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Abstract—Relational data classification is the problem of
predicting a class label of a target entity given information about
features of the entity, of the related entities, or neighbors, and
of the links. This paper compares two fundamental approaches
to relational classification: aggregating the features of entities
related to a target instance, or aggregating the probabilistic
predictions based on the features of each entity related to the
target instance. Our experiments compare different relational
classifiers on sports, financial, and movie data. We examine the
strengths and weaknesses of both score and feature aggregation,
both conceptually and empirically. The performance of a single
aggregate operator (e.g., average) can vary widely across datasets,
for both feature and score aggregation. Aggregate features can be
adapted to a dataset by learning with a set of aggregate features.
Used adaptively, aggregate features outperformed learning with
a single fixed score aggregation operator. Since score aggregation
is usually applied with a single fixed operator, this finding raises
the challenge of adapting score aggregation to specific datasets.

I. INTRODUCTION: CLASSIFICATION WITH
MULTI-RELATIONAL DATA

A goal of research in computational intelligence has been
a synthesis of probabilistic reasoning and logical syntax [1],
[2]. Such a synthesis is important for the practical problem
of applying statistical machine learning to relational databases
[3]. Most real-world structured data are stored in a relational
format based on formal logic [4]. A relational database pro-
vides information about different types of entities, and about
their attributes and links between the entities. Relational data
classification is the problem of predicting a class label of a
target entity given information about features (attributes) of the
entity, of the related entities, or neighbors, and of the links.
A key challenge for relational classification is that the number
of links of the target entity is not uniformly bounded. Since
the features of each neighbor potentially carry information
about the target class label, the number of predictive features
for classification is thus a function of the size of the target
entity’s neighborhood, rather than a fixed dimensionality d.
Relational classifiers therefore aggregate the information from
the target entity’s neighborhood. There are two fundamental
options for aggregation: 1) First aggregate the neighbors’
features into a single aggregate feature vector, then classify
based on the aggregate vector. 2) First derive a classification
score based on a single neighbor, then aggregate the scores.
The most common approach is to use a probabilistic classifier
that assigns probabilities to class labels, then use a combining
rule to compute a probability from a multiset of probabilities

[5], [6]. Figure 1 below illustrates these options schematically.

In this paper we compare the two aggregation approaches
empirically on data sets with continuous features. We introduce
three real-world continuous datasets that summarize players’
actions in ice hockey, soccer, and basketball. This paper is the
first to apply relational classification to these sports datasets.
Two datasets for financial data and IMDb reviews are also
analyzed.

Evaluation. Our experiments utilize logistic regression and
support vector machines (SVMs) as the base classifiers for
both feature and score aggregation. Computationally, classifier
training with score aggregation can be done very simply by
forming a data table such that one row contains the features
of one neighbor, and applying a regular non-relational learning
algorithm to this table. Our experiments compare a number
of standard combining rules. To our knowledge, this is the
first extensive comparison of different combining rules for
classification on a range of datasets.

We use standard aggregation functions to aggregate contin-
uous features (average, sum, min, max, midrange, geometric
mean). Once features have been aggregated, any standard
single-table machine learning classifier for continuous features
can be applied for classification. Problems with feature aggre-
gation have been well studied [7], [8]. Aggregating a set of
values into a single value loses information about the value
distribution. Also, aggregation produces a single aggregate
value for a target entity no matter how many links the entity
has. This causes problems in the presence of degree disparity,
where some entities are related to many other entities and some
to only a few. We discuss these issues further in Section IV
below. Despite these known problems, feature aggregation
outperforms score aggregation in our experiments. We provide
evidence that this is mainly due to two issues. First, score
aggregation also suffers from degree disparity, because during
learning, entities with many links carry more weight than
entities with fewer links. Second, aggregate features relevant to
classification can be separated from irrelevant ones by feature
selection techniques. In contrast, score aggregation is used with
a fixed combining rule chosen by the user a priori for a dataset.
Our results show that the performance of different combining
rules can vary widely for different datasets. It is not clear how
a user or a learning algorithm can determine a good combining
rule for a given problem.

Contributions. Our main contributions may be summarized



as follows.

1) A comparison of an extensive set of combining rules
for aggregating probabilistic predictions in relational
classification.

2) A comparison of combining rules for score aggrega-
tion to learning with a set of aggregate features.

Paper Organization. We first review related work. Then we
introduce notation for describing score and feature aggregation.
We provide a conceptual discussion of the pros and cons
of both approaches, which is the basis for our experiments.
We describe the datasets used in our experiment, then report
results: a comparison of combining rules among themselves,
an evaluation of feature aggregation methods, finally a com-
parison of score aggregation with feature aggregation.

