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Abstract

An important approach to game theory is to examine the consequences of beliefs that agents may
have about each other. This paper investigates respect for public preferences. Consider an agent A
who believes that B strictly prefers an option a to an option b. Then A respects B’s preference if A
assigns probability 1 to the choice of a given that B chooses a or b. Respect for public preferences
requires that if it is common belief that B prefers a to b, then it is common belief that all other agents
respect that preference. Along the lines of Blume, Brandenburger and Dekel [3] and Asheim [1], I
treat respect for public preferences as a constraint on lexicographic probability systems. The main
result is that given respect for public preferences and perfect recall, players choose in accordance with
Iterated Backward Inference. Iterated Backward Inference is a procedure that generalizes standard
backward induction reasoning for games of both perfect and imperfect information. From Asheim’s
characterization of proper rationalizability [1] it follows that properly rationalizable strategies are
consistent with respect for public preferences; hence strategies eliminated by Iterated Backward
Inference are not properly rationalizable.

1 Introduction and Overview

Game theory provides a general formalism for representing strategic interactions. The question arises
what we can predict about the behaviour of the agents in a given situation. A solution concept gives
a formal answer to this question, by associating a set of game plays–the “solution set”–with a given
game matrix or game tree. An important line of research examines epistemic assumptions that validate
a given solution concept (cf. [14]). What conditions imply that the predictions of the solution concept
are correct?

This paper examines the implications of respect for public preferences. Blume et al. introduced
the concept of respect for preferences [3, Def. 4] to characterize Myerson’s “proper equilibrium” [8].
Let us assume that each agent’s choices are based on a lexicographic probability system (LPS) ρ =
(ρ1, .., ρk), where each ρi is a probability measure over the choices of other agents. According to Blume,
Brandenburger, and Dekel, “the first component of the LPS [i.e., ρ1] can be thought of as representing
the player’s primary theory...” [3, page 82]. In a lexicographic probability system, the probability of
an event E may be defined even conditional on an event E0 that the agent believes not to obtain. If
ρB is the LPS of agent B, then for any choice of an agent A between two options a and b, we may



consider the conditional LPS ρB|{a, b}. According to Blume et al., B respects the preferences of A if
[ρ1B|{a, b}](a) = 1 whenever A strictly prefers option a to b. Intuitively, the “primary hypothesis” of B
is that A chooses a, given that A chooses either a or b and prefers a. For example, suppose that agent
A has three options, $300, $200, $100. Then if A prefers $200 to $100, respect for preferences requires
that [ρ1B|{$200, $100}]($200) = 1.

Asheim [1] introduced a weaker condition: according to his definition, B respects the preferences
of A if [ρ1B|{a, b}](a) = 1 whenever B believes (with certainty - see Section 4) that A strictly prefers
option a to b. We may think of the definition of Blume et al. as a special case where B’s beliefs about
A’s preferences are true–as they well may be at equilibrium.

Respect for public preferences requires common belief that [ρ1B|{a, b}](a) = 1 whenever it is common
belief among all agents that A strictly prefers option a to b. An event is common belief among the agents
if all agents believe that it obtains, all agents believe all agents believe that it obtains, etc. Preferences
that are common belief are “public” in the sense that all agents are aware of them. Assuming that
agents know their own preferences, then if A believes that she prefers a to b, this is indeed the case,
and hence public preferences are true preferences.

This paper is a formal investigation of what respect for public preferences implies about agents’
behaviour. More specifically, I derive consequences of the following assumptions:

Respect for Public Preferences If it is common belief that player A strictly prefers option a over
b, then it is common belief that [ρ1B|{a, b}](a) = 1 for each player B 6= A.

Full Lexicographic Rationality It is common belief that each player maximizes lexicographic ex-
pected utility, with respect to an LPS with full support. A lexicographic probability system ρ has
full support if every nonempty event receives positive probability at some measure in ρ.

I specify an iterated elimination procedure that computes consequences of these assumptions, which
I term Iterated Backward Inference (IBI). In two special cases, IBI coincides with other well-known
algorithms. First, in a game of perfect information with a unique backward induction solution, the
result of IBI is that solution. Second, suppose we represent a strategic form game as a game tree
with two information sets, one for each player with moves corresponding to strategies. Then IBI
coincides with the Dekel-Fudenberg procedure [4]: First, eliminate all weakly dominated strategies.
Then iteratively eliminate all strictly dominated strategies. Thus IBI generalizes at once both standard
backward induction and the Dekel-Fudenberg procedure.

Applying Asheim’s characterization of Schuhmacher’s concept of proper rationalizability [1], [11], it
is easy to show that properly rationalizable strategies are consistent with Respect for Public Preferences.
Hence if IBI eliminates a strategy si, then si is not properly rationalizable. So IBI can be used to find
strategies that are not properly rationalizable.

