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Abstract

Class-level dependencies model general re-
lational statistics over attributes of linked
objects and links. Class-level relationships
are important in themselves, and they sup-
port applications like policy making, strate-
gic planning, and query optimization. An
example of a class-level query is “what is
the percentage of friendship pairs where both
friends are women?”. To represent class-level
statistics, we utilize Parametrized Bayes nets
(PBNs), a 1st-order logic extension of Bayes
nets. The standard grounding semantics for
PBNs is appropriate for answering queries
about specific ground facts but not appropri-
ate for answering queries about classes of in-
dividuals. We propose a novel random selec-
tion semantics for PBNs, based on Halpern’s
classic semantics for probabilistic 1st-order
logic (Halpern, 1990), that supports class-
level queries. For parameter learning we use
the empirical frequencies in the relational
data. A naive computation of the empirical
frequencies of the relations is intractable due
to the complexity imposed by negated rela-
tions. We render the computation tractable
by using the Möbius transform. Evaluation
on four benchmark datasets indicates that
maximum pseudo-likelihood provides accu-
rate estimates at different sample sizes.

1. Introduction: Class-Level Queries

Many applications store data in relational format, with
different tables for entities and their links. Relational
data introduces the machine learning problem of class-
level probability estimation: building a model that can
answer generic statistical queries about classes of indi-
viduals in the database (Getoor et al., 2001). For ex-
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ample, a class-level query for a social network database
may be “what is the percentage of friendship pairs
where both are women”? A movie database exam-
ple would be “what is the percentage of male users
who have rated highly an action movie?” A model of
database statistics can be used for several applications,
such as the following.

Statistical 1st-order Patterns. AI research into
combining 1st-order logic and probability investigated
in depth the representation of statistical patterns in
relational structures (Halpern, 1990; Bacchus, 1990).
Often such patterns can be expressed as generic state-
ments, like “intelligent students tend to take difficult
courses”.

Policy making and strategic planning. A univer-
sity administrator may wish to know which program
characteristics attract high-ranking students in gen-
eral, rather than predict the rank of a specific student
in a specific program. Such predictions are based on
generic class-level correlations.

Query optimization. Getoor, Taskar and Koller
showed that knowledge of class-level dependencies can
be exploited in database query optimization (2001). A
statistical model predicts a probability for given table
join conditions that can be used to infer the size of the
join result. Estimating join sizes (selectivity estima-
tion) is used to minimize the size of intermediate join
tables. For a simple example, to find Canadians that
live in Vancouver, it is much faster to check the resi-
dents of Vancouver to see whether they are Canadian
than to check all the Canadians to see whether they
live in Vancouver.

Semantics. We focus on building a Bayes net model
for relational statistics, using Parametrized Bayes nets
(PBNs) (Poole, 2003). The nodes in a PBN are con-
structed with functors and 1st-order variables (e.g.,
Gender(X ) may be a node). The original PBN seman-
tics is a grounding semantics where the 1st-order Bayes
net is instantiated with all possible groundings to ob-
tain a directed graph whose nodes are functors with
constants (e.g., Gender(sam)). The ground graph can
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be used to answer queries about individuals. However,
as pointed out by Getoor (2001), the ground graph is
not appropriate for answering class-level queries be-
cause these are about generic rates and percentages,
not about any particular individuals.

We propose a new semantics for Parametrized Bayes
nets that supports class-level queries. The semantics
is based on the classic random selection semantics for
probabilistic 1st-order logic (Halpern, 1990; Bacchus,
1990). While we focus on PBNs, the random selection
semantics can be applied to any statistical-relational
model whose syntax is based on 1st-order logic.