II. RELATED WORK

Because of the importance of relational data, there has been
much work on relational classification. For overviews please
see [9], [10]. We provide a high-level description of the work
most relevant to the question of feature vs. score aggregation.
Figure 1 provides a schematic for both the feature and score
aggregation methods.
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Fig. 1. Two different approaches to relational classification. FV = feature
vector. Top: aggregating features combines the n feature vectors into a single
one, then applies a standard nonrelational classifier to predict a class label.
Bottom: Score aggregation applies a standard nonrelational classifier to each
feature vector to obtain n positive class probabilities. A combining rule
aggregates the n scores to predict a class label.

A. Aggregating Classifier Scores: Combining Rules

Most approaches that aggregate classification scores use a
function that maps a list of probabilities to a single probability.

Following the terminology of Bayes nets, such functions are
referred to as combining rules [5], [6]. In our terminology, a
combining rule is a special kind of classifier score aggregation.
Our experiments examine the commonly used combining rules
(e.g. average, noisy-or). Natarajan et al. [11] review several
combining rules applied with first-order logic rules.

B. Propositionalization

The majority of work on relational classification has
adopted the feature aggregation strategy. This approach of
“flattening” the relational structure is known as proposition-
alization [12]. For continuous features, propositionalization
methods use the same standard aggregate functions as in this
paper [13], [14].

C. Learning With Aggregate Features

Several papers discuss advantages and disadvantages of
propositionalization for link-based classification [15], [9]. The
main advantage is expressiveness: feature generation methods
search a large space of potentially useful features. If an
informative new complex feature or aggregate feature can be
found, it improves classification performance and informs the
user. The disadvantages are problems with both statistical and
computational efficiency. Aggregation loses information in the
data, which increases the variance of classifier estimates and
causes problems with both type 1 and type 2 errors in feature
selection [15]. Searching a large space of potential features
presents considerable computational challenges. For an ex-
ample, generating 100,000 features on the standard CiteSeer
dataset, can take several CPU days (e.g., [16, Ch.16.1.2]).

The feature aggregation method we use in this paper is
intermediate between choosing a single fixed aggregate oper-
ator and searching through a space of complex expressions.
For each original feature, we apply a fixed set of aggregate
operators (such as average, maximum, etc.). These are pro-
vided as input features to a standard learning method (e.g.,
logistic regression). So there is no search through a complex
feature space, but learning is used to select and weight relevant
aggregate features.

D. Sports Statistics

The problem of predicting the results of sports matches
has received considerable attention for different sports. For an
overview please see [17]. We do not claim that the methods in
this paper are competitive for predicting the match results. We
use sports data, because they provide real-world datasets in an
interesting domain with interpretable features, for the purpose
of comparing aggregating features vs. aggregating predictions.

The closest predecessor to our work is that of Neville
et al. [7]. Key differences include the following. 1) They
used only the average operator for feature aggregation, rather
than a set of aggregate operators. 2) For score aggregation,
they used the arithmetic and geometric mean only. 3) They
did not consider adjusting instance weights to improve score
aggregation methods. 4) Their experiments used the Naive
Bayes classifier applied with mainly discrete features. We use
logistic regression with mainly continuous features. Continu-
ous features are more natural for feature aggregation.



III. NOTATION AND DATA FORMAT

We introduce notation to discuss relational features and
data and to support theoretical analysis. We follow the functor-
based notation for combining statistical and relational concepts
due to Poole [2].

A. Functor Features

A population is a set of individuals, corresponding to a
domain or type in logic. A feature is of the form f(t1, . . . , tk)
where f is a functor and each ti is a first-order variable or a
constant. Each feature has a set of values (constants) called the
domain of the feature. A grounding replaces each 1st-order
variable in the feature by a constant; the result is a ground
feature. A grounding may be applied simultaneously to a set
of features. One of the features is the class or target feature.
A grounding of the target feature is a target instance.

B. Examples

In our datasets the basic populations are teams, players,
matches, with corresponding first-order variables T, P,M .
Examples of features include the following.

• result(T ,M ) denotes the result of a team in a match
(win or lose). This is the target feature.

• The ground feature result(Canucks, 1 ) denotes that
the result of the Canucks in match 1. This is a target
instance.

• goals(P ,T ,M ) is the number of goals scored by a
player in a match.

• +/-(P, T,M) is the +/- score of a player in a match.
This is a common measure of the player’s perfor-
mance; for precise definition see [17].

C. Aggregation

Given a feature f , an aggregate function agg applies to one
of the argument variables of f . We use the subscript notation
aggX to indicate that variable X is the object of aggregation
[16]. The result is a feature with one less argument. Examples
include the following.