The paper is organized as follows. Sections 2 and 3 define standard game-theoretic notions such as
game trees and strategies, and review definitions pertaining to lexicographic probability systems. Sec-
tions 4 and 5 formalize a number of epistemic assumptions, particularly Respect for Public Preferences.
The remainder of the paper investigates the consequences of these assumptions. Sections 6 and 7 define
Iterated Backward Inference, establish its correctness and show existence for finite games–that is, in
finite games some strategy profile is guaranteed to survive IBI.

2 Preliminaries: Game Trees and Strategies

This section gives the standard definition of sequential games or game trees. A tree V is a directed
graph with a root node r such that for every node v in the tree, there is exactly one path from r to v.
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Figure 1: The 3-move version of the Centipede game with players A and B.

I write x > x0 to indicate that node x0 is a successor of x. The edges in the graph are labelled with
“actions”. The set of actions available at a node x is denoted by A(x). Nodes in the tree correspond to
sequences of actions. The definition of a finite game tree is as follows.

Definition 1 A finite sequential game T is a tuple hN, (X,E), player, {Ii}, {ui}i whose components
are the following.

1. A finite set N (the set of players).

2. A finite tree (X,E) labelled with actions.

3. A function player that assigns to each nonleaf node in X a member of N .

4. For each player i ∈ N an information partition Ii defined on {x ∈ X : player(x) = i}. An
element Ii of Ii is called an information set of player i. We require that if x, x0 are members of
the same information set Ii, then A(x) = A(x0). Let Ai =df ∪{A(x) : x ∈ X and player(x) = i}
denote the set of actions of player i.

5. For each player i ∈ N a payoff function ui : Z → R that assigns a real number to each leaf
node.

Though the general notion of an extensive form game permits “chance” moves by “nature”, Definition
1 does not include chance moves. Another simplification that I make throughout the paper is to
consider only 2-player games, that is, I take N = {1, 2}. It is straightforward to generalize the results
in this paper to games with chance moves and any finite number of players, but doing so gives rise
to technical complications that do not illuminate the main issues. I illustrate Definition 1 in two
extensive form games, the three-move version of the well-known Centipede Game (Figure 1) and a
game due to Kohlberg (Figure 2) [7]. There are 7 nodes in the Centipede Game. The terminal nodes
comprise leave ∗ leave ∗ leave and all sequences ending in take (∗ denotes concatenation). Each of the
three information sets I1, I2, I3 is a singleton, which makes the Centipede game a game of perfect
information. Kohlberg’s game is a game of imperfect information because I4 contains two nodes.

If i denotes a player, I write −i for the opponent of player i; so −1 = 2 and −2 = 1 when 1, 2
refer to players. A strategy for player i is a function si : {x ∈ H : player(x) = i} → Ai, such that
(1) si(x) ∈ A(x) for all nodes x belonging to player i, and (2) if I(x) = I(x0), then si(x) = si(x

0).
I write Si(T ) for the set of strategies of player i in T . A strategy pair (s1, s2) of players 1 and 2
respectively determines a unique terminal history denoted by play(s1, s2). I extend the utility functions
ui to strategy pairs by defining ui(s1, s2) =df ui(play(s1, s2)). I assume throughout the paper that
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Figure 2: An extensive form game due to Kohlberg

1/2 l2 t2
tt 1,0 1,0
tl 1,0 1,0
lt 3,1 0,2
ll 2,4 0,2

Table 1: The strategic form of the Centipede Game

every node is reachable by some pair of strategies. That is, I assume that for all nodes x ∈ H, there is
a strategy pair (s1, s2) such that x is reached along play(s1, s2) (cf. [6, Sec. 2.1]).

To illustrate, in the Centipede Game there are two strategies for player 2, which I denote by l2 and
t2 where l2(∅ ∗ leave) = leave, and t2(∅ ∗ leave) = take. Thus if T denotes the Centipede Game, then
S2(T ) = {l2, t2}. Player 1 has four strategies, specifying choices at I1 and I3. We may use the tuples in
{l, t} × {l, t} to denote these strategies, such that for example lt(∅) = leave, and lt(∅ ∗ leave ∗ leave) =
take. The play sequence resulting from the strategy pair (lt, t2) is ∅ ∗ leave ∗ take; in our notation
play(lt, t2) = ∅ ∗ leave ∗ take. Thus u1(lt, t2) = 0, and u2(lt, t2) = 2. A matrix whose rows correspond
to strategies for player 1 and columns to strategies for player 2 gives the normal form, or strategic
form, of a game tree. Table 1 shows the strategic form of the Centipede game. In Kohlberg’s game,
each player has four strategies. Table 2 shows the normal form of Kohlberg’s game.

