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Abstract

In classic AI research on combining logic and
probability, Halpern introduced an inference
principle for marginal probabilities of ground
atoms: If the corresponding population fre-
quency is known, the marginal probability
should be equal to it. For instance, if the only
thing we know about Tweety is that Tweety
is a bird, then the probability that Tweety
flies should be the frequency of flyers in the
class of birds. We provide several arguments
for why a statistical-relational inference sys-
tem should satisfy Halpern’s principle. If the
principle is accepted, the technical challenge
is then to construct inference models to meet
this specification. The technical part of the
paper gives examples of structures and pa-
rameterizations that do and do not satisfy
the constraint on marginal probabilities, us-
ing Parametrized Bayes nets.

1. Introduction

Classic AI research established a fundamental distinc-
tion between two types of probabilities associated with
a relational structure (Halpern, 1990; Bacchus, 1990).
Class-level probabilities, also called type 1 probabili-
ties, are assigned to the rates, statistics, or frequen-
cies of events in a database. These concern classes
of entities (e.g., students, courses, users) rather than
specific entities. Examples of class-level queries would
be “what is the percentage of birds that fly?” and
“what is the percentage of male users that have given
high ratings to an action movie?”. Getoor, Taskar and
Koller presented Statistical-Relational Models for rep-
resenting class-level database statistics (Getoor et al.,
2001). In Halpern’s probabilistic logic, class-level
probabilities are associated with formulas that contain
1st-order variables(e.g., Flies(X ) = 90%). The type 1
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probability of such a formula is the number of ground-
ings that satisfy the formula, divided by the number of
possible groundings. For example, assuming that the
domain of 1st-order variable X is the class of birds,
the expression P (Flies(X )) = 90% denotes that 90%
of birds fly.

Instance-level probabilities, also called type 2 proba-
bilities, are assigned to specific, non-repeatable events
or the properties of specific entities. Examples of
instance-level queries would be “what is the proba-
bility that Tweety flies?” and “what is the probabil-
ity that Jack highly rates Captain America?”. Most
statistical-relational learning has been concerned with
type 2 instance probabilities; models like Probabilis-
tic Relational Models (PRMs) (Getoor et al., 2007),
Parametrized Bayes Nets (Poole, 2003), and Markov
Logic Networks (MLNs) (Domingos & Richardson,
2007) define type 2 probabilities for ground instances
using a grounding semantics.

Marginal Equivalence of Type 1 and Type 2 Probabili-
ties. The SRL research into type 1 and type 2 proba-
bilities has been largely independent of each other. In
contrast, AI researchers directed sustained e↵ort to-
wards principled connections between the two types of
probabilistic reasoning (Halpern, 1990; Bacchus, 1990;
Bacchus et al., 1992; Halpern, 2006). A basic prin-
ciple they discovered is what we shall refer to as the
marginal equivalence principle: If we have no particu-
lar knowledge about an individual, other than that the
individual belongs to a certain class, then the proba-
bilities associated with that individual should be the
class-level probabilities. To illustrate, if the only thing
we know about Tweety is that Tweety is a bird, then
the probability that Tweety flies should be the fre-
quency of flyers in the bird population.

For illustration, consider the toy database instance of
Figure 1. For the sake of the example, let us suppose
that this data is representative of the entire popula-
tion. Then the class-level probability that a course is
di�cult is 1/2, since half the known courses are di�-
cult. Now suppose we run an inference system on the
query P (di↵ (250 )) = hi? which asks for the marginal
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probability that a new course 250 is di�cult. The
marginal equivalence principle requires that the an-
swer to this query be 1/2.
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Figure 1. A small database instance. The class-level prob-
ability of a di�cult course is the frequency in the course
population, which is 1/2.