Learning. A standard Bayes net parameter learning
method is maximum likelihood estimation. A tradi-
tional likelihood measure is difficult to define for rela-
tional data, because of cyclic data dependencies. We
utilize a recent relational pseudo-likelihood measure
for Bayes nets (Schulte, 2011) that is well defined even
in the presence of cyclic dependencies. In addition
to this robustness, the relational pseudo-likelihood
matches the random selection semantics because it is
also based on the concept of random instantiations.
An estimator that chooses the parameters that max-
imize this pseudo-likelihood function (MPLE), has a
closed-form solution: the MPLE parameters are the
empirical frequencies, as with classical i.i.d. maximum
likelihood estimation. Since MPLE depends only on
the generic event frequencies in the data, it can be
viewed as an instance of lifted learning. Computing
the empirical frequencies for negated relationships is
difficult, however, because enumerating the comple-
ment of a relationship table is computationally infea-
sible. We show that the Möbius transform (Kennes &
Smets, 1990) makes MPLE tractable, even in the case
of negated relationships. This transform is a general
procedure for computing relational statistics that in-
volve negated links. It has application in Probabilistic
Relational Models (Getoor et al., 2007, Sec.5.8.4.2),
multi-relational data mining, and inductive logic pro-
gramming models with clauses containing negated re-
lationships.

Results. We evaluate MPLE on four benchmark
real-world datasets. On complete-population samples
MPLE achieves near perfect accuracy in parameter
estimates, and excellent performance on Bayes net
queries. The accuracy of MPLE parameter values is
high even on medium-size samples.

Contributions. Our main contributions for fre-
quency modelling in relational data are the following:

1 A new class-level semantics for graphical 1st-order

models, derived from the random selection semantics
for probabilistic 1st-order logic.

2 Making the computation of frequency estimates
tractable by computing database statistics using the
fast Möbius transform.

3 Evaluating the empirical accuracy of the Bayes net
class-level models at medium to large sample sizes.

4 We contribute to unification of instance-level and
class-level relational probabilities (defined in the next
section) in two ways. (1) The same 1st-order model
can be used for both types of inference. (2) The same
objective function is suitable for learning models for
both types of queries.

Paper Organization. We review background and
notation in the next section. Section 4 presents the
random selection semantics for Bayes nets. Section 5
presents the Möbius transform for relational data.
Simulation results are presented in Section 6, showing
the runtime cost of estimating parameters, and eval-
uations of their quality by (a) comparison with the
true population parameter values, and (b) inference
on random queries.

2. Related Work

Class-level and Instance-level Relational Prob-
abilities. Classic AI research established a fundamen-
tal distinction between two types of probabilities as-
sociated with a relational structure (Halpern, 1990;
Bacchus, 1990). Class-level probabilities, also called
type 1 probabilities are assigned to the rates, statis-
tics, or frequencies of events in a database. These con-
cern classes of entities (e.g., students, courses, users)
rather than specific entities. Instance-level probabil-
ities, also called type 2 probabilities are assigned to
specific, non-repeatable events or the properties of spe-
cific entities. Syntactically, class-level probabilities are
assigned to formulas that contain 1st-order variables
(e.g., P (Flies(X )|Bird(X )) = 90%, or “birds fly” with
probability 90%), whereas instance-level probabilities
are assigned to formulas that contain constants only
(e.g., P (Flies(tweety)) = 90%). There has been much
AI research on using Bayes nets for representing and
reasoning both with class probabilities (Bacchus, 1990)
and instance probabilities (Ngo & Haddawy, 1997).
Most statistical-relational learning has been concerned
with instance probabilities: For instance, Probabilistic
Relational Models (PRMs) (Getoor et al., 2003) and
Markov Logic Networks (MLNs) (Domingos & Lowd,
2009) define probabilities for ground instances using a
grounding semantics.
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Statistical Relational Models. To our knowledge,
Statistical Relational Models (SRMs) due to Getoor,
Taskar and Koller (2001), are the only prior statistical
model with a class-level probability semantics. SRMs
differ from PBNs and other statistical-relational mod-
els in several respects. (1) The SRM syntax is not that
of first-order logic, but is derived from a tuple seman-
tics (Getoor, 2001), which is different from the random
selection semantics we propose for PBNs. (2) SRMs
are less expressive. One restriction is that they cannot
express general combinations of positive and negative
relationships (Getoor, 2001). Other restrictions are
described by Getoor (2001, Ch.6). A direct empiri-
cal comparison between PBNs and SRMs is difficult
as SRM code has not been released (Getoor, personal
communication).