I/II UL UR DL DR
yT 0,2 0,2 2,0 2,0
yB 0,2 0,2 2,0 2,0
nT 0,2 0,2 4,1 0,0
nB 0,2 0,2 0,0 1,4

Table 2: The strategic form of Kohlberg’s game



ρi2/X tt tl lt ll
ρ32 0 0 1/2 1/2
ρ22 0 0 1 0
ρ12 1/2 1/2 0 0

Table 3: A lexicographic probability system ρ2 representing the beliefs of player 2 about the strategies
of player 1 in the Centipede Game

A crucial question in the developments below is how player i ranks the strategies of her opponent
−i given the information in some information set I. To describe this formally, I map information sets
into sets of strategies as follows. First, define [I] = {(s1, s2) : play(s1, s2) intersects I}. With respect to
player i’s uncertainty space S−i, the information in I corresponds to the set of strategies [I]−i of player
−i that are consistent with I; formally I define [I]−i = {s−i : ∃si.(si, s−i) ∈ [I]}. To illustrate, in the
Centipede game of Figure 1, [I2] = {(ll, l2), (lt, l2), (ll, t2), (lt, t2)}, so [I2]1 = {ll, lt} and [I2]2 = {l2, t2}.

Following [6, Sec. 2.1], I define I > I 0 iff there is x ∈ I, x0 ∈ I 0 such that x > x0, and I ≥ I 0 iff I > I 0
or I = I 0. Thus I > I 0 holds if some play sequence reaches I 0 and then I. For example, in the Kohlberg
game of Figure 2, we have that Ij > I4 for all information sets Ij 6= I4.

3 Preliminaries: Lexicographic Expected Utility

Let X be a finite set of points. A lexicographic probability system over X is a finite sequence
ρ = (ρ1, ρ2, ..., ρk), where each ρj is a probability measure over X. As indicated, for a given LPS ρ I
write ρj for the j-th probability measure in the sequence ρ. The length of ρ is denoted by |ρ|. I also
write ρ(j) for the support of ρj , that is ρ(j) = {x ∈ X : ρj(x) > 0}. An LPS ρ has full support iff
∪{ρ(i) : 1 ≤ i ≤ |ρ|} = X. Thus if ρ has full support, then every point x is in the support of some
probability measure in ρ. Following [3, Definition 2], I write x ≥ρ x

0 if min{j : x ∈ ρ(j)} ≤ min{j :
x0 ∈ ρ(j)}, and x >ρ x

0 if the inequality is strict. Informally, x >ρ x
0 means that the agent considers x

more plausible than x0, in that x is consistent with a “lower-order” belief than x0. To illustrate these
definitions, Table 3 shows an LPS ρ2 that might represent player 2’s beliefs about 1’s strategies in the
Centipede Game, where tt >ρ2 lt >ρ2 ll. The LPS ρ2 has full support.

Let S be a set of acts, and let u : S×X → R be a utility function. The expected utility of an act s with
respect to probability p and utility u is denoted by EU(s, p, u) and defined as EU(s, p, u) =df Σx∈Xp(x)×
u(s, x). The lexicographic expected utility of an act s with respect to an LPS ρ is a vector of
real numbers (expected utilities) defined as LEU(s, ρ, u) = (EU(s, ρ1, u), EU(s, ρ2, u), ..., EU(s, ρk, u))
where k = |ρ|. For two vectors u,u0 of real numbers, let u ≥ u0 denote the lexicographic ordering of the
two vectors. Then an act s maximizes lexicographic expected utility given ρ, u iff LEU(s, ρ, u) ≥
LEU(s0, ρ, u) for all s0 ∈ S. A preference ordering º over S is represented by a pair (ρ, u) iff for all
options s, s0 we have that s º s0 ⇐⇒ LEU(s, ρ, u) ≥ LEU(s0, ρ, u). To illustrate, Table 4 shows the
lexicographic expected utility of the strategies l2 and t2 for Player 2 in the Centipede game, given ρ2.
In this example, LEU(l2, ρ2, u2) = (0, 1, 2.5), and EU(t2, ρ2, u2) = (0, 2, 2), so if (ρ2, u2) represent the
preferences of Player 2, then t2 Â l2.

I next define the conditional LPS ρ|P given a nonempty event P . As usual, if p is a probability
measure over X, and P ⊆ X an event such that support(p) ∩ P 6= ∅, the conditional probability
p|P is defined by [p|P ](x) = p(x)/p(P ) if x ∈ P , and [p|P ](x) = 0 otherwise. Intuitively, to obtain the
conditionalized probability system ρ|P , we first delete all probability measures ρj such that support(ρj)∩
P = ∅, and condition the remaining probability measures on P . For example, conditioning ρ2 on {lt, ll}
yields ρ2|{lt, ll} displayed in Table 5. If ρ|P does not have full support, the conditional probability



ρi2/X tt tl lt ll EU(l2, ρ
i
2, u2) EU(t2, ρ

i
2, u2)

ρ32 0 0 1/2 1/2 2.5 2
ρ22 0 0 1 0 1 2
ρ12 1/2 1/2 0 0 0 0

Table 4: The lexicographic expected utility of player 2’s strategies in the Centipede game with utility
function u2 for player 2, given LPS ρ2 from Table 3

[ρi2|{lt, ll}]/X tt tl lt ll
[ρ22|{lt, ll}] 0 0 1/2 1/2
[ρ12|{lt, ll}] 0 0 1 0

Table 5: The result of conditioning ρ2 in Table 3 on {lt, ll}

ρ|P may not be well-defined. According to decision theorists, an attractive feature of lexicographic
probability systems with full support is that conditional probabilities are well-defined for any event [2].
The formal definition of ρ|P is as follows.

