabilities (Chickering and Meek 2002),
and in the MDL view, both can be viewed as being mea-
sured in bits (Russell and Norvig 2010, Sec.18.4.3). The
normalized gain is balanced because the likelihood scores
and the penalty terms are standardized to the same scale.
Therefore any balanced gain function should be a rescal-
ing of the normalized gain. Mathematically, a rescal-
ing can be represented as a positive linear transformation
[α (normalized gain) + c] where α > 0 may depend only
on the local sample sizes of the structures compared. The
next proposition shows that no balanced gain function can
be represented as the difference of a single score.



Local Gain Function Definition
∆L(Xi,PaGi , X+,D) L(Xi,PaGi ∪X+,D)− L(Xi,PaGi ,D)

∆AIC(Xi,PaGi , X+,D) ∆L(Xi,PaGi , X+,D)− ∆pars(Xi ,PaG
i ,X+)

n+
i (D)

∆BIC(Xi,PaGi , X+,D) ∆L(Xi,PaGi , X+,D)−
1
2 log2(n+

i (D))∆pars(Xi ,PaG
i ,X+)

n+
i (D)

Table 4: Our Proposed Normalized Relational Model Gain Upgrade for AIC and BIC. n+
i (D) ≡ n

G+

i (D) denotes the local
sample size for the expanded graph. ∆pars(Xi ,PaGi ,X+) = #pars(Xi ,PaG

′

i )−#pars(Xi ,PaGi )

Likelihood
Penalty Count Normalized

Count S; not consistent; underfits —
Normalized S̃; not consistent; underfits S; not consistent; overfits

Table 5: Rescaling the likelihood count and/or the penalty
term defines relational score upgrades.

Proposition 1 There is no relational model selection score
such that its associated model gain function is balanced (i.e.,
a unit change of the normalized gain).

The imbalance of log-linear single-model scores leads to
non-consistency, as the examples and theoretical analysis of
the next section illustrate.

Comparison Multi-Relational Model Scores
The baseline methods for our comparison define relational
scores by normalizing the likelihood term and/or the penalty
term. This leads to potentially 4 different relational versions
of a model selection score; see Table 5. Normalizing the
penalty term but not the likelihood term is clearly inade-
quate. Table 6 gives the formulas for the remaining 3 dif-
ferent relational versions of AIC and BIC.

Consistency Analysis
This section shows that the normalized gain function is rela-
tively consistent, but the model score functions are not. The
reason is that the former are balanced and the latter are not.
We observe that (*) for edges that do not add population
variables, the normalized gain and model scores are equiv-
alent, except for the Normalized-Count Score.

A large sample analysis considers a sequence of sam-
ples that grow without bound and converge to the true
data generating distribution. Following previous work on
consistency for relational data (Sakai and Yamanishi 2013;
Xiang and Neville 2011; Shalizi and Rinaldo 2013), we for-
malize this concept as follows. In the limit the sample size
for each population Ii goes to infinity, N [Ii;Dj ] → ∞,
which like (Sakai and Yamanishi 2013) we abbreviate as
N(D) → ∞. Like (Xiang and Neville 2011), we make the
identifiability assumption that

PD(·)→ Pw(·) ≡ p as N(D)→∞.

Here w represents a complete relational structure (network)
from which samples are drawn. We abbreviate the frequency
distribution associated with the complete structure as p, for
brevity and compatibility with (Chickering 2003) where p is

used for the data generating distribution. Arbitrarily large
samples can be generated either by sampling with replace-
ment, or by sampling from infinite populations. For discus-
sion of network sampling, see (Shalizi and Rinaldo 2013;
Frank 1977). Chickering and Meek analysed BN model se-
lection scores in terms of local consistency, which we adapt
for score gain functions as follows.

Definition 1 Let p be the data generating distribution. A
local gain function is locally consistent if, the following hold
in the sample size limit as N(D)→∞, for any single-edge
expansion G+:

1. If X+ is not independent of Xi given PaGi in p, then
∆(G,G+,D) > 0.

2. If X+ is independent of Xi given PaGi in p, then
∆(G,G+,D) < 0.

An upgrade method is relatively locally consistent if the
upgraded i.i.d. score/gain is locally consistent for relational
data whenever it is locally consistent for i.i.d. data. We omit
the proof of the next theorem due to space constraints.

Theorem 1 The normalized gain function (Section ) is rela-
tively locally consistent. None of the relational model scores
(Table 6) are relatively locally consistent.

The intuitive reasons for non-consistency are as follows.

Count-Count Score S The count likelihood typically de-
creases for an edge that adds a population variable, even
if the edge represents a true dependency.

Normalized-Count S̃ The weight of the likelihood term
does not increase with sample size, so an edge that rep-
resents a true dependency may not be added even in the
sample size limit.