Formalization. In Halpern’s probabilistic logic, the
equivalence principle can be written as an instantiation
schema. By this we mean that the principle amounts
to instantiating a rule schema containing first-order
variables with constants, as is done with universally
quantified first-order variables in logic. For example,
using first-order predicate notation, an example given
by Halpern is

P (Flies(X )|Bird(X )) = 90%
! P(Flies(Tweety)|Bird(Tweety)) = 90%

where X is instantiated with the constant Tweety .
In this formula X is interpreted as denoting a
randomly selected member of the domain, and
P (Flies(X )|Bird(X )) expresses the proportion of fly-
ers in the bird population. (For a full description of
the random selection semantics and syntax, please see
(Halpern, 1990; Bacchus, 1990).) In many SRL for-
malisms, first-order variables and constants are typed,
meaning that background knowledge assigns them to
a known class; we assume typing in the remainder of
the paper. If Tweety is known to belong to the class of
birds and X is known to range over the class of birds,
a simpler form of the instantiation schema is

P (Flies(X )) = 90%! P(Flies(Tweety)) = 90%.

This is an instance of the marginal equivalence princi-
ple: Marginal probabilities for ground atoms should be
the same as marginal probabilities at the class level.

Challenge. The challenge to the SRL community
that we see arising from Halpern’s equivalence prin-
ciple is this: If we accept the principle as a desirable
feature of an SRL inference system, how can we de-
sign/learn systems so that they satisfy it? We believe
that this challenge is a constructive one, in that meet-
ing it would lead to progress in statistical-relational
learning. First, with respect to marginal probabilities,

a system that satisfies the equivalence principle, will
achieve high accuracy on marginal queries, and likely
can compute the answers to marginal queries in closed
form. (More details below.) Second, the principle adds
a well-motivated constraint on the features and param-
eters of an SRL system. Such constraints on learning
and/or inference can be leveraged to obtain more ef-
ficient and e↵ective algorithms than is possible in an
unconstrained general design space.

The paper proceeds as follows. First, we provide sev-
eral motivations for the equivalence principle. Then
we give examples of Parametrized Bayes net models
that satisfy the principle by choosing the right struc-
ture, combining rule, or parameters.

2. Why Instance-level Marginals should

equal Class-level Marginals

We provide di↵erent types of motivation as follows.
(1) Intuitive plausibility and connections to other es-
tablished principles/approaches. (2) If an inference
algorithm is scored on its likelihood performance on
marginals, the score is maximized if the algorithm as-
signs the class-level marginals as answers to marginal
queries about ground atoms. (3) Examples of promi-
nent probabilistic models that satisfy the equivalence,
such as propositional models and latent factor models
like those that arise from matrix factorization.

2.1. Intuitive Plausibility

By definition, a marginal probability is assessed
without conditioning on any further information
about the indvidual entity involved, except for its
type/population. Therefore the individual is equiva-
lent to all other members of the population and infer-
ence about its properties should reflect only properties
of the population, such as the statistical frequency of
a trait. A practical setting where this reasoning is
applied is the cold-start problem for recommendation
system: recommending a movie to a new user who has
just entered the system. In this case the system can-
not make use of specific information, like other movies
the user has watched, and has to fall back on general
statistics about the popularity of a movie and the de-
mographics of the user (e.g., men like action movies).

Halpern proves that his instantiation principle is
equivalent to Miller’s principle (Halpern, 1990,
Th.4.5).1 Miller’s principle applies to probability
types of di↵erent orders. For marginals of ground
atoms and frequencies, it states that conditional on

1This result depends on the assumption of rigid desig-
nators; for details please see Halpern’s paper.
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the value of a class-level frequency, the marginal prob-
ability of a ground atom equals that value. Miller’s
principle has been long accepted by probability theo-
rists.