Computing Sufficient Statistics With Negated
Relations For the case of a single relationship, Getoor
et al. (2007) introduced a “1-minus trick” that com-
putes the number of tuples that are not related, from
the number that are related. The Möbius transform
generalizes this to an arbitrary number of relation-
ships.

In their description of Markov Logic Network (MLN)
learning, Domingos and Richardson indicate that for
smaller domains, they use an efficient recursive algo-
rithm to find the exact number of satisfying ground-
ings of a formula (Domingos & Richardson, 2007,
Sec.12.8). We have not found a description of the al-
gorithm. We performed experiments where we com-
pared answering class-level queries with Parametrized
Bayes nets to answering them with MLNs using the
Alchemy system (details not shown due to lack of
space). Alchemy parameter learning did not termi-
nate on any of the MLN structures involving negated
relationships, but did terminate after removing formu-
las with negated relationships (as was done in (Khos-
ravi et al., 2010)). This illustrates the difficulties that
negated relationships cause for current SRL systems.

3. Background: Parametrized Bayes
Nets

Our work combines concepts from relational databases
and graphical models. As much as possible, we use
standard notation in these different areas. We assume
familiarity with Bayes nets and concepts such as CP-
table and I-map. A family in a Bayes net comprises
a child node and its parents. Parametrized Bayes
nets are a basic graphical model for relational data
(Poole, 2003). The syntax of PBNs is as follows. A
functor is a function symbol or a predicate symbol.
Each functor has a set of values (constants) called the

range of the functor. There are two types of functor
nodes: Boolean relationship functors that indicate
whether a relationship holds (e.g., Friend), and at-
tribute functors that correspond to the value of an
attribute (e.g., Gender). A population variable X
is associated with a population, a set of individuals,
corresponding to a type, domain, or class in logic. A
functor random variable or functor node is of
the form f(X1, . . . ,Xk). In this paper we assume that
functor nodes contain 1st-order variables only (no con-
stants). A Parametrized Bayes Net is a Bayes net
whose nodes are functor nodes. In the following we of-
ten omit the prefix “Parametrized” and speak simply
of Bayes nets. Figure 1 shows a PBN. An instantia-
tion or grounding for a set of variables X1, . . . ,Xk

assigns a constant ci from the population of Xi to each
variable Xi. Figure 1 shows a Parametrized Bayes net
and a simple relational database instance.

4. Random Selection Semantics for
Bayes Nets

Random Selection Semantics for First-Order
Logic. For a single population, a distribution over
population members induces a joint distribution over
their attributes (e.g., age, height, gender). Classic AI
research generalized the concept of single population
frequencies to 1st-order logic using the idea of a ran-
dom selection (Halpern, 1990; Bacchus, 1990). We pro-
vide a brief review in the context of a functor language.
For example, consider a probabilistic 1st-order state-
ment using the obvious abbreviations for the functors
in Figure 1:

P (Fr(X ,Y ) = T ,G(X ) = M ,G(Y ) = F ) = 1/4 ,
(1)

which assigns probability 1/4 to a sentence with free
1st-order variables. The random selection semantics
assumes a distribution over the population/domain as-
sociated with each free 1st-order variable. Assuming
the independence of these distributions, we obtain a
joint distribution over the values of population vari-
ables X1, X2, . . . ,Xk; that is, a joint distribution over
tuples of individuals. The class-level probability of a
1st-order statement is then the sum over all tuples that
satisfy the statement, weighted by the probability of
each tuple.

The database distribution. In learning, an ob-
served database instance D provides data only for a
subpopulation. We define the database distribu-
tion, denoted by PD, of a functor node assignment to
be the number of instantiations of the population vari-
ables in the functor nodes that satisfy the assignment
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Figure 1. Left: An illustrative Parametrized Bayes Net.
Friend(X ,Y ) is a relationship node, the other three nodes
are attribute nodes. Right: A simple relational database
instance.

in the database, divided by the number of all possible
instantiations. The database distribution is the special
case of the class-level probability where the population
distribution of a variable X is the uniform distribu-
tion over all observed members of the X-population
in the database. For example, the probability state-
ment above is true in the database of Figure 1 given a
uniform distribution over users.