1. o(1) = min{1 ≤ k ≤ |ρ| : ρ(k) ∩ S 6= ∅}. If ρ has full support, o(1) is well-defined. And
(ρ|P )1 = (ρo(1))|P .

2. o(n + 1) = min{o(n) < k ≤ |ρ| : ρ(k) ∩ S 6= ∅}. If there is no such n, then |ρP | = n. Otherwise
(ρ|P )n+1 = (ρo(n+1))|P .

I introduce a new operation ρ ∗ P = [ρ|P ](1), which assigns to each event P the support of the first
probability measure in ρ|P . I refer to this operation as the revision of ρ on P . For example, in the
LPS ρ2 above, we have that ρ2 ∗ {lt, ll} = {lt} (see Table 5). A revision on P can be thought of as
representing the “primary theory” or “first-order beliefs” of the agent given the information P .

Remark. As Stalnaker has noted [15, fn.12], lexicographic probability systems are closed related to
structures that feature in the well-known AGM belief revision theory [5], [12]. Each LPS induces a
revision operator + defined by ρ(1) + P =df ρ ∗ P ; if we interpret this operation as a revision of the
agent’s “primary theory” ρ(1) on the information P , it is easy to verify that the revision satisfies the
well-known AGM axioms for minimal belief change. A difference is that in the AGM theory, a belief
revision operator is a binary function from “current beliefs” K and “new information” P to new beliefs;
in contrast, the revision associated with an LPS is a unary function of information P . (Hans Rott
discusses advantages and disadvantages of unary vs. binary belief revision operators [10].)

4 General Epistemic Assumptions

Consider a 2-player game G = hS1, S2, u1, u2i, with sets of options S1 and S2, and utility functions
u1, u2 defined on S1×S2. Let W be a set of states of the world. A given state of the world w associates
the following elements with each player i:

1. a strategy choice choicewi ∈ Si
2. a preference ordering ºwi over the options Si
3. a LPS ρwi over S−i, and hence a weak ordering ≥wρiover S−i; I write more concisely ≥wi =df≥wρi .



4. a belief operator Bwi . If A is an assertion about the game G, then B
w
i (A) expresses the fact that

in w, player i believes A.

One may take the belief operator Bi as given or interpret it in various ways, for example such that
Bi(A) represents probability 1 belief in A [13], or that Bi(A) is the “first-order belief” of an agent in a
lexicographic probability system, for example an LPS over a type space [1], or that Bi(A) corresponds to
“certain belief” [1] (see below). The theorems in this paper hold for any concept of belief that satisfies
our axioms. In what follows, I consider the implications of various conditions on the epistemic elements
listed above.

Definition 2 Basic Epistemic Principles

1. (Lexicographic rationality) ρi, ui represent ºi.
2. (Full Support) ρi has full support.

3. (Preference Maximization) If choicei = si, then ∀s0i.si ºi s0i.
4. (Preference Introspection) If Bi(si º s0i), then si º s0i.

I use the standard notion of common belief (see Section 1), which I denote by CB. Throughout
this paper, I assume that common belief is closed under implication and that mathematical and logical
truths are common belief. I also assume that all aspects of the game, or game tree, are common belief
among the players.

5 Respect for Public Preferences and Proper Rationalizability

This section formalizes my key assumption, respect for public preferences. Let us consider again an
agent A with three options, $300, $200, $100. Suppose that an agent B believes that A’s preference
ranking is $300 Â $200 Â $100. Then we may require that the first-order probability measure of B’s
lexicographic belief system conditional on the event {$200, $100} assigns probability 1 to $200. It is
easy to see that this requirement is equivalent to the following axiom.

Axiom 3 For each agent i, if Bi(s−i Â s0−i), then s−i >i s0−i.

A weaker assumption is that this requirement holds only for preferences that are public, in the sense
that they are common belief among the agents. My next axiom asserts that for public preferences, it is
common belief that the preferred option is ranked above the dispreferred one.

Axiom 4 (Respect for Public Preferences) For each agent i, if CB(si Âi s0i), then CB(si >−i s0i).

Given our assumptions about common belief, it is possible to derive Axiom 4 from common belief
in Axiom 3.

Lemma 5 Common belief in Axiom 3 implies Axiom 4.

The remainder of this paper investigates the consequences of Respect for Public Preferences, given
the general epistemic assumptions laid out in Section 4. Before I start this investigation, I clarify
the relationship between my epistemic assumptions and previous work, particularly Schuhmacher and



Asheim’s results on proper rationalizability. Reading the remainder of this section can be omitted
without loss of continuity.