2.2. Score Maximization.

A commonly used score for a relational inference sys-
tem, such as Markov Logic Networks, is based on the
pseudo-likelihood measure: for each ground atom, ap-
ply inference to calculate its log-likelihood given com-
plete information about all other ground atoms. Then
define the conditional log-likelihood score overall to
be the sum of the conditional log-likelihoods over all
ground atoms in the test set. This score considers in-
ferences about a ground atom given information about
all others; at the other extreme are marginal infer-
ences about a ground atom without any information
about other atoms. If we apply the same method for
scoring marginal inferences independently, we can de-
fine the marginal log-likelihood score to be the sum,
over all ground atoms, of the marginal log-likelihood
of the ground atom. Using standard likelihood maxi-
mization arguments, it is easy to see that the marginal
log-likelihood score is maximized if marginal probabili-
ties equal population frequencies. This result assumes
exchangeability, meaning that predicted probabilities
for individuals of the same type are the same.

Some formalization may clarify these concepts. Let
P denote the probabilistic inferences provided by an
SRL system that is to be scored. Let X = x denote
the event that ground node X has value x, and let
X = x denote that all ground nodes other than X are
assigned the values specified by a list x. For a given
database D that specifies values for all ground nodes,
let xD be the value of X specified by D, and similarly
for X. Then the conditional log-likelihood score (CLL)
of inferences P , as a function of a data D, is given by

CLL(D) ⌘
X

X

lnP(X = xD|X = xD).

The marginal log-likelihood score (MLL) is given by

MLL(D) ⌘
X

X

lnP(X = xD).

2.3. Models that satisfy the Marginal
Equivalence Principle

Our last motivation for the marginal-frequency equiv-
alence principle is that prominent models satisfy it.

This shows that it is possible to design accurate infer-
ence systems to do so. If standard approaches satisfy
the principle, it is in a sense normal to have marginal
instance-level probabilities track class-level probabili-
ties.

2.3.1. Propositional Models

In a propositional model, direct inference from popu-
lation frequencies to specific individuals is so natural
it is usually not made explicit. For instance, suppose
that we build a propositional model for properties of
courses only. In terms of the database of Figure 1, this
means that the only type of data table is the Courses
table (no students or registration information). Sup-
pose that the population statististics are such that half
the courses are di�cult. If we now query the model to
predict the di�culty of course 250, an inference sys-
tem that was learned from representative population
samples from a single data table, would predict that
the probability of course 250 being di�cult was 1/2.

What is interesting about comparing propositional and
relational models is that, while a relational system
can potentially utilize information about linked enti-
ties, marginal probabilities do not actually utilize this
information. If one accepts the marginal equivalence
principle for propositional data, it seems to require an
explanation why the mere fact that relational informa-
tion could be relevant, but is not actually used, should
change the marginal probabilities. Figure 2 aims to vi-
sualize this point. On the left is a trivial model of the
di�culty of courses where the probability of a specific
course being di�cult would be based on class frequen-
cies, or estimates thereof from a single data table, such
as the Courses table shown in Figure 1. On the right
is a more complex model where the intelligence of stu-
dents who are taking the course is relevant. Suppose
we ask the marginal query P (di↵ (250 )) =? in both
models. This query does not involve students regis-
tered in course 250 at all, so one may expect both
models to give the same answer. Thus if marginal
inferences in one model track the class-level probabil-
ities, so should inferences in the other.

2.3.2. Matrix Factorization Models

Latent factor models are among the most predictively
powerful relational models (Chiang & Poole, 2012).
Figure 3 gives a latent factor model for the student
example. A latent factor U(c) is assigned to each
course c, and another U(s) to each student s. Fig-
ure 4 shows a database with imputed factors. There
is a large literature on how to learn the latent fac-
tors, but most methods are based on maximizing the
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Figure 2. Left: A one-node propositional Bayes net, which
satisfies Halpern’s instantiation principe. Right: A Bayes
net expanded with relational information. Should the rela-
tional information be relevant for predicting the marginal

probability of the di�culty of a course? For instance,
should P (di↵ (C ) = hi) be the same in both models?