• goals(T ,M ) ≡
∑

P goals(P ,T ,M ) is the number of
goals scored by a team in a match.

• past goals(P) ≡
∑

M ,T goals(P ,T ,M ), where M
is the matches in the past season, denotes the sum of
a player’s goals in the past season.

D. Relational Data Tables

Relational data can be visualized in terms of the ground-
ings data table. The data table has one column for each
feature. It has one row for each simultaneous grounding of all
functor features where the instances of the non-class features
are in the neighborhood of the instance of the target feature.
Thus if the target functor feature is instantiated with ground
instance t, the data table contains a row listing the attributes
of each neighbor n of t. Tables I and II show examples of
groundings data tables. As the examples illustrate, aggregation
increases the number of features (columns) and decreases

the number of data points (rows). Table I is constructed as
follows. A row in this table corresponds to a NHL match,
one of the teams involved in the match, and one player
who played for that team in the match. Each team dresses
exactly 18 skaters per match, so for a given match, the data
table contains 2 × 18 = 36 rows. The result(T,M) column
records the team result in a match, which is the target feature.
The past goals(P ) column provides a last-season statistic
of the player (total number of goals). The goals(T, P,M)
column provides a match statistic (the number of goals scored
by a player in the match). The full data table used in our
experiments contains 18 last-season statistics of the player and
13 match statistics (see Section V-A3).

TABLE I. GROUNDINGS DATA TABLE FOR NHL.

Instance Weight result(T,M) MatchId M TeamId T PlayerId P past goals(P) goals(T,P,M)
1/18 Loss 2010020023 Canucks D. Hamhuis 5 0
1/18 Loss 2010020023 Canucks D. Sedin 34 0
1/18 Loss 2010020023 Canucks H. Sedin 32 0
... ... ... ... #4–#18 ... ...
1/18 Win 2010020033 Canucks D. Hamhuis 5 0
1/18 Win 2010020033 Canucks C. Ehrhoff 17 0
1/18 Win 2010020033 Canucks H. Sedin 32 0

TABLE II. AGGREGATE FEATURE DATA TABLE FOR NHL.

result(T,M) MatchId M TeamId T Sum past goals(T) Sum goals(T,M)
Loss 2010020023 Canucks 252 1
Win 2010020033 Canucks 259 2

IV. SCORE AGGREGATION VS. FEATURE AGGREGATION:
STRENGTHS AND WEAKNESSES

We describe carrying out relational classification with
aggregate features and scores. We discuss the basic strengths
and weaknesses of each approach, which motivate the design
of the methods in our experiments.

Classification with aggregated features is conceptually
straightforward: aggregation produces a data table with one
row per target instance that can be treated like a standard
attribute vector table. See Table II for illustration.

Classification with aggregated scores can be visualized
in terms of the groundings data table, or data table for
short; see Table I. For simplicity, we discuss score aggregation
for a single relationship, which defines a neighborhood for
each grounding of the target feature. Our discussion applies
equally to classification scores obtained with different types
of neighborhoods. Suppose that we have trained a classifier
model M that returns a classification score for a given target
label y and feature vector x. We write scoreM(y ;x). We can
apply this classifier to each row in the groundings data table to
derive a classification score from the features of each neighbor
of a given target instance t. Given a list of classification scores,
one for each row in which the target instance appears in the
data table, we can apply a standard aggregation function to
obtain an overall classification score. We also use the noisy-or
rule for combining probabilities [6]. For a classifier whose
score indicates the probability of a positive classification,
such as logistic regression, we treat the aggregate probability
as the overall probability of a positive classification for the
target instance, as in [7]. Table III summarizes the aggregation
functions shared by feature and score aggregation, as well as
the aggregate functions specific to each method.



TABLE III. AGGREGATE FUNCTIONS USED

Feature Aggregation Score Aggregation
Shared Functions Average µ, Maximum, Minimum, Midrange, Geometric Mean
Specific Functions Sum, Standard Deviation, Degree Noisy–Or

A. Feature Aggregation: Strengths and Weaknesses

Feature aggregation is a very common approach to rela-
tional classification and has been much discussed [7], [8], [9].
We review the main points relevant for our study. Feature
aggregation is conceptually attractive as it reduces relational
classification to non-relational classification with a single fea-
ture vector per target instance. Reducing the size of the data
table also speeds up learning, as our experiments show.