Axiom 3 is very closely related to Asheim’s definition of “respecting preferences” [1, Sec. 4.1]. I
outline Asheim’s definition to clarify the precise relationship; for more details see [1]. The definition is
given in a semantic framework with types. A state of the world is a tuple (s1, s2, t1, t2) where si is a
pure strategy for player i and ti is a type of player i from the set Ti of types of player i. In Asheim’s
framework, there are only finitely many types for each player [1, Def.1]. For each type ti ∈ Ti there is a
preference relation ºtiover the pure strategies of player i, and an LPS ρti over the points in S−i × T−i.
Define the events [ti] = {(si, ti) : si ∈ Si} and [si] = {(si, ti) : ti ∈ Ti}. For a given lexicographic
system ρ over points X, define certain belief Bρ by Bρ(E) iff supp(ρ) ∩ E = ∅. In other words, E is
certain belief given ρ iff E receives probability 0 in every measure in ρ. The dual possibility operator Pρ
associated with an LPS ρ is given by Pρ(E) ⇐⇒ ¬Bρ(E). Asheim introduces a cautiousness condition
for players’ beliefs. The event that player i is cautious is defined by: (s1, s2, z1, z2) ∈ caui ⇐⇒ for all
types t−i ∈ T−i, if Pρzi ([t−i]), then Pρzi ({(s−i, t−i)}) for all s−i ∈ S−i. So player i is cautious if for each
type t−i that i considers epistemically possible, player i considers all strategies s−i ∈ S−i (i.e., all pairs
(s−i, t−i)) epistemically possible.

In this notation, Asheim’s definition of the event that player i respects preferences corresponds to:
(s1, s2, z1, z2) ∈ respi ⇐⇒ for all pairs (s−i, t−i), (s0−i, t−i) ∈ S−i × T−i, if Pρzi ([t−i]) and s−i Ât−i s0−i,
then (s−i, t−i) >ρzi (s

0
−i, t−i). To illustrate, suppose that player 1 considers epistemically possible a

type t2 of player 2 (i.e., Pρt1 ([t2])), and that type t2 prefers strategy s2 to s
0
2. Then player 1 ranks

the pair (s2, t2) higher than (s02, t2) in his LPS ρt1 . The intuition is very close to that behind Axiom
3: given that player 2’s prefers s2 to s02 (i.e., given that his type is t2), player 1 ranks s2 higher
than s02. To see how our results relate to Asheim’s axioms, interpret the belief operator Bi as certain
belief Bρti , and the lexicographic probability system ρi as the marginal ρ

ti
m of ρti , which is defined by

(ρtim)
j(s−i) =df Σt−i∈T−i(ρti)j(s−i). With this interpretation, cautiousness and respect for preferences

imply Axiom 3. (I omit the straightforward proof.)
Respect for public preferences (Axiom 4) is weaker than respect for preferences because it applies

only to preferences that are common belief among the agents. Thus even if, for example, player 1 has
certain belief that player 2 prefers s2 to s02, but this fact is not common (certain) belief, then Axiom 4
does not require player 1 to respect the preference of s2 over s02 (i.e., Axiom 4 allows that s02 >ρt1 s2).
As it turns out, the weak condition of respect for public preferences is sufficient to validate Iterated
Backward Inference, the elimination procedure presented in this paper.

Asheim refers to the conjunction of cautiousness and respect for preferences (plus knowledge of
the game structure) as proper consistency [1, Sec. 4.1]. A strategy si is properly rationalizable if
si maximizes preferences in a state of the world in which there is common (certain) belief of proper
consistency [1, Def. 2]. Asheim proves that this definition of proper rationalizability is equivalent to
the previous one by Schuhmacher [1, Prop. 3], [11]. Since common belief in proper consistency entails
common belief in Axiom 3, which in turn entails respect for public preferences, the upshot is that
Iterated Backward Inference can be used to compute properly rationalizable strategies: if the procedure
eliminates a strategy si, then si is not properly rationalizable.

6 An Iterated Elimination Procedure for Respect for Public Prefer-
ences

This section defines the algorithm for deriving consequences of respect for public preferences.



6.1 Sequential Admissibility and Entailment Inference

The iterated elimination procedure for deriving consequences of Respect for Public Preferences combines
two principles: “local” dominance at an information set, and backward inference. I begin with domi-
nance at an information set. To simplify definitions, I focus on games with perfect recall. Intuitively,
a game has perfect recall if no player forgets what they once did or knew. A formal definition may be
found in any text on game theory, for example in [9, p.203].

Definition 6 Let T be a game tree with perfect recall and information set Ii belonging to player i.

1. si weakly dominates s0i at Ii iff

(a) si and s0i are each consistent with Ii (i.e., si, s
0
i ∈ [Ii]i), and

(b) there is a strategy s−i ∈ S−i(T ) consistent with Ii such that ui(si, s−i) > ui(s0i, s−i), and
(c) ui(si, s−i) ≥ ui(s0i, s−i) for all s−i consistent with Ii.