likelihood of the observed data. In a Bayes net model,
this means that the conditional probability parameters
will be (smoothed) versions of the empirical frequen-
cies with the imputed factors. Now the imputed latent
factors do not a↵ect the marginal frequencies over ob-
served variables. Thus inference regarding marginals
of observed variables will be based on the population
frequency over observed variables. For instance, the
prior probability parameter di↵ (C ) = hi will be 1/2
given the toy database shown in Figure 4 (perhaps
with some smoothing).
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Figure 3. A graphical model for factorizing the Registra-
tion relationship, based on two types of latent factors,
one for students and one for courses. In such models,
instance-level marginal probabilities typically equal class-
level marginal probabilities.
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Figure 4. A small database instance for the model of Fig-
ure 3 with imputed latent factors. The population distribu-
tion over observed attributes is the same as in the database
of Figure 1 that has no latent factors.

We believe that the considerations we have given mo-

tivate the marginal equivalence principle su�ciently
to consider how it may be realized in a statistical-
relational model. This is the technical part of the
paper.

3. Bayes Net Examples

We consider Parametrized Bayes net (PBN) models
without latent factors. We briefly review the rele-
vant definitions. Parametrized Bayes nets are a ba-
sic graphical model for relational data due to Poole
(Poole, 2003). The syntax of PBNs is as follows.
A functor is a function symbol or a predicate sym-
bol. Each functor has a set of values (constants)
called the range of the functor. To conform to sta-
tistical terminology, Poole refers to 1st-order variables
as population variables. A population variable X

is associated with a population, a set of individuals,
corresponding to a type, domain, or class in logic.
A Parametrized random variable is of the form
f(X1, . . . ,Xk). A Parametrized Bayes Net is a
Bayes net whose nodes are Parametrized random vari-
ables. Poole specifies a grounding semantics where the
1st-order Bayes net is instantiated with all possible
groundings of its 1st-order variables to obtain a di-
rected graph whose nodes are functors with constants.
Figure 5 shows an example with the ground nodes ob-
tained by instantiating S := Anna,C := 250 .

In what follows we assume that the marginal class-
level probabilities can be computed from the Bayes net
model. This will generally be the case if parameter
estimates are based on event counts, and enough data
is available. To illustrate, the conditional probabil-
ities of Figure 5 were derived from the database in
Figure 1. if we apply standard Bayes net calcula-
tions to the top Bayes net, the marginal probabili-
ties are uniformly 1/2, which is the frequency in the
database. Thus 1/2 = P (Registered(S ,C ) = T ) =
P(di↵ (C ) = hi) = P(intelligence(S ) = hi). Assuming
that the PBN model represents the class-level proba-
bilities means that whether predicted marginal prob-
abilities match class statistics is only a question of in-
ference, not of learning.

3.1. Unique Parents

In the structure of Figure 5, each ground node has
a unique set of parents. A simple observation is
that if each ground node has a unique set of parents,
then the grounding semantics satisfies the marginal
equivalence principle. The general argument goes
like this. Each ground source node with indegree 0
has a marginal distribution that matches the class-
level distribution. Di↵erent source nodes are inde-
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Figure 5. To illustrate the grounding semantics of
Parametrized Bayes Nets. Top: A Parametrized Bayes
Net with conditional probability parameters specified
following the database frequencies in Figure 1. Bottom:
A fragment of the ground graph for the child node
Registered(Anna, 250 ). Conditional probability parame-
ters are inherited as shown (we omit the parameters for
Registered(Anna, 250 ) for brevity).

pendent, so for non-source nodes, the joint distribu-
tion over the parent-instantiation matches the class-
level model as well. So the marginal distribution of a
non-source node matches the class-level distribution as
well. To illustrate, Table 1 goes through the compu-
tational steps for computing the marginal probability
P (Registered(Anna, 250 ) = T ).