The obvious drawback of feature aggregation is that it loses
information about the distribution of features. Consider the
problem of predicting the box office receipts of a movie from
user ratings. As an extreme thought experiment, suppose all
movies in our dataset receive the same average user rating, but
the variance of their ratings differs. Then by using the average
rating as the aggregate feature, all predictive information is
lost. In our experiments, we address the potential loss of
information by adding a set of aggregate features to the data,
rather than fixing a single aggregate operator in advance. In
this way, learning can decide which aggregation operation is
the most informative. Also, in addition to the mean value of a
feature, we add its standard deviation as an aggregate feature.
Thus learning is provided with information about the first two
moments of the feature distribution rather than only the first.
Adding second-moment information as an aggregate feature is
discussed in [18].

Another known problem with aggregate features is degree
disparity. Degree disparity occurs when the degree, i.e., the
size of a relational neighborhood, varies widely for different
target instances. For example, the number of ratings received
by a movie may vary from zero to thousands. One problem
with using aggregate features with degree disparity is that
they lose the information about the size of the relational
neighborhood. Also, the values of many aggregate functions
correlate with degree [8], e.g., they tend to increase with the
degree. So the aggregate feature conflates information about
the degree with information about the original feature. To
address this conflation, we add the relational degree of each
target instance as an aggregate feature in our experiments.
Adding a degree feature is recommended by [8].

B. Score Aggregation: Strengths and Weaknesses

The main strength of score aggregation is that it retains
the full distributional information in the data. A computational
drawback is the larger data table size, which reduces speed and
increases memory requirements. Another issue is applying a
single fixed aggregate function to scores, rather than exploring
a space of aggregate functions. A problem that figured in our
experiments, but seems not to have been previously discussed,
is that score aggregation is also affected by degree disparity.
As an extreme thought experiment, suppose that our dataset
contains ratings for 100 movies, 99 of which have received
only 1 rating, and 1 of which has received 99 ratings. So the
groundings data table contains 99 rows for the one movie, and
99 rows for the other 99 movies. Hence applying a standard
machine learning algorithm to the groundings data table “as

is” overweights the movie with large degree. To address degree
disparity for score aggregation, we reweight the rows in the
data table by dividing by the degree of each row’s target
instance; see Table I. In our thought experiment, the rows for
the single large-degree movie would be reweighted by 1/99,
and the rows for the others would retain unit weight. Table IV
summarizes the main points of our discussion. Our empirical
evaluation examines these basic aspects of feature and score
aggregation and the effectiveness of solutions to address them.

TABLE IV. CONCEPTUAL COMPARISON OF FEATURE VS. SCORE
AGGREGATION

Aggregation Pros Cons Proposed Remedy
Features Fast learning Loses distribution information Utilizes multiple aggregate functions

Less memory required Ignores Degree Disparity Add degree feature
Increases dimensionality

Scores Full Distribution Information Uses a single fixed aggregator
Degree disparity: overweights in-
stances with many links

Reweight Instances

V. DATASETS

We carry out experiments on six data tables derived from
five real-world databases. All our datasets are available on-
line http://www.sfu.ca/∼kdr4/SSCI2014.zip. The datasets vary
in size and degree disparity. For each data table, we obtain
two versions: the groundings data table (cf. Table I) and the
feature aggregation table (cf. Table II). So each classifier is
applied to twelve datasets. Two standard databases have been
previously used in studies of relational learning, IMDb and
Financial. We introduce four new datasets from three sports
databases: the National Hockey League (NHL), UK Premier
League (PLG), and National Basketball Association (NBA).
Sports datasets are challenging for learning because of their
complexity. At the same time, they are engaging to many
users. They are suitable for studying the effects of aggregation
because aggregate functions such as average, sum, etc. most
naturally apply to continuous features, and sports datasets
contain mainly continuous features, namely counts of players’
actions. We describe the details of the datasets. Then we
summarize the properties of the datasets that are relevant to
feature and score aggregation, as discussed in Section IV, such
as degree disparity and the variance of feature distributions.

A. Dataset Details

For each sports dataset, the target feature is
result(Team,Match). A positive classification means
that the team is predicted to win the match. The target
features for IMDb and Financial are given below.

1) IMDb: The hierarchical relational structure of the IMDb
dataset1 is as follows: each director has their own attributes
and has directed 1 or more movies. Each movie has been
reviewed and rated by 1 or more users, who also have their own
attributes. During feature aggregation, the user attributes and
ratings are aggregated. The target feature for the IMDb dataset
is highBoxOffice(Movie,Director), where the positive class
denotes the movie had a box office receipt of $10, 000, 000
USD or greater. The IMDb dataset contained five discrete
features, which we converted to continuous 0-1 “dummy
variables” [19], where the presence of each discrete value is
represented by a Boolean indicator variable.