2. si strictly dominates s0i at Ii given Σ−i ⊆ S−i(T ) iff

(a) si and s0i are each consistent with Ii, and
(b) Ii is consistent with Σ−i (i.e., [Ii]−i ∩ Σ−i 6= ∅), and
(c) ui(si, s−i) > ui(s0i, s−i) for all s−i ∈ [Ii]−i ∩ Σ−i.

To illustrate, in the Centipede game (Figure 1) for player 1 the strategy lt weakly dominates ll at
information set I1, and strictly dominates ll at I3 given {l2, t2}. The strategy tt strictly dominates
both lt and ll at I1 given {t2}. For player 2, the strategy t2 strictly dominates l2 at I2 given {lt}. In
Kohlberg’s game (Figure 2), for player II the strategy UL strictly dominates DL at information set I1

given SI(T ). At I2, the strategy yT strictly dominates nB given SII(T ), and yT strictly dominates nT
given {DR}. Finally, at I4 the strategy nB strictly dominates nT given {DR}.

The second component of our iterated elimination procedure draws inferences from the results of
elimination at one information set I to eliminate strategies at another information set I 0. Consider two
information sets I, I 0 such that all strategies si for player i consistent with I are also consistent with
I 0; in symbols [I]i ⊆ [I 0]i. In this case I say that I entails I 0 for player i. The general principle is
this: if a strategy si consistent with I is considered unlikely given the information in the set I, and I
entails I 0 for player i, then si is considered unlikely given the information in the set I 0. Intuitively, if
si is considered unlikely given I, then there is a possibility s0i consistent with I that is considered more
likely than si. Since I entails I 0, the possibility s0i is consistent with I

0 and hence si is not among the
most likely possibilities given I 0. To give the principle a precise formulation, I interpret “si is considered
unlikely at information set I” to mean that the revision on I rules out the strategy si. Then in symbols,
the entailment inference principle is that

if [I]i ⊆ [I 0]i, and si ∈ [I]i,but si /∈ ρ−i ∗ [I]i, then si /∈ ρ−i ∗ [I 0]i. (1)

Or contrapositively: If I entails I 0 for player i, then (ρ−i ∗ [I 0]i) ∩ [I]i ⊆ ρ−i ∗ [I]i. For example, in
the Centipede game, if lt /∈ ρ2 ∗ [I3]1, then the entailment inference principle implies that lt /∈ ρ2 ∗ [I2]1.
In Kohlberg’s game, if nT /∈ ρI ∗ [I4]II , then the principle implies that nT /∈ ρI ∗ [I2]II . On the other
hand, in Kohlberg’s game it is not the case that [I1]2 ⊆ [I2]2, so even if DL is considered unlikely at I1,
the principle does not allow us to infer that DL is considered unlikely at I2. For example, we may have
that ρ1 ∗ [I1]2 = {UL,UR} and ρ1 ∗ [I2]2 = {DL,DR}. Thus Principle 1 does not in general license
“forward induction” arguments.
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Figure 3: A game tree corresponding to the strategic form of the Centipede game

Lexicographic revision satisfies Principle 1. The next Lemma shows that this is due to a very general
property of lexicographic probability systems.

Lemma 7 Let ρ be an LPS with full support, and suppose that P ⊆ P 0. Then (ρ ∗ P 0) ∩ P ⊆ ρ ∗ P .

If we set [I]i = P , and [I 0]i = P 0, it is apparent that Principle 1 is an instance of the contrapositive
of Lemma 7. Standard backward inference can be seen as an instance of Principle 1. Intuitively, in
backward inference a player “looks ahead” and “reasons back”. Consider an information set Ii belonging
to player i that follows some other information set I, which may belong to player −i (in symbols, Ii ≥ I).
It is possible to show that for games with perfect recall, in this case Ii entails I for player i. So by
Principle 1, we have that if a strategy si consistent with I is considered unlikely given the information
in the set Ii, then it is considered unlikely given the information in the set I. In symbols, in games with
perfect recall Principle 1 implies that

if Ii > I, and si ∈ [I]i,but si /∈ ρ−i ∗ [Ii]i, then si /∈ ρ−i ∗ [I]i. (2)

I refer to Principle 2 as the backward inference principle. Backward inference is the typical
application of Principle 1. A different case in which Principle 1 applies occurs when we have two
information sets I, I 0 such that I 0 > I, and all strategies consistent with information set I are consistent
with I 0–that is, [I] ⊆ [I 0], and hence [I]i ⊆ [I 0]i. This special case arises in a game with just two
information sets, such as results from transcribing a game matrix directly into a game tree. For example,
Figure 3 shows a game tree in which players’ options are just their strategies in the Centipede game. If
for example l2 /∈ ρ1 ∗ [I1]2, then l2 /∈ ρ1 ∗ [I2]2; in general, we have that ρ1 ∗ [I2]2 ⊆ ρ1 ∗ [I1]2.