Table 1. If each ground node has a unique parent set,
the grounding semantics satisfies the marginal equiva-
lence principle. For instance P (Registered(Anna, 250 ) =
T ) = 1/2 = P(Registered(S ,C ) = T ). The ta-
ble shows the computation of the marginal probability
P (Registered(Anna, 250 ) = T ).

int(Anna) di↵(250)
P (Reg(Anna, 250 ) = T |

parents) P(parents) product

hi hi 1 1/4 1/4
hi lo 0 1/4 0
lo hi 1/2 1/4 1/8
lo lo 1/2 1/4 1/8

Sum 1/2

Let us review the assumptions in the argument. (1)
The structure is as shown in Figure 5. (2) The BN
parameters agree with the true population conditional
probabilities.

3.2. Average Combining Rule

A ground node may have several instantiations of its
class-level parents as illustrated in Figure 6. In this
case Poole suggests using a combining rule for combin-
ing the conditional probabilities defined by each parent
instance, as in Bayes Logic Progams (Kersting & de
Raedt, 2007). Prominent examples of combining rules
include average and noisy-or. We begin by considering
the average combining rule.
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Figure 6. In this Bayes net, a grounding the node di↵ (C )
has multiple parent instantiations, one for each student.
Conditional probability parameters are set to match the
database frequencies in Figure 1. The priors over the nodes
Registered(S ,C ) and intelligence(S) are uniform.

For the Bayes net structure shown in Figure 6, the av-
erage combining rule satisfies the marginal equivalence
principle. We provide a general argument to show that
this does not depend on our specific database example.
Consider the ground graph of Figure 5. Let us write
⇡1 for an assignment of values to the first parent set
with S := Anna and ⇡2 for the second parent set with
S := Bob. Consider predicting the marginal probabil-
ity for a new course with number 250, and write

✓1(⇡1) ⌘ P (di↵ (250 ) = hi |⇡
1

)

for the conditional probability of high course di�culty
given information about Anna, and similarly

✓2(⇡2) ⌘ P (di↵ (250 ) = hi |⇡
2

)

for the conditional probability of high course di�culty
given information about Bob. Notice that the distri-
bution of ✓1 and ✓2 is identical. Then the average
combining rule sets the conditional probability of the
course di�culty given information about both Bob and
Anna to be the average of the two conditional prob-
abilities ✓1 and ✓2. So the marginal probability that
course 250 is highly di�cult is the expected value of
this average:

P (di↵ (250 ) = hi) = E [(✓
1

(⇡
1

) + ✓

2

(⇡
2

))/2 ].

The expectation of the sum of two random variables
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is the sum of their expectations, regardless of whether
the two random variables are independent. Therefore
we have

P (di↵ (250 ) = hi) = E [(✓
1

(⇡
1

)]

where we could also have used ✓2 because both ✓1, ✓2

are identically distributed. This results means that,
with the average combining rule, the instance-level
marginal can be computed by just considering a single
parent. Table 2 shows the computation. Since we as-
sumed that the Bayes net model agrees with the class-
level distribution, the marginal instance-level proba-
bility equals the marginal class-level probability.

Let us review the assumptions in the argument. (1)
The structure is as shown in Figure 2. (2) The BN
parameters agree with the true population conditional
probabilities. (3) The average combining rule is used.

Table 2. Computing the instance-level marginal probabil-
ity P (di↵ (250 ) = hi) using the average combining rule and
the Bayes net of Figure 2. In this structure, the average
combining rule ensures the equality of the instance-level
probability and the class-level probability.

Reg(Anna,250) Int(Anna) P (di↵ (250 ) = hi |
parents) P(parents) product

T hi 1 1/4 1/4
T lo 1/2 1/4 1/8
F hi 0 1/4 0
F lo 1/2 1/4 1/8

Sum 1/2

3.3. Disjunctive Combining Rule

A deterministic disjunctive model may specify that a
course is highly di�cult if and only if it is taken by
at least one highly intelligent student. Depending on
which students take the course, we specify the condi-
tional probabilities for course di�culty as follows.

1. If no student takes the course, we use a default
prior set to 1/4: P (di↵ (250 ) = hi |#Reg = 0 ) =
1/4 .

2. If exactly one student takes the course, the course
is di�cult i↵ that student is highly intelligent, so
P (di↵ (250 ) = hi |#Reg = 1 ) = 1/2 .