1www.imdb.com, July 2013



2) Financial: The financial dataset has a hierarchical re-
lational structure with district at the top level, followed by
accounts within the district, and finally all the transactions
associated with a particular account. During feature aggre-
gation, the attributes of the transaction are aggregated. The
target feature is hasLoan(Account ,District), where a positive
classification means there is a loan associated with the account.
There were five discrete features present, which were converted
to continuous “dummy variables”. This dataset is a modified
version of the financial dataset from the discovery challenge
at PKDD’99 following the modification from [20].

3) NHL: We used the Selenium web crawler [21] to down-
load player game statistics (Box Scores) from http://www.nhl.
com/ for the seasons 2009–2013. The box scores summarize
player statistics for each match, a total of 13 continuous-
valued features. We refer to these as match statistics. We
only consider skaters in our model and remove goalies, as
the number of goalies in the NHL is significantly less than
the number of skaters, and different statistics are recorded for
goalies than skaters. The match statistics include goals, assists,
plus-minus, and penalty minutes. For each player, we sum his
match statistics over all NHL games in the previous season to
obtain a total of 13 statistic totals for the previous season. In
addition, we add 5 other season statistics: number of games
played, game winning goals, power play goals, shorthanded
goals, and shot percentage. We refer to the resulting 18 features
as last-season features. From this database we prepared the
following two groundings data tables, depending on whether
we used last-season features only or all features.

Season Contains last season features only.
S+Match Contains last season features and match statistics.

4) PLG: We used Opta data [22], released by Manchester
City. It lists ball actions of each player in each game, for the
2011-2012 season. Number of goals, passes and tackles by a
player in a match are examples of the information associated
with each player. For each player in a match, our data set
contains 199 player actions as features.

5) NBA: NBA data was obtained manually from http:
//www.nba.com/. Box scores containing match summary statis-
tics for each player were used to create the data table. For each
player on a team in a match, there are 19 continuous player
statistics recorded, such as number of free throw attempts and
total number of player rebounds. These player statistics are
aggregated for each (team,match) instance during feature
aggregation.

B. Feature Distributions in Datasets

We examine summary statistics for our datasets pertinent
to the discussion of aggregation in Section IV. Table V shows
the strong effect aggregation has on the data table dimensions.
It reduces the number of rows (data points), in the case of
IMDb by a factor of around 300. Aggregation increases the
number of columns (features), in the case of the PLG soccer
data, by a factor of almost 7.

Table VI illustrates how aggregation decreases the variance
of features. We selected one attribute for each dataset, and
compared its variance on the original groundings data table
to its variance after applying the average µ aggregator. A

TABLE V. DATA TABLE DIMENSIONS

Dataset Rows Aggregated
Rows Columns Aggregated

Columns
IMDb 909,377 2,910 64 118
Financial 348,095 1,364 130 280
NHL - S + Match 138,852 7,714 35 221
NHL - Season 138,852 7,714 22 130
PLG 7,933 580 203 1,397
NBA 767 60 23 137

reduction in variance can be seen as a reduction in information
content.

TABLE VI. FEATURE VARIANCE VS. AVERAGE FEATURE VARIANCE

Dataset Attribute A Variance A Variance µA Reduction Ratio
IMDb Age(User) 135.97 19.37 7.02
Financial Amount(Transaction) 112,257,686.00 16,838,158.97 6.67
NHL - S + Match GamePlusMinus(Player) 1.16 0.33 3.50
NHL - Season LastSeasonPlusMinus(Player) 112.80 24.69 4.57
PLG Goals(Player) 0.13 0.01 13.67
NBA PlusMinus(Player) 118.02 38.03 3.10

Table VII shows that the sports datasets have small to
no degree disparity. This is because the number of players
in a team in a match varies very little. In ice hockey, each
NHL team dresses exactly 18 skaters per match. The PLG
dataset exhibits some small degree disparity, as a maximum of
three substitutions per team are allowed during PLG matches.
The IMDb and Financial datasets exhibit considerable degree
disparity, as shown in Table VII. The number of ratings
for movies varies greatly. For financial transactions, different
accounts may be involved in transactions to highly varying
degrees of frequency.

TABLE VII. DEGREE DISPARITY

Dataset Relationship Average Standard Deviation Max Min
IMDb Ratings/Movie 313.91 411.92 3,427.00 1.00
Financial Transaction/Account 255.68 134.09 675.00 9.00
NHL Players/Team,Match 18.00 0.00 18.00 18.00
PLG Players/Team,Match 13.64 0.63 14.00 11.00
NBA Players/Team,Match 12.71 0.45 13.00 12.00

Table VIII examines the effect of aggregation on the
apparent correlation between features and the class label. We
used the information gain metric to measure the relevance of
a feature to the class label. This measures the reduction in
uncertainty from observing the value of the feature, 0 is the
minimum and 1 the maximum value, and was computed using
Weka’s built-in feature selection method [23]. The second
column shows the attribute with the highest information gain
before aggregating in the groundings data table. The last
column shows the information gain of the average µ of the
best attribute in the aggregate feature table. In all cases, the
information gain of the attribute increases, typically by a factor
of five or more.