Normalized-Normalized S The normalized penalty term
for the expanded structure G+ is down-weighted more
than the normalized penalty term for the simpler struc-
ture G. So a redundant edge may be added even in the
sample size limit.

Evaluation
We describe the system and the datasets we used. Code was
written in Java, JRE 1.7.0. and executed with 8GB of RAM
and a single Intel Core 2 QUAD Processor Q6700 with a
clock speed of 2.66GHz (no hyper-threading). The operat-
ing system was Linux Centos 2.6.32. The MySQL Server
version 5.5.34 was run with 8GB of RAM and a single core



Score AICi BICi

Count AIC(Xi,PaGi ,D) ≡ L(Xi,PaGi ,D)−#pars(Xi ,PaGi ) BIC(Xi,PaGi ,D) ≡ L(Xi,PaGi ,D)− 1
2 log2(nG

i (D)) ·#pars(Xi ,PaGi )

Normalized AIC(Xi,PaGi ,D) ≡ 1
nG
i (D)

AIC(Xi,PaGi ,D) BIC(Xi,PaGi ,D) ≡ 1
nG
i (D)

BIC(Xi,PaGi ,D)

Weighted ÃIC(Xi,PaGi ,D) ≡ L(Xi,PaGi ,D)−#pars(Xi ,PaGi ) B̃IC(Xi,PaGi ,D) ≡ L(Xi,PaGi ,D)− 1
2 log2(nG

i (D)) ·#pars(Xi ,PaGi )

Table 6: Relational Local Model Selection Scores, count and frequency versions. Normalized scores divide count scores by the
local sample size nG

i (D).

Dataset #Relationship
Tables/ Total #Tuples #Attributes

University 2 171 12
Movielens 1 / 3 1,010,051 7
Mutagenesis 2 / 4 14,540 11
Financial 3 / 7 225,932 15
Hepatitis 3 / 7 12,927 19
IMDB 3 / 7 1,354,134 17

Table 7: Datasets characteristics. #Tuples = total number of
tuples over all tables in the dataset.

processor of 2.2GHz. All code and data is available on-line
(Khosravi et al. )

Datasets. We used seven benchmark real-world
databases. For detailed descriptions and the sources of
the databases, please see references (Schulte and Khosravi
2012; Qian, Schulte, and Sun 2014). Table 7 summarizes
basic information about the benchmark datasets. IMDB is
the largest dataset in terms of number of total tuples (more
than 1.3M tuples) and schema complexity.

Structure Learning Algorithm. We used the previously
existing learn-and-join method (LAJ), which is the state of
the art for Bayes net learning in relational databases (Schulte
and Khosravi 2012; Qian, Schulte, and Sun 2014). We used
the LAJ implementation provided by its creators. The LAJ
method conducts a search through the lattice of relational
paths. At each lattice point, an i.i.d. Bayesian network
learner is applied, and learned edges are propagated from
shorter paths to longer paths. We reconfigured the LAJ al-
gorithm by changing the score class.

Results. For each learned graph G, we use maximum
likelihood estimates to obtain a Bayesian network B to
be evaluated. To measure how close the joint distribution
represented by a learned BN is to the database distribu-
tion, we employ the standard Kulback-Leibler divergence
metric (KLD) (de Campos 2006) . Figure 3 shows the
KLD and parameter results for upgrading AIC resp. BIC.
The normalized-count scores select very sparse structures,
and the normalized-normalized scores very dense structures.
The many edges found by a normalized-normalized score
lead to almost no improvement in log-likelihood compared
to the normalized gain function. Given their theoretical
shortcomings as well, we conclude that the normalized-
count and normalized-normalized scores are clearly inad-
equate.

We observed that the count-count scores never select
edges that add population variables. In contrast, the
normalized-gain scores do select all types of edges, as shown
in Figure 4. From Figure 3, the impact of the edges with new
population variables appears to be mixed. On MovieLens,

Figure 3: Number of Parameters for different relational
score upgrade methods; Kullback-Leibler divergence be-
tween the Bayesian network and the database distribution.
The number of parameters is shown on log-scale. Top: AIC
upgrades. Bottom: BIC upgrades.



Figure 4: The number of edges that add population vari-
ables, for the normalized gain upgrade method.

they improve the log-likelihood score, whereas on IMDB
and Hepatitis, the log-likelihood score is worse.

Conclusions The experimental results support the normal-
ized gain as the best upgrade method. The normalized-
normalized and normalized-count upgrade methods are
clearly inadequate. The count-count method is incapable
of selecting edges that add population variables. Inspec-
tion suggests that such edges can be informative. While
the quantitative statistical evidence for their importance is
mixed, such a strong a priori bias against certain types of
edges is clearly undesirable. In addition, the normalized
gain is the only upgrade method in our set that has the theo-
retical properties of balance and (relative) consistency.
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