Random Selection Semantics for Bayes Nets.
The random selection concept provides a class-level
semantics for Parametrized Bayes nets: if we view 1st-
order variables X1, X2, . . . ,Xk as independent random
variables that each sample an individual, then a func-
tor of the form f(X1, X2, . . . ,Xk) represents a function
of a random k-tuple. Since a function of a random vari-
able is itself a random variable, this shows how we can
view functor nodes containing 1st-order variables as
random variables in their own right, without ground-
ing the variables first.
For example, using the obvious abbreviations for the
PBN of Figure 1, the semantics of a joint assignment
like

P (F(X , Y ) = T , G(X ) = M , G(Y ) = M , CD(X ) = T) = 10%

is “if we randomly select two users X and Y , there is
a 10% chance that they are friends, both are men, and
one is a coffee drinker”.

With regard to selectivity estimation, the class-level
semantics that we propose for Parametrized Bayes
Nets covers all queries that involve projections, selec-
tions and joins over the functors in the PBN. This is
the main class of queries, called π−σ−× queries, con-
sidered in standard query optimization systems (Ra-
makrishnan & Gehrke, 2003, Ch.15.2.1).

Random Selection Pseudo-Likelihood. Schulte
(2011) proposed a way to measure the fit of a Bayes

net model to relational data that matches the ran-
dom selection semantics. The pseudo log-likelihood
for a database D given a PBN B is the expected log-
likelihood of a random instantiation of the 1st-order
variables in the PBN with individuals and values from
the database D. For a fixed database D and Bayes
net structure, the parameter values that maximize the
pseudo-likelihood are the MPLE values. These are
the conditional empirical frequencies defined by the
database distribution PD (Schulte, 2011). This result
is exactly analogous to maximum likelihood estima-
tion for i.i.d. data. In the remainder of the paper we
evaluate MPLE parameter estimates. We begin with
a procedure for computing them.

5. Computing Relational Frequencies

Initial work in SRL modelled the distribution of de-
scriptive attributes given knowledge of existing links.
Database statistics conditional on the presence of one
or more relationships can be computed by table joins
with SQL. More recent models represent uncertainty
about relationships with link indicator variables. For
instance, a Parametrized Bayes net includes relation-
ship indicator variables such as Friend(X ,Y ). Learn-
ing with link uncertainty requires computing sufficient
statistics that involve the absence of relationships. A
naive approach would explicitly construct new data ta-
bles that enumerate tuples of objects that are not re-
lated. However, the number of unrelated tupes is too
large to make this scalable (think about the number
of user pairs who are not friends on Facebook). Can
we instead reduce the computation of sufficient statis-
tics that involve negated relationships to the computa-
tion of sufficient statistics that involve existing (posi-
tive) relationships only? The inverse Möbius trans-
form (IMT) provides an affirmative answer (Kennes
& Smets, 1990).

The IMT was originally described using category the-
ory with lattice structures. Our version is adapted
for joint probability tables (JP-tables). A JP-
table is just like a CP-table whose rows correspond
to joint probabilities rather than conditional proba-
bilities. A sufficient statistic that involves positive
relationships only is called a Möbius parameter. To
represent a Möbius parameter, we allow relationship
nodes to take on the value ∗ for “unspecified”. For
instance, suppose that the family nodes are Int(S ),
Reg(S ,C ), RA(S ,P). Then the Möbius parameter
P (Int(S ) = 1 ) is stored in the row where Int(S ) =
1 ,Registered(S ,C ) = ∗,RA(S ,P) = ∗. The IMT uses
a local update operation corresponding to the simple
probabilistic identity
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P (σ,R, R = F ) := P (σ,R)− P (σ,R, R = T )

where σ is an attribute condition that does not in-
volve relationships and R specifies values for a list
of relationship nodes. This shows how a probability
that involves k+1 false relationships can be computed
from two probabilities that each involve only k false
relationships, for k ≥ 0. The IMT initializes the JP-
table with the observed frequencies that do not involve
negated relationships, that is, all relationship nodes
have the value T or ∗. It then goes through the rela-
tionship nodes R1, . . . , Rm in order, replaces at stage i
all occurrences of Ri = ∗ with Ri = F , and applies the
local update equation for the probability value for the
modified row. At termination, all ∗ values have been
replaced by F and the JP-table specifies all joint fre-
quencies. Algorithm 1 gives pseudocode and Figure 2
illustrates the IMT in a schematic example with two
relationship nodes.