6.2 Iterated Backward Inference: Definition and Examples

Now I define the iterated elimination procedure, which I refer to as Iterated Backward Inference, or IBI
for short.

Definition 8 (Iterated Backward Inference) Let T be a game tree with perfect recall. Then define
for all players i, for all information sets Ii, strategies si ∈ Si(T ), s−i ∈ S−i(T ):

1. si ∈ Γ0i (I) ⇐⇒



information set/
surviving strategies

I1 I2 I3

Γ01 tt, tl, lt lt lt

Γ02 l2, t2 l2, t2 l2

Γ11 tt, tl, lt lt lt

Γ12 t2 t2 l2

Γ21 tt, tl lt lt

Γ22 t2 t2 l2

Table 6: Iterated Backward Inference in the Centipede Game (see Figure 1)

information set/
surviving strategies

I1 I2

Γ01 tt, tl, lt tt, tl, lt

Γ02 l2, t2 l2, t2

Table 7: Iterated Backward Inference in a matrix game tree for the Centipede game (see Figure 3)

(a) si ∈ [I]i, and
(b) for all information sets Ii belonging to player i such that [Ii]i ⊆ [I]i, we have that si is not

weakly dominated at Ii.

2. si ∈ Γn+1i (I) ⇐⇒

(a) si ∈ Γni (I), and
(b) for all information sets Ii belonging to player i such that [Ii]i ⊆ [I]i, we have that si is not

strictly dominated at Ii given Γn−i(Ii).

For a game tree T with root r and information set Ir containing r, let Γni (T ) =df Γ
n
i (Ir). In a

finite game tree, it is clear that there is some round m after which no more elimination takes place, i.e.,
Γmi (T ) = Γ

m+1
i (T ) for all i; I write Γ∞i (T ) =df Γ

m
i (T ). To illustrate IBI, I show its computations on the

games of Figures 1, 3 and 2. The columns correspond to information sets in the game and the rows show
the set of strategies Γni ,Γ

n
−i surviving at each round of elimination, for each player. Table 6 shows that

the final result of the computation in the Centipede game is for Player 1 to take at all his information
sets, and for player 2 to take at his. Formally, we have that Γ∞1 (T ) = {tt, tl} and Γ∞2 (T ) = {t2}.Table 7
shows that Iterated Backward Inference eliminates just one strategy in the matrix tree (normal form) of
the Centipede game, namely ll which is weakly dominated by lt. After ll is dominated, there is no strict
dominance, and the procedure terminates. This example illustrates two points. First, in games with
two information sets, which are essentially just another representation of the strategic form of a game,
Iterated Backward Inference coincides with the Dekel-Fudenberg procedure: First eliminate all weakly
dominated strategies, then iteratively eliminate strictly dominated strategies. In light of Theorem 9
below, it follows that the Dekel-Fudenberg procedure is valid for deriving consequences of Respect for
Public Preferences. The second point is that Iterated Backward Inference can yield different results for
game trees that have the same normal form, as the two game trees for the Centipede Game do. In each
case, the output of Iterated Backward Inference is valid in the sense that Respect for Public Preferences
entails that eliminated strategies will not be played. In our examples, applying IBI in the game tree of
Figure 3 yields the result that Player 1 does not choose ll, and applying IBI in the game tree of Figure



information set/
surviving strategies

I1 I2 I3 I4

Γ01 yT, yB, nT yT, yB, nT nT, nB nT, nB

Γ02 UL,UR,DR DL,DR DL,DR DL,DR

Γ11 yT, yB, nT yT, yB, nT nT, nB nT, nB

Γ12 UL,UR DL,DR DL,DR DL,DR

Table 8: Iterated Backward Inference in Kohlberg’s game (Figure 2)

1 yields the result that Player 1 chooses neither ll nor lt. Thus in some game trees IBI provides more
information than in others, in that the procedure finds more of the consequences of Respect for Public
Preferences. So although our main epistemic principle, Respect for Public Preferences, pertains to the
strategic form of a game, and hence is independent of any particular extensive form, the computational
procedure of this paper does depend on a particular choice of game tree.

Table 8 shows the computation of Iterated Backward Inference in Kohlberg’s game. This example
illustrates two points. First, even though Kohlberg’s game is not a game of perfect information, Iterated
Backward Inference yields a unique outcome prediction: that player II will choose U immediately,
resulting in payoffs (0, 2). Second, the game shows how Iterated Backward Inference incorporates
backward reasoning but not forward reasoning. At information set I2, both yT and yB strictly dominate
nB, so nB is eliminated at I2 at round 0, and hence by backward inference, nB is also eliminated at I1

at round 0. After nB is eliminated, UL and UR strictly dominate DR at information set I1 in round
1, leaving U as the only choice for player II. By contrast, there are two forward induction arguments
that IBI does not incorporate. First, since DL is eliminated at I1, one might take forward induction
to imply that DL should be eliminated at I2 as well. Second, since nB is eliminated at I2, one might
take forward induction to imply that nB should be eliminated at I3 as well.