There are two ways of looking at this result. Neville
et al. [8], [15], [7] argue the correlation after aggregating
is overestimated, because using a single aggregate value in
place of a multiset of values is like replacing each value in
the multiset by the aggregate value. This underestimates the
variance of the feature and overestimates its correlations to
the class feature. They argue aggregation methods are liable
to spurious correlations, erroneously accepting features as
relevant that in fact are not. Another point of view is for
features that are relevant to classification, aggregation helps
to reveal the relevance. For example, in the soccer data PLG,



it is intuitively clear that the number/average of goals scored
by the players on a team is relevant to predicting the outcome
of the match. So increasing the observed information gain is
helpful for learning (see row 5 of Table VIII). Another example
is the average revenue of a movie’s director, over all of his
or her movies (see row 1 of Table VIII). This is a feature
of a movie, not of its links, and remains the same before
and after aggregating movie ratings. But its information gain
increases after collapsing the movie’s relational neighborhood
into a single vector. For datasets where aggregation highlights
spurious and true correlations to the class label, an effective
classifier can sort out which aggregate features are relevant
for classification, and thus gain from the stronger effects. Our
empirical results examine the effect of aggregation on classifier
performance.

VI. EVALUATION

A. Hardware, Methods and Comparison Metrics

The learning algorithms were executed on 64-bit Windows
7 with 12GB RAM and an Intel Core i7 2670QM CPU
2.2GHz processor. As a base classifier, we use logistic ridge
regression and support vector machines (SVMs). For Logistic
Ridge Regression we used the L1General Matlab code [24].
For Support Vector Machine training we used the LibSVM
software version 3.17 [25]. Both software packages accept
instance weights. Hyperparameters of the classifier were set by
a grid search that evaluated a parameter setting by examining
testing errors. We report the results for the best parameter
setting found by the grid search.

Our basic metrics are classification accuracy (percentage
of correctly classified target instances) and F1-measure, the
harmonic mean of precision and recall [26]. We train the
classifiers on a training set of target instances and test on the
remaining target instances. All datasets use a random 80 : 20
split for the training and test sets.

For feature aggregation, we report results for each dataset.
All aggregations of all features are used to train the classifier.
For score aggregation, we report results for pairs (Aggregate
operator x Dataset). Table III summarizes the aggregate op-
erators used. For score aggregation, we examine reweighting
target instances by the sizes of their relational neighborhoods
(see Section IV-B and Table I). This can be easily implemented
by using a classifier that accepts instance weights. We refer to
datasets augmented with instance weights as x-W, as in IMDb-
W and Financial-W.

B. Results

We first compare different methods for score aggregation,
then for feature aggregation, finally both together. For the
purpose of discussion, we refer to the average, geometric mean,
and midrange operators as averaging operators since they can
be viewed as a form of averaging class probabilities2. We
refer to the remaining three maximum, minimum, and noisy-
or as extremal operators since they agree with high values
(maximum, noisy-or) or low values (minimum). Our main
base classifier is logistic regression, so we discuss logistic
regression results in most detail. We also report results for

2midrange = ((max - min)/2)

aggregating SVM scores to show that the general trends obtain
with a different base classifier as well.

1) Score Aggregation: Table IX shows the accuracies for
each combination of (logistic regression, score aggregator) for
each dataset. Logistic regression provides the probability of a
positive classification; aggregation functions were applied to
this probability.3 The F1-Measures (omitted) showed the same
trends as accuracy. On the datasets with substantial degree
disparity (IMDb and Financial, see Table VII), scaling the
importance of instances by the number of their links improved
accuracy for almost all score aggregators, and led to the best
overall performance. The averaging aggregators achieved good
predictions on all datasets. Extremal operators can perform
very well (e.g., minimum on IMDb), but also very poorly (e.g.
minimum on PLG and NBA). As a default score aggregator, the
average aggregator provides consistently accurate predictions.
For the comparison with feature aggregation, an important
observation is we do not see a dominant score aggregator
across datasets. On IMDb-W, minimum is best, on Financial-
W and NBA the three averaging operators, on NHL-S+Match
the arithmetic average, on NHL-Season the two means, on
PLG the midrange operator. These differences are statistically
significant (t-test, p < 0.05). A striking failure of the extremal
operators is that for match outcome prediction, they fail to
take advantage of obviously relevant match features such as
the number of goals: their classification accuracy is close to
using only statistics from the previous season.