Complexity Analysis. (1) The primary property of the
IMT is that it accesses data only about existing links,
never about nonexisting links. (2) A secondary but
attractive property of IMT is that the number of ad-
ditions performed is m2m−1. A lower bound argument
shows that this is optimal (Kennes & Smets, 1990).

Algorithm 1 The inverse Möbius transform for pa-
rameter estimation in a Parametrized Bayes Net. The
algorithm is applied to each family in the Bayes net.

Input: database D; a set of functor nodes divided
into attribute nodes A1, . . . , Aj and relationship
nodes R1, . . . , Rm.
Output: Joint Probability specifying the data fre-
quencies for each joint assignment to the input func-
tor nodes.

1: for all attribute value assignments A1 :=
a1, . . . , Aj := aj do

2: initialize the JP-table with the Möbius parame-
ters: set all relationship nodes to either T or ∗;
find joint probabilities with data queries.

3: for i = 1 to m do
4: Change all occurrences of Ri = ∗ to Ri = F .
5: Update the joint probabilities using (5).
6: end for
7: end for

6. Evaluation

All experiments were done on a QUAD CPU Q6700
with a 2.66GHz CPU and 8GB of RAM. We evaluated
the algorithm on real-world datasets that have been
used in many studies of multi-relational learning (e.g.,
(Chen et al., 2009)). The datasets and our code are
available on the Web (Khosravi et al.).

23/n 

Example 

R1 R2 J.P. 

T T 0.2 

* T 0.3 

T * 0.4 

* * 1 

Presentation Title At Venue 

table with Möbius 
parameters 

R1 R2 J.P. 

T T 0.2 

F T 0.1 

T * 0.4 

F * 0.6 

R1 R2 J.P. 

T T 0.2 

F T 0.1 

T F 0.2 

F F 0.5 

+ 
- 

+ 
- 

+ 
- 

+ 
- 

table with joint 
probabilities 

J.P. = joint probability 

Figure 2. The fast Möbius transform with m = 2 relation-
ship nodes. For simplicity we omit attribute conditions.

6.1. Datasets

We used four benchmark real-world databases, with
the modifications by (Khosravi et al., 2010), which
contains details and references.

Mondial Database. A geography database. Mon-
dial features a self-relationship, Borders, that indicates
which countries border each other.

Hepatitis Database. A modified version of the
PKDD’02 Discovery Challenge database.

Financial A dataset from the PKDD 1999 cup.

MovieLens. A dataset from the UC Irvine machine
learning repository.

To obtain a Bayes net structure for each dataset, we
applied the learn-and-join algorithm (Khosravi et al.,
2010) to each database. We also conducted experi-
ments with synthetic graphs and datasets. The results
are similar to those on real-life datasets. We omit de-
tails for lack of space.

6.2. Learning Times

Table 1 shows the runtimes for computing parameter
values. The Complement method uses MySQL queries
that explicitly construct tables for the complement of
relationships, while the IMT method uses the inverse
Möbius transform to compute the conditional proba-
bilities. Table 1 shows that the IMT is faster by orders
of magnitude, ranging from a factor of 15–237. More
complex SQL queries are possible, such as using the
Count(∗) aggregate function or indices; we leave such
extensions for future work.

6.3. Conditional Probabilities

To study parameter estimation at different sample
sizes, we performed a set of experiments to train
the model on N% of the data and test on 100%
of the data. Conceptually, we treated each bench-
mark database as specifying an entire population, and
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Figure 3. The estimates of conditional probability parameters, averaged over 10 random subdatabases and all BN param-
eters. Error (absolute difference) in conditional probability estimates. The median observation is the red center line and
the box comprises 75% of the observed values. The whisker indicates the maximum acceptable value (1.5 IQR upper).