7 Soundness, Existence and Backward Induction

This section contains the main theorems of the paper. First, the key result: For finite games with
perfect recall, if respect for public preferences obtains and lexicographic rationality with full support is
common belief, then it is common belief that each player believes that play follows Iterated Backward
Inference, at each information set I. Secondly existence: in finite games there are some predictions
consistent with IBI. Third, IBI generalizes backward induction in perfect information games.

Theorem 9 Let T be a finite game tree with perfect recall and assume that Lexicographic Rationality
and Full Support are common belief (see Axiom 2). Then Respect for Public Preferences (Axiom 4)
implies that for all n, i, I:

1. if a strategy si is strictly dominated at an information set I given Γn−i(I), then CB(∃s0i ∈ [I]i.s0i Âi
si), and

2. CB(ρ−i ∗ [I]i ⊆ Γni (I)).

Recall that choicei denotes the strategy choice of player i. It is a simple corollary from Theorem
9 that IBI makes correct predictions about the choices of the players, given common belief in revealed
preference and our standard epistemic assumptions.



Corollary 10 Let T be a finite game tree with perfect recall and assume that Lexicographic Rational-
ity and Full Support are common belief. Then Respect for Public Preferences (Axiom 4), Preference
Maximization and Introspection (see Definition 2) imply that choicei ∈ Γni (T ) for all n.

In finite games with perfect recall, IBI returns a nonempty result.

Proposition 11 Let T be a finite game tree with perfect recall. Then Γn(T ) 6= ∅ for all n.

In finite perfect information games or repeated stage games in which backward induction yields a
unique solution, IBI agrees with the backward induction solution. Thus we have the following result.

Proposition 12 Let T be a finite game tree with perfect information that has a unique subgame perfect
equilibrium (si, s−i). Then ui(si, s−i) = ui(s0i, s

0
−i) for every strategy profile (s

0
i, s

0
−i) ∈ Γ∞(T ) and each

player i.

The definition of subgame perfect equilibrium may be found in any text on game theory, for exam-
ple in [9, Ch.6.2]. For further discussion of the relationship between backward induction, respect for
preferences and proper rationalizability see [11] and [1].

8 Conclusion

An important approach to developing and understanding solution concepts for game theory is to examine
the epistemic assumptions that underlie predictions about the outcome of a game. In this paper I
considered the consequences of Respect for Public Preferences: if it is common belief that an agent
A prefers option a to option b, then it is common belief that, given that A chooses either a or b, she
chooses a. Following previous work by [3] and [1], I proposed to apply lexicographic probability systems
and capture Respect for Public Preferences by requiring that each agent B 6= A assigns probability 1 to
A’s choosing a, conditional on A choosing a or b, whenever A’s preference for a over b is common belief.

Iterated Backward Inference (IBI) is a procedure for computing the consequences of Respect for
Public Preferences in a given game G. IBI eliminates strategies in a game tree T . The main result
is that the procedure is valid given common belief in Revealed Preference, in the following sense: if
T is an extensive form of the strategic game G, and IBI eliminates a strategy s, then s is not chosen
in the game G. [IBI generalizes two well-known algorithms for solving games: the Dekel-Fudenberg
procedure (first eliminate weakly dominated strategies, then iteratively strictly dominates ones), and
standard backward induction for game trees with perfect information; IBI yields predictions that are
at least as strong as those given by these two algorithms.] It follows from Asheim’s characterization of
proper rationalizability [1] that properly rationalizable strategies are consistent with Respect for Public
Preferences. Hence IBI can be used to find strategies that are not properly rationalizable.

The fact that IBI is valid for computing consequences of common belief in Revealed Preference rests
on two key facts. First, given perfect recall, lexicographic rationality enforces sequential admissibility
(admissibility at reachable information sets). Second, lexicographic rationality satisfies the entailment
inference principle: Consider two information sets I, I 0 such that all strategies consistent with I are
consistent with I 0. Then if a strategy s is considered unlikely at I, the strategy s is also considered
unlikely at I 0. When I follows I 0 in a game with perfect recall, the entailment inference principle yields
a backward inference principle.

I mention two open questions for future research. In different game trees with the same strategic form
G, Iterated Backward Inference may give different (stronger) results. We would like to apply IBI to a
canonical game tree T (G) in which the procedures gives complete results, eliminating all and only those



strategies inconsistent with Respect for Public Preferences. The examples in this paper suggest that
canonical game trees are those that in some sense have as many information sets as possible. Whether
canonical game trees exist for an arbitrary game and how to construct them is the most important open
question for understanding the computational aspects of Respect for Public Preferences, and perhaps
of proper rationalizability as well.

Respect for Public Preferences does not validate typical forward induction arguments (for example,
it does not entail the forward induction solution in the well-known Burning Dollar game). One would
like to know further epistemic principles that underlie forward induction arguments. Is there a “best
rationalization” principle based on Respect for Public Preferences that validates forward induction?
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