3. If both Bob and Anna take course 250, the course
is di�cult i↵ at least one of the is highly intelli-
gent, so

P (di↵ (250) = hi|#Reg = 2) =

= 1� P (intelligence(Bob) = lo) · P(intelligence(Anna) = lo)

= 3/4

Each number of student participants is equally likely,
so the overall marginal probability of course 250 being
di�culty is the average of these numbers, which comes
out to the class-level probability 1/2. The computa-
tion is shown in Table 3. The default value 1/4 for
no students registered has to be set exactly to balance
out the 3/4 probability from the disjunctive rule when
there is more than one student, which is higher than
the class-level probability.

Table 3. Computing the instance-level marginal probabil-
ity P (di↵ (250 ) = hi) using a deterministic or-gate (dis-
junctive rule) and the Bayes net of Figure 2. With the right
parameter settings, the instance-level probability equals
the class-level probability.

#Reg = r P (di↵ (250 ) = hi |r) P (r) product
0 1/4 1/4 1/16
1 1/2 1/2 1/4
2 3/4 1/4 3/16

Sum 1/2

Let us review the assumptions in the argument. (1)
The structure is as shown in Figure 6. (2) The
source/parent nodes have prior probabilities set to
match population probabilities. (3) A deterministic-or
combining rule is used. (4) The parameters of the com-
bining rule are set exactly so that the class-instance
marginal equivalence holds.

3.4. Discussion.

The examples illustrate how the equivalence princi-
ple motivates some choices of structures, combining
rules (the average rule), and parameter settings (for
the disjunction rule). Open questions for future re-
search include: does the average combining rule ensure
the equality of instance and class level marginals for
every structure, regardless of the exact parameters? If
not, are there constraints on structures that work with
the average rule? Are there always parameter settings
for the noisy-or rule that can ensure the equality, and
for what type of structures?

The equivalence of class and instance marginals is a
fruitful question for other types of SRL models as well.

1. Probabilistic Relational Models use aggregate
functions rather than combining rules. Our dis-
cussion of latent factor models (Section 2.3.2) sug-
gests that introducing new nodes that represent
aggregate functions (Kersting & de Raedt, 2007)
is a promising option for ensuring the equality of
class-level and instance-level marginals.
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2. Do log-linear models, like Markov Logic Networks,
satisfy the marginal equivalence principle?

3. For dependency networks with Gibbs sampling,
good empirical performance on marginals has
been noted (Neville & Jensen, 2007). Do sam-
pling methods satisfy the equivalence principle?

To provide concrete examples, we made the simpli-
fying assumption that the model parameters repre-
sent class-level probabilities. In practice, learning is
based on a limited sample, and some learning methods
may be more suited to class-instance marginal equiv-
alence than others. A mathematical analysis can aim
for a statistical consistency result, showing that as
more and more data are observed, inferred marginal
instance-level probabilities agree with marginal class-
level probabilities in the population. A concrete re-
search question would be whether maximum likeli-
hood methods for learning combining rule parameters
(Natarajan et al., 2008) satisfy this marginal consis-
tency property.

4. Conclusion

In classic AI research, Halpern proposed the princi-
ple that instance-level marginal probabilities should
match class-level marginal probabilities, where the lat-
ter are based on population/class frequencies. For in-
stance, if the only thing we know about Tweety is that
Tweety is a bird, then the probability that Tweety
flies should be the frequency of flyers in the class of
birds. We proposed several motivations for Halpern’s
principle, including intuitive plausibility and predic-
tive performance on marginal queries. Our challenge
to the SRL community is to design inference models
that ensure the equivalence of marginal and class-level
frequencies. We presented several Parametrized Bayes
net examples to show that the equivalence principle
leads to nontrivial constraints on model structures and
parameters. Constraints that have a strong theoreti-
cal motivation can be exploited to achieve faster and
more accurate learning and inference.
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