	  

Table 1. Learning time results (sec) for the Möbius trans-
form vs. constructing complement tables. For each
database, we show the number of tuples, and of param-
eters in the fixed Bayes net structure.

Database Parameters #tuples Complement IMT Ratio
Mondial 1618 814 157 7 22
Hepatitis 1987 12,447 18,246 77 237
Financial 10926 17,912 228,114 14,821 15
MovieLens 326 82,623 2,070 50 41

then estimated the complete-population frequencies
from partial-population data. A fractional sample
size parameter is uniform across tables and databases.
We employed standard subgraph subsampling (Frank,
1977; Khosravi et al., 2010), which selects entities uni-
formly at random and restricts the relationship tuples
in each subdatabase to those that involve only the se-
lected entities.

Figure 3 illustrates that with increasing sample size,
MPLE estimates approach the true value in all cases.
Even for the smaller sample sizes, the median error
is close to 0, confirming that most estimates are very
close to correct. As the box plots show, the 3rd error
quartile of estimates is bound within 10% on Mondial,
the worst case, and within less than 5% on the other
datasets.

6.4. Inference

The basic inference task for Bayes nets is answering
probabilistic queries. If the given Bayes net struc-
ture is an I-map of the true distribution, then correct
parameter values lead to correct predictions. Thus
the performance on queries has been used to evalu-
ate parameter learning. We randomly generate queries
for each dataset according to the following proce-
dure. First, choose a target node V 100 times, and go

through each possible value a of V such that P (V = a)
is the probability to be predicted. For each value a,
choose the number k of conditioning variables, ranging
from 1 to 3. Select k variables V1, . . . , Vk and corre-
sponding values a1, . . . , ak. The query to be answered
is then P (V = a|V1 = a1, . . . , Vk = ak). An example
query could be

P (Int(S ) = high|Registered(S ,C ) = T , diff (C ) = high).

This asks for the number of student-course pairs with
a highly intelligent student, out of the class of student-
course pairs where the student is registered in the
course and the course is difficult.

As in (Getoor et al., 2001), we evaluate queries af-
ter learning parameter values on the entire database.
Thus the BN is viewed as a statistical summary of the
data rather than generalizing from a sample. BN in-
ference is carried out using the Approximate Updater
in CMU’s Tetrad program. Figure 4 shows that the
accuracy of Bayes net query estimates is high. We
also compared the runtime cost of performing model
inference vs. estimating query sizes using SQL, but
cannot show the details due to lack of space. Basi-
cally, model inferences are substantially faster, because
for larger databases, the cost of data access is much
greater than the CPU cost of inference computations;
see also (Getoor et al., 2001). For queries that involve
negated relations, model inference is faster than den-
sity estimation from data by orders of magnitude.

7. Conclusion

We introduced a new semantics for Parametrized
Bayes nets as models of class-level statistics in a re-
lational structure. For parameter learning we uti-
lized the empirical database frequencies, which can be
feasibly computed using the Möbius transform, even
for frequencies concerning negated links. In evalu-
ation on four benchmark databases, the maximum
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Figure 4. Query Performance: Absolute difference between estimated vs. true probability. The median observation is the
red center line and the box comprises 75% of the observed values. The whisker indicates the maximum acceptable value
(1.5 IQR upper). Number of queries/average inference time per query: Mondial, 506/0.08sec; MovieLens, 546/0.05sec;
Hepatitis, 489/0.1sec; Financial, 140/0.02sec.

	  

pseudo-likelihood estimates approach the true condi-
tional probabilities as observations increase. The fit is
good even for medium data sizes.

An important topic for future work is to extend class-
level learning to relational data with missing values
and/or Bayes net models with latent variables. In
the propositional case, maximum likelihood methods
such as EM have been successfully used for such prob-
lems; adapting EM for use with the random selection
pseudo-likelihood is therefore a promising approach.
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