Table X shows the result of SVMs with various kernels
as a benchmark for the logistic regression results. For a
single input feature vector, SVMs produce an output score, to
which we apply aggregate functions. We experienced problems
with numeric instability in computing the geometric mean
of SVM scores, so we do not report the results for SVM
score aggregation with the geometric mean. The results for
score aggregation with SVMs depend on the kernel used.
The best performance over all results was achieved with the
linear kernel. These results are slightly worse than with logistic
regression, except for the IMDb and Financial datasets. On the
first five datasets, score aggregation with the Gaussian kernel
tends to assign all test instances as positive, and produces
the random classification accuracy of 50%. The quadratic
kernel leads to 50% accuracy on all eight datasets, so we
do not list these results. We observe the same trends as with
logistic regression: There is considerable variability among the
classification accuracy of different score aggregation functions.
Averaging operators produce reliable baseline performance.

The variability in predictive accuracy suggests that finding
a good score aggregation method requires experimentation
and/or a learning method. Methods for learning a good score
aggregation method for a given dataset are an interesting
topic for future work. In contrast, standard feature selection
techniques can be used to select a good feature aggregator for
a dataset, as our next set of experiments show.

2) Feature Aggregation: Table XI presents the results for
logistic regression applied with feature aggregation methods,

3We also examined a more complicated method where we separately aggre-
gated the probabilities of positive and negative classifications, then normalized
the aggregates to obtain a single aggregate probability. Classification accuracy
was the same.



TABLE VIII. ATTRIBUTE INFORMATION GAIN

Dataset Best Attribute Information Gain µ Best Attribute Information Gain
IMDb Director AvgRevenue 0.10154 Director AvgRevenue 0.51870
Financial Remittance(Transaction) 0.27386 AVG(Remittance(Transaction)) 0.35431
NHL - S + Match PlusMinus(Player,Match) 0.11712 AVGP (PlusMinus(Player,Match)) 0.55938
NHL - Season LastSeasonPlusMinus(Player) 0.00138 AVG(LastSeasonPlusMinus(Player)) 0.00715
PLG Goals(Player,Match) 0.03166 AVGP (Goals(Player,Match)) 0.57900
NBA PlusMinus(Player,Match) 0.17400 AVGP (PlusMinus(Player,Match)) 0.87400

TABLE IX. SCORE AGGREGATION ACCURACIES - LOGISTIC REGRESSION

Aggregator IMDb IMDb-W Financial Financial-W NHL - S + Match NHL - Season PLG NBA
Average 78.52% 81.44% 69.12% 73.16% 87.29% 55.25% 90.52% 100.00%
Geometric Mean 78.69% 81.44% 69.49% 72.43% 85.08% 55.12% 81.03% 100.00%
Midrange 78.52% 80.93% 72.79% 73.53% 85.34% 52.79% 93.10% 100.00%
Maximum 71.65% 82.13% 63.97% 68.75% 52.01% 50.65% 53.45% 50.00%
Noisy-Or 71.65% 82.13% 63.97% 64.34% 52.01% 50.65% 53.45% 50.00%
Minimum 81.79% 79.73% 53.68% 51.10% 50.45% 50.00% 51.72% 58.33%

TABLE X. SCORE AGGREGATION ACCURACIES - SUPPORT VECTOR MACHINES

Kernel Type Aggregator IMDb IMDb-W Financial Financial-W NHL - S + Match NHL - Season PLG NBA
Linear Average 82.30% 50.00% 74.63% 71.69% 73.61% 53.05% 90.52% 100.00%

Midrange 82.30% 50.00% 75.00% 62.87% 74.38% 51.49% 92.24% 100.00%
Maximum 82.30% 50.00% 62.87% 62.87% 59.73% 51.82% 59.48% 50.00%
Minimum 82.30% 50.00% 54.78% 50.00% 57.00% 51.75% 50.86% 58.33%

Gaussian Average 50.00% 50.00% 50.00% 50.00% 50.00% 53.44% 73.28% 100.00%
Midrange 50.00% 50.00% 50.00% 50.00% 50.00% 51.62% 71.55% 100.00%
Maximum 50.00% 50.00% 50.00% 50.00% 50.00% 53.11% 61.21% 50.00%
Minimum 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 58.33%

on all six datasets. The F1-Measures (omitted) showed the
same trends as accuracy. Adding the standard deviation of
continuous features tended to improve predictions, but only
the difference on Financial was statistically significant. Ex-
amination of regression weights showed average and sum of
plus-minus and goals to be strong predictors for sports datasets.

Table XII shows the result of SVMs with various kernels
(including the standard deviation aggregate feature). Compar-
ing with Table XI, we see that logistic regression performs
well on the aggregated datasets compared to SVMs. Also,
among the SVM kernels, the linear kernel provides accurate
predictions. Together with the success of logistic regression,
these results indicate that aggregation makes our datasets close
to linearly separable. This is another way in which feature
aggregation can improve classification, despite the loss of
information it entails.

3) Score Aggregation vs. Feature Aggregation: Table XIII
compares the best feature aggregation method with the best
score aggregation method, for the logistic regression base clas-
sifier. Feature aggregation has statistically significant greater
classification accuracy and F1-measure than score aggregation
on all datasets, with the exception of the NHL-Season and
NBA datasets, where there is no statistically significant differ-
ence. On the Financial dataset, feature aggregation outperforms
score aggregation by a wide margin of 12.50%. Feature
aggregation outperforms score aggregation the most on the two
datasets with the greatest degree disparity. Together with the
results of Table IX, this is evidence that degree disparity causes
problems for score aggregation as well as feature aggregation.

Table XIV shows that aggregation can speed up learning
considerably by reducing the number of data points (e.g., speed

up factor of 15 on IMDb). The trade-off is the number of
extra features added, which can slow down aggregation, as we
observe on the PLG soccer data set.

VII. CONCLUSION

We considered relational classification with continuous
features of linked entities. Two basic approaches are aggre-
gating features vs. aggregating classifier scores. For aggregat-
ing classifier scores using a combining rule, averaging-type
rules provide consistent good baseline performance. On some
datasets, they can be outperformed by extremal rules, such as
maximum or noisy-or.

For feature aggregation, we investigated an approach to
finding relevant aggregate features by applying a fixed set of
aggregate operators to each original feature, then applying
a standard classifier to the aggregate features. This use of
feature aggregation outperforms score aggregation, even when
matched against the best score aggregation rule selected a
posteriori. While feature aggregation has well-known statistical
problems, part of the reason for its superior performance is that
score aggregation suffers from similar challenges. For instance,
degree disparity is a challenge for both approaches, because in
score aggregation, target instances with more links carry more
weight than those with fewer.

Future Work. An open challenge for score aggregation is
whether a good combining rule can be learned for a specific
dataset. This question seems to be quite open. Jaeger [27]
proposes learning linear combinations of combining rules for
relational Bayesian networks; it may be possible to adapt this
approach for large-scale relational classification.



TABLE XI. FEATURE AGGREGATION ACCURACIES - LOGISTIC REGRESSION

Method IMDb Financial NHL - S + Match NHL - Season PLG NBA
Logistic Regression 86.05% 84.93% 88.59% 54.67% 95.69% 100.00%
Logistic Regression 85.57% 87.50% 88.91% 54.47% 96.55% 100.00%
+ standard deviation

TABLE XII. FEATURE AGGREGATION ACCURACIES - SUPPORT VECTOR MACHINES

Method IMDb Financial NHL - S + Match NHL - Season PLG NBA
SVM - Linear 84.54% 76.84% 68.03% 55.12% 95.69% 100.00%
SVM - Quadratic 71.99% 72.06% 68.94% 52.66% 90.52% 91.67%
SVM - Gaussian 82.30% 65.81% 60.38% 52.75% 87.93% 100.00%

TABLE XIII. FEATURE AGGREGATION VS. SCORE AGGREGATION

Dataset → IMDb Financial NHL - S + Match NHL - Season PLG NBA
Method ↓ Accuracy F1-Measure Accuracy F1-Measure Accuracy F1-Measure Accuracy F1-Measure Accuracy F1-Measure Accuracy F1-Measure
Feature Aggregation 86.05% 0.86 87.50% 0.87 88.91% 0.89 55.12% 0.59 96.55% 0.96 100.00% 1.00
Score Aggregation 82.30% 0.85 75.00% 0.78 87.35% 0.87 55.25% 0.46 93.10% 0.93 100.00% 1.00

TABLE XIV. LEARNING TIME IN SECONDS

IMDb Financial NHL - S + Match NHL - Season PLG NBA
Feature Aggregation 0.083 0.894 0.523 0.126 3.288 0.034
Score Aggregation 14.074 6.314 0.567 0.229 0.430 0.004

A hybrid approach that combines score aggregation with
feature aggregation could address the weaknesses of both
approaches. For example good features could be found learning
a model based on feature aggregation. Adding good aggre-
gation features to non-aggregated features (e.g., adding team
aggregate statistics to individual player statistics) could then
improve classification accuracy in score aggregation.

In sum, good accuracy in relational classification can be
achieved with both feature aggregation and score aggregation
(when used with averaging-type aggregators). We found that
standard feature weighting techniques for selecting among
aggregate features led to consistently superior classification
performance.
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